Tanacetum polycephalum (L.) Schultz-Bip. Induces Mitochondrial-Mediated Apoptosis and Inhibits Migration and Invasion in MCF7 Cells
Abstract
:1. Introduction
2. Results and Discussion
2.1. Antiproliferative Effect of T. Polycephalum Hexane Extract (TPHE) on MCF7 Cells
Cell Lines | IC50 (μg/mL) | ||
---|---|---|---|
Hexane | Chloroform | Methanol | |
MCF7 | 6.42 ± 0.35 | 45.66 ± 6.43 | 79.42 ± 7.43 |
CEMss | 7.22 ± 0.94 | 54.54 ± 4.8 | 66.52 ± 5.32 |
MDA-MB-231 | 7.83 ± 1.34 | 76.43 ± 5.24 | 77.52 ± 8.34 |
PC3 | 10.11 ± 1.16 | 65.31 ± 3.69 | 68.32 ± 4.54 |
HT29 | 13.43 ± 1.67 | 88.29 ± 7.5 | 80.13 ± 6.61 |
HepG2 | 18.46 ± 2.21 | 90.81 ± 2.43 | 95.59 ± 2.43 |
A549 | 22.39 ± 3.6 | 72.85 ± 6.83 | 98.31 ± 2.38 |
CCD841 | 76.73 ± 4.72 | 98.9 ± 6.68 | 99.26 ± 4.34 |
WRL-68 | 100 ± 3.5 | 95.28 ± 4.28 | 98.72 ± 6.54 |
2.2. Gas Chromatography Profile of TPHE
Peak No. | Name of Compounds | Retention Time (s) | Mass |
---|---|---|---|
1 | Z-Isocitral | 2654.45 | 152 |
2 | Tetracosane | 3771.2 | 338 |
3 | Hexacosane | 3957.15 | 366 |
4 | 8β-hydroxy-4β,15-dihydrozaluzanin C | 4127.4 | 264 |
5 | Octacosane | 4309.5 | 394 |
6 | Hentriacontane | 4415.95 | 436 |
2.3. Quantification of Apoptosis Induced by TPHE Using Acridine Orange (AO)/Propidium Iodide (PI) Double-Staining
2.4. Detection of Early Apoptosis Induced by TPHE Using Annexin-V-FITC Labeling
2.5. TPHE Arrested MCF7 Cells at G1 Phase
2.6. THPE Activated Caspase-7, -8 and -9
2.7. THPE Activated Mitochondrial-Initiated Events
2.8. TPHE Induced Up-Regulation of Bax and Down-Regulation of Bcl-2 Assessed by RT-PCR and Immunofluorescent Analysis
2.9. Inhibitory Effect of TPHE on the Migration and Invasion of MCF7 Cells
2.10. Discussion
3. Experimental
3.1. Plant Materials
3.2. Preparation of Extracts from T. Polycephalum (L.) Schultz-Bip
3.3. Cell Culture and Cell Viability Assay
3.4. Chemical Analysis of TPHE
3.5. Acridine Orange/Propidium Iodide (AO/PI) Dual Staining Assay
3.6. Annexin-V-FITC Assay
3.7. Cell Cycle Assay
3.8. Caspase Analysis
3.9. Multiple Cytotoxicity Assay
3.10. Analysis of mRNA Expression of Bax and Bcl-2 by RT-PCR
3.11. Immunofluorescence Analysis of Bax/Bcl-2
3.12. Migration Assay
3.13. Invasion Assay
3.14. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. CA Cancer J. Clin. 2011, 61, 69–90. [Google Scholar]
- Siegel, R.; Naishadham, D.; Jemal, A. Cancer statistics, 2013. CA Cancer J. Clin. 2013, 63, 11–30. [Google Scholar] [CrossRef]
- Ma, J.; Jemal, A. Breast Cancer Statistics. In Breast Cancer Metastasis and Drug Resistance; Springer: New York, NY, USA, 2013; pp. 1–18. [Google Scholar]
- Zorofchian Moghadamtousi, S.; Karimian, H.; Khanabdali, R.; Razavi, M.; Firoozinia, M.; Zandi, K.; Abdul Kadir, H. Anticancer and antitumor potential of fucoidan and fucoxanthin, two main metabolites isolated from brown algae. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef]
- Greenberg, D.; Earle, C.; Fang, C.-H.; Eldar-Lissai, A.; Neumann, P.J. When is cancer care cost-effective? A systematic overview of cost-utility analyses in oncology. J. Natl. Cancer Inst. 2010, 102, 82–88. [Google Scholar]
