An Unusual Piceatannol Dimer from Rheum austral D. Don with Antioxidant Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Elucidation of the New Compound
Position | δH (Mult., J in Hz) | δC | DEPT | HMBC (Selected) |
---|---|---|---|---|
1 | 140.1 | C | ||
2 | 120.2 | C | ||
3 | 156.4 | C | ||
4 | 6.28 (d, 2.3) | 102.8 | CH | C-2, 3, 5, 6 |
5 | 156.6 | C | ||
6 | 6.51 (d, 2.4) | 105.0 | CH | C-2, 4, 5 |
1' | 135.4 | C | ||
2' | 6.90 (d, 1.9) | 115.0 | CH | C-3', 4', 6' |
3' | 147.9 | C | ||
4' | 146.1 | C | ||
5' | 7.06 (d, 8.4) | 118.5 | CH | C-1', 3', 4' |
6' | 6.82 (dd, 8.5, 1.9) | 120.0 | CH | C-2′, 4′ |
α | 7.22 (d, 16.0) | 128.1 | CH | C-1, 2, 6, 1' |
β | 6.60 (d, 16.0) | 129.4 | CH | C-1, 2', 6', 1' |
1'' | 4.75 (d, 7.6) | 104.3 | CH | C-4' |
2'' | 3.49 (m) | 74.9 | CH2 | |
3'' | 3.49(m) | 77.5 | CH2 | |
4'' | 3.42 (m) | 71.3 | CH2 | |
5'' | 3.42 (m) | 78.3 | CH2 | |
6'' | 3.91 (brd) | 62.4 | CH2 | C-4'', 5'' |
3.74 (dd, 11.4, 4.6) | ||||
CH2 | 4.11 (s) | 21.3 | CH2 | C-1, 2, 3 |
2.2. Antioxidant Activities by DPPH Scavenging Capacities
Compounds | DPPH Radical IC50 (μM) a |
---|---|
1 | 2.3 ± 0.5 |
2 | 31.7 ± 1.1 |
3 | 25.7 ± 0.7 |
4 | 66.9 ± 1.3 |
5 | 21.7 ± 1.1 |
6 | 32.1 ± 1.5 |
7 | 56.4 ± 0.9 |
8 | 109.7 ± 2.1 |
9 | 69.7 ± 1.5 |
10 | 23.4 ± 0.8 |
resveratrol b | 15.6 ± 0.7 |
piceatannol b | 0.14 ± 0.05 |
ascorbic acid b | 19.7 ± 0.8 |
BHA b | 18.7 ± 0.9 |
α-tocopherol b | 25.1 ± 1.1 |
3. Experimental
3.1. General
3.2. Plant Materials
3.3. Extraction and Isolation of the Compounds
3.4. Acid Hydrolysis of Compound 1
3.5. Spectroscopic Data
3.6. DPPH Assays
4. Conclusions
Supplementary Materials
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bao, B.; Alisa, E.G. RHEUM Linnaeus. In Flora of China; Li, A., Bao, B., Alisa, E.G., Suk-pyo, H., John, M., Sergei, L.M., Hideaki, O., Chong-wook, P., Eds.; Science Press & Missouri Botanical Garden: St. Louis, MO, USA, 2003; Volume 5, pp. 277–350. [Google Scholar]
- Xiao, P.; He, L.; Wang, L. Ethnopharmacologic study of chinese rhubarb. J. Ethnopharmacol. 1984, 10, 275–293. [Google Scholar] [CrossRef]
- Rokaya, M.B.; Münzbergová, Z.; Timsina, B.; Bhattarai, K.R. Rheum australe D. Don: A review of its botany, ethnobotany, phytochemistry and pharmacology. J. Ethnopharmacol. 2012, 141, 761–774. [Google Scholar] [CrossRef]
- Zargar, B.A.; Masoodi, M.H.; Ahmed, B.; Ganie, S.A. Phytoconstituents and therapeutic uses of Rheum emodi wall. ex Meissn. Food Chem. 2011, 128, 585–589. [Google Scholar] [CrossRef]
- Liu, B.; Yang, J.; Wang, S. The chemical constituents in rhubarb rhizomes and roots derived from Rheum emodi Wall. Huaxi Yaoxue Zazhi 2007, 22, 33–35. [Google Scholar]
- Wang, A.Q.; Li, J.L.; Li, J.S. Chemical constituents of Rheum emodi. Zhong Cao Yao 2010, 41, 343–346. [Google Scholar]
- Chai, Y.Y.; Wang, F.; Li, Y.L.; Liu, K.; Xu, H. Antioxidant activities of stilbenoids from Rheum emodi Wall. Evid. Based Complement. Alternat. Med. 2012, 2012. [Google Scholar] [CrossRef]
