Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice
Abstract
:1. Introduction
2. Results and Discussion
2.1. Hepatoprotective Effects of Met-enkephalin
Group (n = 8) | Mean | SD | Median | p value * |
---|---|---|---|---|
1. Control (0.9% NaCl) | 7545 | 4114 | 7170 | |
2. Met-enkephalin (0.075 mg/kg) | 3362 | 3052 | 2470 | 0.2169 |
3. Met-enkephalin (0.75 mg/kg) | 2621 | 3959 | 1127 | 0.0967 |
4. Met-enkephalin (7.5 mg/kg) | 1313 | 1317 | 836 | 0.0039 |
5. Met-enkephalin (75 mg/kg) | 3161 | 2982 | 2440 | 0.1190 |
Group (n = 8) | Mean | SD | Median | p value * |
---|---|---|---|---|
1. Control (0.9% NaCl) | 3946 | 1752 | 3355 | |
2. Met-enkephalin (0.075 mg/kg) | 2547 | 1263 | 2139 | 0.7596 |
3. Met-enkephalin (0.75 mg/kg) | 1062 | 821 | 730 | 0.0751 |
4. Met-enkephalin (7.5 mg/kg) | 794 | 911 | 370 | 0.0072 |
5. Met-enkephalin (75 mg/kg) | 2194 | 1765 | 2810 | 0.6620 |
Group (n = 8) | Minimum | Q1 | Median | Q3 | Maximum | p value * |
---|---|---|---|---|---|---|
1. Control 1 (0.9% NaCl) | 3 | 3.8 | 4.0 | 5.0 | 5 | |
2. Met-enkephalin (0.075 mg/kg) | 3 | 3.0 | 4.0 | 5.0 | 5 | 0.9657 |
3. Met-enkephalin (0.75 mg/kg) | 3 | 3.0 | 3.5 | 4.3 | 5 | 0.5495 |
4. Met-enkephalin (7.5 mg/kg) | 2 | 2.0 | 2.5 | 3.0 | 4 | 0.0094 |
5. Met-enkephalin (75 mg/kg) | 2 | 2.8 | 3.5 | 4.3 | 5 | 0.4770 |
2.2. Modulation of Hepatoprotection with Naltrexone and Antisense Peptide
2.3. Genotoxic Testing of Met-enkephalin
Group (n = 8) | Background Value | Exposed 48 h | Exposed 96 h |
---|---|---|---|
Mean Rate (95% CI) * | Mean Rate(95% CI)* | Mean Rate(95% CI)* | |
1. Met-enkephalin (0.5 mg/kg) | 0.13 (0.05–0.23) | 0.24 (0.14–0.37) | 0.29 (0.18–0.43) |
2. Met-enkephalin (5 mg/kg) | 0.13 (0.05–0.23) | 0.22 (0.12–0.34) | 0.29 (0.18–0.43) |
3. Met-enkephalin (50 mg/kg) | 0.09 (0.03–0.24) | 0.14 (0.07–0.26) | 0.09 (0.04–0.18) |
3. Experimental Section
3.1. Test Compounds
- Met-enkephalin (YGGFM, mw 573.66, >99% purity; Biofactor GmbH, Bad Harzburg, Germany).
- Antisense peptide (IPPKY, mw 616.75, 98.5% purity, and IPPKYW, mw 802.96, >99% purity; GenScript, Piscataway, NJ, USA).
- Naltrexone hydrochloride (mw 377.86, >99% purity; Sigma-Aldrich Co. LLC, St. Louis, MO, USA).
3.2. Treatment Regimen and Experimental Models
3.2.1. Hepatotoxicity Model
3.2.2. Genotoxicity Testing
3.3. Peptide Binding Assay Using Tryptophan Fluorescence Spectroscopy
3.4. Statistical Analysis
4. Conclusions
- Met-enkephalin showed protective effects in the model of acetaminophen induced hepatotoxicity in male CBA mice.
- The optimal hepatoprotective dose of Met-enkephalin was 7.5 mg/kg, which is in the range of protective doses (4–10 mg/kg) observed in animal models of inflammatory/autoimmune diseases.
- Met-enkephalin effects on the liver are peptide and receptor specific, mediated via δ and ζ opioid receptors.