- Smith, T.J.; Hillner, B.E. Bending the cost curve in cancer care. N. Engl. J. Med. 2011, 364, 2060–2065. [Google Scholar]
- Moghadamtousi, S.Z.; Goh, B.H.; Chan, C.K.; Shabab, T.; Kadir, H.A. Biological activities and phytochemicals of swietenia macrophylla king. Molecules 2013, 18, 10465–10483. [Google Scholar] [CrossRef]
- Norat, T.; Aune, D.; Chan, D.; Romaguera, D. Fruits and Vegetables: Updating the Epidemiologic Evidence for the WCRF/AICR Lifestyle Recommendations for Cancer Prevention. Cancer Treat. Res. 2014, 159, 35–50. [Google Scholar]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar]
- Abdolkarim, C.; Atri, M.; Sarmadi, J.; Asgari, M. Chromosome number variation in Tanacetum polycephalum Schultz Bip.(L.) (Asteraceae) in west of Iran. Caryologia 2011, 64, 302–308. [Google Scholar] [CrossRef]
- Morteza-Semnani, K. Composition of the essential oil of Tanacetum polycephalum Schultz Bip. J. Essent. Oil Res. 2006, 18, 129–130. [Google Scholar] [CrossRef]
- Gao, T.; Yao, H.; Song, J.; Zhu, Y.; Liu, C.; Chen, S. Evaluating the feasibility of using candidate DNA barcodes in discriminating species of the large Asteraceae family. BMC Evol. Biol. 2010, 10, 324. [Google Scholar]
- Nori-Shargh, D.; Norouzi-Arasi, H.; Mirza, M.; Jaimand, K.; Mohammadi, S. Chemical composition of the essential oil of Tanacetum polycephalum (Schultz Bip. ssp. heterophyllum). Flavour Frag. J. 1999, 14, 105–106. [Google Scholar]
- Rustaiyan, A.; Mojob, F.; Salsali, M.; Masoudi, S.; Yari, M. Composition of the essential oil of Tanacetum polycephalum Schultz. Bip. J. Essent. Oil Res. 1999, 11, 497–498. [Google Scholar]
- Mahdavi, M.; Jouri, M.; Mahmoudi, J.; Rezazadeh, F.; Mahzooni-Kachapi, S. Investigating the altitude effect on the quantity and quality of the essential oil in Tanacetum polycephalum Sch.-Bip. polycephalum in the Baladeh region of Nour, Iran. Chin. J. Nat. Med. 2013, 11, 553–559. [Google Scholar]
- Verma, M.; Singh, S.K.; Bhushan, S.; Pal, H.C.; Kitchlu, S.; Koul, M.K.; Thappa, R.K.; Saxena, A.K. Induction of mitochondrial-dependent apoptosis by an essential oil from Tanacetum gracile. Planta Med. 2008, 74, 515–520. [Google Scholar]
- Pareek, A.; Suthar, M.; Rathore, G.S.; Bansal, V. Feverfew (Tanacetum parthenium L.): A systematic review. Pharmacogn. Rev. 2011, 5, 103–110. [Google Scholar]
- Guzman, M.L.; Rossi, R.M.; Karnischky, L.; Li, X.; Peterson, D.R.; Howard, D.S.; Jordan, C.T. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood 2005, 105, 4163–4169. [Google Scholar] [CrossRef]
- Parada-Turska, J.; Paduch, R.; Majdan, M.; Kandefer-Szerszeñ, M.; Rzeski, W. Antiproliferative activity of parthenolide against three human cancer cell lines and human umbilical vein endothelial cells. Pharmacol. Rep. 2007, 59, 233–237. [Google Scholar]
- Mathema, V.B.; Koh, Y.-S.; Thakuri, B.C.; Sillanpää, M. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation 2012, 35, 560–565. [Google Scholar]