- Matsuda, H.; Morikawa, T.; Toguchida, I.; Park, J.Y.; Harima, S.; Yoshikawa, M. Antioxidant constituents from rhubarb: Structural requirements of stilbenes for the activity and structures of two new anthraquinone glucosides. Bioorg. Med. Chem. Lett. 2001, 9, 41–50. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Singh, S.S.; Verma, S.; Kumar, S. Antifungal activity of anthraquinone derivatives from Rheum emodi. J. Ethnopharmacol. 2000, 72, 43–46. [Google Scholar] [CrossRef]
- Shi, Y.Q.; Fukai, T.; Sakagami, H.; Kuroda, J.; Miyaoka, R.; Tamura, M.; Nomura, T. Cytotoxic and DNA damage-inducing activities of low molecular weight phenols from rhubarb. Anticancer Res. 2001, 21, 2847–2853. [Google Scholar]
- Suresh, B.K.; Tiwari, A.K.; Srinivas, P.V.; Ali, A.Z.; China, R.B.; Rao, J.M. Yeast and mammalian α-glucosidase inhibitory constituents from Himalayan rhubarb Rheum emodi Wall ex Meisson. Bioorg. Med. Chem. Lett. 2004, 14, 3841–3845. [Google Scholar] [CrossRef]
- Liang, H.X.; Dai, H.Q.; Fu, H.A.; Dong, X.P.; Adebayo, A.H.; Zhang, L.X.; Cheng, Y.X. Bioactive compounds from Rumex plants. Phytochem. Lett. 2010, 3, 181–184. [Google Scholar] [CrossRef]
- Xiang, L.; Lei, F.; Xing, D.; Wang, W.; Zheng, J. Neuron protective constituents from Rheum nanum and Rheum sublanceolatum. Tsinghua Sci. Technol. 2005, 10, 426–429. [Google Scholar] [CrossRef]
- Andersen, D.O.; Weber, N.D.; Wood, S.G.; Hughes, B.G.; Murray, B.K.; North, J.A. In vitro virucidal activity of selected anthraquinones and anthraquinone derivatives. Antivir. Res. 1991, 16, 185–196. [Google Scholar] [CrossRef]
- Liu, W.B.; Hu, L.; Hu, Q.; Chen, N.N.; Yang, Q.S.; Wang, F.F. New resveratrol oligomer derivatives from the roots of Rheum lhasaense. Molecules 2013, 18, 7093–7102. [Google Scholar] [CrossRef]
- Rajkumar, V.; Guha, G.; Ashok Kumar, R. Antioxidant and anti-cancer potentials of Rheum emodi rhizome extracts. Evid. Based Complement. Alternat. Med. 2011. [Google Scholar] [CrossRef]
- Fang, J.G.; Lu, M.; Chen, Z.H.; Zhu, H.H.; Li, Y.; Yang, L.; Wu, L.M.; Liu, Z.L. Antioxidant effects of resveratrol and its analogues against the free-radical-induced peroxidation of linoleic acid in micelles. Chem. Eur. J. 2002, 8, 4191–4198. [Google Scholar] [CrossRef]
- Hu, L.; Chen, N.N.; Feng, L.; Hu, Q.; Liu, W.B.; Yang, Q.S.; Wang, F.F. Piceatannol derivatives from Rheum austral D. Don and their chemotaxonomic significance. Biochem. Syst. Ecol. 2014, 55, 369–373. [Google Scholar] [CrossRef]
- Li., J.L.; Li., J.S.; He., W.Y.; Kong., M. Studies on the non-anthraquiones of Rheum hotaoense. Zhong Cao Yao 1998, 29, 721–723. [Google Scholar]
- Kjer, J.; Wray, V.; Edrada-Ebel, R.; Ebel, R.; Pretsch, A.; Lin, W.; Proksch, P. Xanalteric acids I and II and related phenolic compounds from an endophytic Alternaria sp. isolated from the mangrove plant Sonneratia alba. J. Nat. Prod. 2009, 72, 2053–2057. [Google Scholar] [CrossRef]