- Genotoxic testing of Met-enkephalin confirmed the safety of the peptide.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Plotnikoff, N.P.; Faith, R.E.; Murgo, A.J.; Herberman, R.B.; Good, R.A. Methionine enkephalin: A new cytokine-human studies. Clin. Immunol. Immunopathol. 1997, 82, 93–101. [Google Scholar]
- Zagon, I.S.; Verderame, M.F.; McLaughlin, P.J. The biology of the opioid growth factor receptor (OGFr). Brain Res. Rev. 2002, 38, 351–376. [Google Scholar]
- Janković, B.D.; Marić, D. Enkephalins as regulators of inflammatory immune reactions. In Neuropeptides and Immunoregulation, 1st ed.; Scharrer, B., Smith, E.M., Stefano, G.B., Eds.; Springer-Verlag: Berlin, Germany, 1994; pp. 76–100. [Google Scholar]
- Janković, B.D. Enkephalins and immune inflammatory reactions. Acta Neurol. 1991, 13, 433–441. [Google Scholar]
- Konjevoda, P.; Štambuk, N.; Aralica, G.; Pokrić, B. Cytoprotective effects of met-enkephalin and α-MSH on ethanol induced gastric lesions in rats. J. Physiol. Paris 2001, 95, 277–281. [Google Scholar] [CrossRef]
- Štambuk, N.; Kopjar, N.; Šentija, K.; Garaj-Vrhovac, V.; Vikić-Topić, D.; Marušić-DellaMarina, B.; Brinar, V.; Trbojević-Čepe, M.; Žarković, N.; Ćurković, B.; et al. Cytogenetic effects of met-enkephalin (peptid-M) on human lymphocytes. Croat. Chem. Acta 1998, 71, 591–605. [Google Scholar]
- Tješić-Drinković, D.; Štambuk, N.; Tješić-Drinković, D.; Konjevoda, P.; Gotovac, N.; Ćurković, T.; Votava-Raić, A. Met-enkephalin effects on histamine-induced bronchoconstriction in guinea pigs. Coll. Antropol. 2005, 29, 315–318. [Google Scholar]
- Konjevoda, P.; Štambuk, N.; Vikić-Topić, D.; Boban-Blagaić, A.; Vikić-Topić, S.; Mrljak, V.; Ramadan, P.; Biđin, Z. Protective effects of met-enkephalin on alcohol induced gastric lesions. Croat. Chem. Acta 2000, 73, 1111–1121. [Google Scholar]
- Cieśla, A.; Mach, T.; Pierzchała-Koziec, K.; Skwara, P.; Szczepański, W. Met-enkephalin in the liver as a marker of hepatocellular damage in chronic viral hepatitis type B and C. Adv. Med. Sci. 2006, 51, 261–264. [Google Scholar]
- Vijaya, D.; Boyella, V.D.; Nicastri, A.D.; Bergasa, N.V. Human hepatic met-enkephalin and delta opioid receptor-1 immunoreactivities in viral and autoimmune hepatitis. Annals. Hepatol. 2008, 7, 221–225. [Google Scholar]
- Turčić, P.; Bradamante, M.; Houra, K.; Štambuk, N.; Kelava, T.; Konjevoda, P.; Kazazić, S.; Vikić-Topić, D.; Pokrić, B. Effects of α-melanocortin enantiomers on acetaminophen-induced hepatotoxicity in CBA mice. Molecules 2009, 14, 5017–5026. [Google Scholar] [CrossRef]
- Blagaić, V.; Houra, K.; Turčić, P.; Štambuk, N.; Konjevoda, P.; Boban-Blagaić, A.; Kelava, T.; Kos, M.; Aralica, G.; Čulo, F. The influence of α-, β-, and γ-melanocyte stimulating hormone on acetaminophen induced liver lesions in male CBA mice. Molecules 2010, 15, 1232–1241. [Google Scholar] [CrossRef]
- Houra, K.; Turčić, P.; Gabričević, M.; Weitner, T.; Konjevoda, P.; Štambuk, N. Interaction of α-melanocortin and its pentapeptide antisense LVKAT: Effects on hepatoprotection in male CBA mice. Molecules 2011, 16, 7331–7343. [Google Scholar]
- Jaeschke, H. Role of inflammation in the mechanism of acetaminophen-induced hepatotoxicity. Expert. Opin. Drug Metab. Toxicol. 2005, 1, 389–397. [Google Scholar] [CrossRef]
- Muriel, P. Some experimental models of liver damage. In Hepatotoxicity, 1st ed.; Sahu, S.C., Ed.; Wiley: Chichester, UK, 2007; pp. 119–137. [Google Scholar]
- Nelson, S.D.; Bruschi, S.A. Mechanisms of acetaminophen-induced liver disease. In Drug-Induced Liver Disease, 2nd ed.; Kaplowitz, N., DeLeve, L.D., Eds.; Informa Healthcare: New York, NY, USA, 2007; pp. 353–388. [Google Scholar]
- Timbrel, J.A. Principles of Biochemical Toxicology, 4th ed; Informa Healthcare: New York, NY, USA, 2009; pp. 313–321. [Google Scholar]
- Senior, J.R. ‘Classic’ biomarkers of liver injury. In The Path from Biomarker Discovery to Regulatory Qualification, 1st ed.; Goodsaid, F., Mattes, W.B., Eds.; Academic Press: Oxford, UK, 2013; pp. 111–128. [Google Scholar]