- Cheng, G.; Xie, L. Parthenolide induces apoptosis and cell cycle arrest of human 5637 bladder cancer cells in vitro. Molecules 2011, 16, 6758–6768. [Google Scholar]
- Fabisiak, J.P.; Borisenko, G.G.; Kagan, V.E. Quantitative Method of Measuring Phosphatidylserine Externalization During Apoptosis Using Electron Paramagnetic Resonance (EPR) Spectroscopy and Annexin-Conjugated Iron. Meth. Mol. Biol. 2014, 1105, 613–621. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Plants as a source of anti-cancer agents. J. Ethnopharmacol. 2005, 100, 72–79. [Google Scholar]
- Picman, A.K. Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 1986, 14, 255–281. [Google Scholar]
- Seaman, F.C. Sesquiterpene lactones as taxonomic characters in the Asteraceae. Bot. Rev. 1982, 48, 121–594. [Google Scholar]
- Salapovic, H.; Geier, J.; Reznicek, G. Quantification of sesquiterpene lactones in asteraceae plant extracts: Evaluation of their allergenic potential. Sci. Pharm. 2013, 81, 807. [Google Scholar] [CrossRef]
- Toyang, N.J.; Wabo, H.K.; Ateh, E.N.; Davis, H.; Tane, P.; Sondengam, L.B.; Bryant, J.; Verpoorte, R. Cytotoxic sesquiterpene lactones from the leaves of Vernonia guineensis Benth.(Asteraceae). J. Ethnopharmacol. 2013, 146, 552–556. [Google Scholar] [CrossRef]
- Ghantous, A.; Gali-Muhtasib, H.; Vuorela, H.; Saliba, N.A.; Darwiche, N. What made sesquiterpene lactones reach cancer clinical trials? Drug Discov. Today 2010, 15, 668–678. [Google Scholar]
- Zhang, S.; Ong, C.-N.; Shen, H.-M. Critical roles of intracellular thiols and calcium in parthenolide-induced apoptosis in human colorectal cancer cells. Cancer Lett. 2004, 208, 143–153. [Google Scholar]
- Sweeney, C.J.; Mehrotra, S.; Sadaria, M.R.; Kumar, S.; Shortle, N.H.; Roman, Y.; Sheridan, C.; Campbell, R.A.; Murry, D.J.; Badve, S. The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol. Cancer Ther. 2005, 4, 1004–1012. [Google Scholar]
- Zhang, S.; Lin, Z.-N.; Yang, C.-F.; Shi, X.; Ong, C.-N.; Shen, H.-M. Suppressed NF-κB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-α-induced apoptosis in human cancer cells. Carcinogenesis 2004, 25, 2191–2199. [Google Scholar]
- Hajrezaie, M.; Paydar, M.; Moghadamtousi, S.Z.; Hassandarvish, P.; Gwaram, N.S.; Zahedifard, M.; Rouhollahi, E.; Karimian, H.; Looi, C.Y.; Ali, H.M. A Schiff Base-derived copper (II) complex is a potent inducer of apoptosis in colon cancer cells by activating the intrinsic pathway. Sci. World. J. 2014, 2014. [Google Scholar] [CrossRef]
- Sun, S.-Y.; Hail, N.; Lotan, R. Apoptosis as a novel target for cancer chemoprevention. J. Natl. Cancer Inst. 2004, 96, 662–672. [Google Scholar]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar]
- Häcker, G. The morphology of apoptosis. Cell Tissue Res. 2000, 301, 5–17. [Google Scholar]
- Kagan, V.E.; Fabisiak, J.P.; Shvedova, A.A.; Tyurina, Y.Y.; Tyurin, V.A.; Schor, N.F.; Kawai, K. Oxidative signaling pathway for externalization of plasma membrane phosphatidylserine during apoptosis. FEBS Lett. 2000, 477, 1–7. [Google Scholar]