- Zhao, H.P.; Wang, Z.Y.; Chen, J.R.; Li, R.M.; Wang, Z.Q. New chromone glucoside from roots of Rumex gmelini. Nat. Prod. Res. Dev. 2009, 21, 189–191. [Google Scholar]
- Xu, J.; Kjer, J.; Sendker, J.; Wray, V.; Guan, H.; Edrada, R.; Proksch, P. Chromones from the endophytic fungus Pestalotiopsis sp. isolated from the Chinese mangrove plant Rhizophora mucronata. J. Nat. Prod. 2009, 72, 662–665. [Google Scholar] [CrossRef]
- Mei, R.; Liang, H.; Wang, J.; Zeng, L.; Lu, Q.; Cheng, Y. New seco-anthraquinone glucosides from Rumex nepalensis. Planta Med. 2009, 75, 1162. [Google Scholar] [CrossRef]
- Demirezer, Ö; Kuruüzüm, A.; Bergere, I.; Schiewe, H.J.; Zeeck, A. Five naphthalene glycosides from the roots of Rumex patientia. Phytochemistry 2001, 56, 399–402. [Google Scholar] [CrossRef]
- Shikishima, Y.; Takaishi, Y.; Honda, G.; Ito, M.; Takeda, Y.; Kodzhimatov, O.K.; Ashurmetov, O. Phenylbutanoids and stilbene derivatives of Rheum maximowiczii. Phytochemistry 2001, 56, 377–381. [Google Scholar] [CrossRef]
- Likhitwitayawuid, K.; Ruangrungsi, N.; Cordell, G.A. Amabiloside, a new glycoside from Crinum amabile. Nat. Prod. Lett. 1993, 3, 1–4. [Google Scholar] [CrossRef]
- Tanaka, H.; Nakamura, T.; Ichino, K.; Ito, K. A phenolic amide from Actinodaphne longifolia. Phytochemistry 1989, 28, 2516–2517. [Google Scholar] [CrossRef]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Rivière, C.; Pawlus, A.D.; Mérillon, J.M. Natural stilbenoids: Distribution in the plant kingdom and chemotaxonomic interest in Vitaceae. Nat. Prod. Rep. 2012, 29, 1317–1333. [Google Scholar] [CrossRef]
- Xiao, K.; Zhang, H.J.; Xuan, L.J.; Zhang, J.; Xu, Y.M.; Bai, D.L. Stilbenoids: Chemistry and bioactivities. In Studies in Natural Products Chemistry; Atta-ur-Rahman, Ed.; Elsevier Science: Amsterdam, The Netherlands, 2008; Volume 34, pp. 453–646. [Google Scholar]
- Shen, T.; Wang, X.N.; Lou, H.X. Natural stilbenes: An overview. Nat. Prod. Rep. 2009, 26, 916–935. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the compounds 1–16 are available from the authors.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Hu, L.; Chen, N.-N.; Hu, Q.; Yang, C.; Yang, Q.-S.; Wang, F.-F. An Unusual Piceatannol Dimer from Rheum austral D. Don with Antioxidant Activity. Molecules 2014, 19, 11453-11464. https://doi.org/10.3390/molecules190811453
Hu L, Chen N-N, Hu Q, Yang C, Yang Q-S, Wang F-F. An Unusual Piceatannol Dimer from Rheum austral D. Don with Antioxidant Activity. Molecules. 2014; 19(8):11453-11464. https://doi.org/10.3390/molecules190811453
Chicago/Turabian StyleHu, Lin, Na-Na Chen, Qun Hu, Cui Yang, Qing-Song Yang, and Fang-Fang Wang. 2014. "An Unusual Piceatannol Dimer from Rheum austral D. Don with Antioxidant Activity" Molecules 19, no. 8: 11453-11464. https://doi.org/10.3390/molecules190811453
APA StyleHu, L., Chen, N. -N., Hu, Q., Yang, C., Yang, Q. -S., & Wang, F. -F. (2014). An Unusual Piceatannol Dimer from Rheum austral D. Don with Antioxidant Activity. Molecules, 19(8), 11453-11464. https://doi.org/10.3390/molecules190811453