- Appelt, U.; Sheriff, A.; Gaipl, U.; Kalden, J.; Voll, R.; Herrmann, M. Viable, apoptotic and necrotic monocytes expose phosphatidylserine: Cooperative binding of the ligand Annexin V to dying but not viable cells and implications for PS-dependent clearance. Cell Death Differ. 2004, 12, 194–196. [Google Scholar]
- Formigli, L.; Papucci, L.; Tani, A.; Schiavone, N.; Tempestini, A.; Orlandini, G.; Capaccioli, S.; Zecchi Orlandini, S. Aponecrosis: Morphological and biochemical exploration of a syncretic process of cell death sharing apoptosis and necrosis. J. Cell Physiol. 2000, 182, 41–49. [Google Scholar] [CrossRef]
- Kim, J.-S.; He, L.; Lemasters, J.J. Mitochondrial permeability transition: A common pathway to necrosis and apoptosis. Biochem. Biophys. Res. Commun. 2003, 304, 463–470. [Google Scholar]
- Ng, K.-B.; Bustamam, A.; Sukari, M.A.; Abdelwahab, S.I.; Mohan, S.; Buckle, M.J.C.; Kamalidehghan, B.; Nadzri, N.M.; Anasamy, T.; Hadi, A.H.A. Induction of selective cytotoxicity and apoptosis in human T4-lymphoblastoid cell line (CEMss) by boesenbergin a isolated from boesenbergia rotunda rhizomes involves mitochondrial pathway, activation of caspase 3 and G2/M phase cell cycle arrest. BMC Complement. Altern. Med. 2013, 13. [Google Scholar] [CrossRef] [Green Version]
- Green, D.R.; Kroemer, G. The pathophysiology of mitochondrial cell death. Science 2004, 305, 626–629. [Google Scholar]
- Ashkenazi, A. Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor Rev. 2008, 19, 325–331. [Google Scholar] [CrossRef]
- Kim, E.J.; Park, H.; Park, S.Y.; Jun, J.-G.; Park, J.H.Y. The grape component piceatannol induces apoptosis in DU145 human prostate cancer cells via the activation of extrinsic and intrinsic pathways. J. Med. Food 2009, 12, 943–951. [Google Scholar] [CrossRef]
- Wu, S.-H.; Hang, L.-W.; Yang, J.-S.; Chen, H.-Y.; Lin, H.-Y.; Chiang, J.-H.; Lu, C.-C.; Yang, J.-L.; Lai, T.-Y.; Ko, Y.-C. Curcumin induces apoptosis in human non-small cell lung cancer NCI-H460 cells through ER stress and caspase cascade-and mitochondria-dependent pathways. Anticancer Res. 2010, 30, 2125–2133. [Google Scholar]
- Yang, J.-S.; Wu, C.-C.; Kuo, C.-L.; Lan, Y.-H.; Yeh, C.-C.; Yu, C.-C.; Lien, J.-C.; Hsu, Y.-M.; Kuo, W.-W.; Wood, W.G. Solanum lyratum extracts induce extrinsic and intrinsic pathways of apoptosis in WEHI-3 murine leukemia cells and inhibit allograft tumor. Evid. Based Complement. Alternat. Med. 2012. [Google Scholar] [CrossRef]
- Ola, M.S.; Nawaz, M.; Ahsan, H. Role of Bcl-2 family proteins and caspases in the regulation of apoptosis. Mol. Cell Biochem. 2011, 351, 41–58. [Google Scholar]
- Rees, P.; Davidson, S.; Harding, S.; McGregor, C.; Elliot, P.; Yellon, D.; Hausenloy, D. The mitochondrial permeability transition pore as a target for cardioprotection in hypertrophic cardiomyopathy. Cardiovasc. Drug Ther. 2013, 27, 235–237. [Google Scholar]
- Garrido, C.; Galluzzi, L.; Brunet, M.; Puig, P.; Didelot, C.; Kroemer, G. Mechanisms of cytochrome c release from mitochondria. Cell Death Differ. 2006, 13, 1423–1433. [Google Scholar] [CrossRef]
- Du, C.; Fang, M.; Li, Y.; Li, L.; Wang, X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000, 102, 33–42. [Google Scholar] [CrossRef]
- Hill, M.M.; Adrain, C.; Duriez, P.J.; Creagh, E.M.; Martin, S.J. Analysis of the composition, assembly kinetics and activity of native Apaf‐1 apoptosomes. EMBO J. 2004, 23, 2134–2145. [Google Scholar] [CrossRef]
- Adams, J.M.; Cory, S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem. Sci. 2001, 26, 61–66. [Google Scholar] [CrossRef]
- Youle, R.J.; Strasser, A. The BCL-2 protein family: Opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 2008, 9, 47–59. [Google Scholar] [CrossRef]
- Vermeulen, K.; Berneman, Z.N.; van Bockstaele, D.R. Cell cycle and apoptosis. Cell Proliferat. 2003, 36, 165–175. [Google Scholar] [CrossRef]
- Evan, G.I.; Vousden, K.H. Proliferation, cell cycle and apoptosis in cancer. Nature 2001, 411, 342–348. [Google Scholar] [CrossRef]
- Hood, J.D.; Cheresh, D.A. Role of integrins in cell invasion and migration. Nat. Rev. Cancer 2002, 2, 91–100. [Google Scholar] [CrossRef]
- Sims, J.D.; McCready, J.; Jay, D.G. Extracellular heat shock protein (Hsp) 70 and Hsp90α assist in matrix metalloproteinase-2 activation and breast cancer cell migration and invasion. PLoS One 2011, 6, e18848. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. GC-MS analysis of essential oils from some Greek aromatic plants and their fungitoxicity on Penicillium digitatum. J. Agric. Food Chem. 2000, 48, 2576–2581. [Google Scholar] [CrossRef]
- Koopman, G.; Reutelingsperger, C.; Kuijten, G.; Keehnen, R.; Pals, S.; van Oers, M. Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994, 84, 1415–1420. [Google Scholar]
- Lövborg, H.; Nygren, P.; Larsson, R. Multiparametric evaluation of apoptosis: Effects of standard cytotoxic agents and the cyanoguanidine CHS 828. Mol. Cancer Ther. 2004, 3, 521–526. [Google Scholar]
- Sample Availability: Samples of the extract from the leaves of Tanacetum polycephalum (L.) Schultz-Bip are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karimian, H.; Mohan, S.; Moghadamtousi, S.Z.; Fadaeinasab, M.; Razavi, M.; Arya, A.; Kamalidehghan, B.; Ali, H.M.; Noordin, M.I. Tanacetum polycephalum (L.) Schultz-Bip. Induces Mitochondrial-Mediated Apoptosis and Inhibits Migration and Invasion in MCF7 Cells. Molecules 2014, 19, 9478-9501. https://doi.org/10.3390/molecules19079478
Karimian H, Mohan S, Moghadamtousi SZ, Fadaeinasab M, Razavi M, Arya A, Kamalidehghan B, Ali HM, Noordin MI. Tanacetum polycephalum (L.) Schultz-Bip. Induces Mitochondrial-Mediated Apoptosis and Inhibits Migration and Invasion in MCF7 Cells. Molecules. 2014; 19(7):9478-9501. https://doi.org/10.3390/molecules19079478
Chicago/Turabian StyleKarimian, Hamed, Syam Mohan, Soheil Zorofchian Moghadamtousi, Mehran Fadaeinasab, Mahboubeh Razavi, Aditya Arya, Behnam Kamalidehghan, Hapipah Mohd Ali, and Mohamad Ibrahim Noordin. 2014. "Tanacetum polycephalum (L.) Schultz-Bip. Induces Mitochondrial-Mediated Apoptosis and Inhibits Migration and Invasion in MCF7 Cells" Molecules 19, no. 7: 9478-9501. https://doi.org/10.3390/molecules19079478