- Silva, V.M.; Chen., C.; Hennig, G.E.; Whiteley, H.E.; Manautou, E.J. Changes in susceptibility to acetaminophen-induced liver injury by the organic anion indocyanine green. Food Chem. Tox. 2001, 3, 271–278. [Google Scholar]
- Calabrese, E.J.; Baldwin, L.A. Hormesis: The dose-response revolution. Annu. Rev. Pharmacol. Toxicol. 2003, 43, 175–197. [Google Scholar] [CrossRef]
- Rang, H.P.; Dale, M.M.; Ritter, J.M.; Flower, R.J.; Henderson, G. Rang and Dale’s Pharmacology, 7th ed.; Elsevier: Amsterdam, the Netherlands, 2011; pp. 398–399 and 510–520. [Google Scholar]
- Štambuk, N.; Konjevoda, P.; Boban-Blagaić, A.; Pokrić, B. Molecular recognition theory of the complementary (antisense) peptide interactions. Theory Biosci. 2005, 123, 265–275. [Google Scholar] [CrossRef]
- tambuk, N.; Manojlović, Z.; Turčić, P.; Martinić, R.; Konjevoda, P.; Weitner, T.; Wardega, P.; Gabričević, M. A simple three-step method for design and affinity testing of new antisense peptides: An example of erythropoietin. Int. J. Mol. Sci. 2014, 15, 9209–9223. [Google Scholar]
- Hayashi, M.; Morita, T.; Kodama, Y.; Sofuni, T.; Ishidate, M. The micronucleus assay with mouse peripheral blood reticulocytes using acridine orange-coated slides. Mutat. Res. 1990, 278, 127–130. [Google Scholar]
- Plotnikoff, N.P.; Solomon, S.; Valentine, J.L.; Fesen, M.; Faith, R.E.; Edwards, L.; Richter, R.; Murgo, A.J.; Miller, G.C. Metionine enkephalin: Clinical pharmacology. In Enkephalins and Endorphins: Stress and the Immune System, 1st ed.; Plotnikoff, N.P., Faith, R.E., Murgo, A.J., Good, R., Eds.; Plenum Press: New York, NY, USA, 1986; pp. 407–416. [Google Scholar]
- Guide for the care and use of laboratory animals. Available online: http://grants.nih.gov/grants/olaw/Guide-for-the-care-and-use-of-laboratory-animals.pdf (accessed on 23 December 2013).
- Legislation for the protection of animals used for scientific purposes. European Commision. Available online: http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm (accessed on 23 December 2013).
- Croatian Animal Protection Act (Official Gazette 135/06). Available online: http://narodne-novine.nn.hr/clanci/sluzbeni/128788.html (accessed on 23 December 2013).
- Guarner, F.; Boughton-Smith, N.K.; Blackwell, G.J.; Moncada, S. Reduction by prostacyclin of acetaminophen-induced liver toxicity in the mouse. Hepatology 1988, 8, 248–253. [Google Scholar]
- Čulo, F.; Renić, M.; Sabolović, D.; Radoš, M.; Bilić, A.; Jagić, V. Ketoconazole inhibits acetaminophen-induced hepatotoxicity in mice. Eur. J. Gastroenterol. Hepatol. 1995, 7, 757–762. [Google Scholar]
- Tomas Aragon. epitools: Epidemiology Tools. R package version 0.5–6. Available online: http://CRAN.R-project.org/package=epitools (accessed on 26 November 2013).
- Fay, M.P. Two-sided exact tests and matching confidence intervals for discrete data. Available online: http://journal.r-project.org/archive/2010-1/RJournal_2010-1_Fay.pdf (accessed on 6 August 2014).
- R Core Team. R: A language and environment for statistical computing. Available online: http://www.R-project.org (accessed on 26 November 2013).
- Biro, J.C. The proteomic code: A molecular recognition code for proteins. Theor. Biol. Med. Model. 2007, 4, 1–45. [Google Scholar] [CrossRef]
- Blalock, J.E. Genetic origin of protein shape and interaction rules. Nat. Med. 1995, 1, 876–878. [Google Scholar] [CrossRef]
- Heal, J.R.; Roberts, G.W.; Raynes, J.G.; Bhakoo, A.; Miller, A.D. Specific interactions between sense and complementary peptides: The basis for the proteomic code. Chem. Biol. Chem. 2002, 3, 136–151. [Google Scholar]
- Gampp, H.; Maeder, M.; Meyer, C.J.; Zuberbühler, A.D. Calculation of equilibrium constants from multiwavelength spectroscopic data-I: Mathematical considerations. Talanta 1985, 32, 95–101. [Google Scholar]
- Gampp, H.; Maeder, M.; Meyer, C.J.; Zuberbühler, A.D. Calculation of equilibrium constants from multiwavelength spectroscopic data-II132, 95: Specfit: Two user-friendly programs in basic and standard FORTRAN 77. Talanta 1985, 32, 257–264. [Google Scholar] [CrossRef]
- Gampp, H.; Maeder, M.; Meyer, C.J.; Zuberbühler, A.D. Calculation of equilibrium constants from multiwavelength spectroscopic data-IV: Model-free least-squares refinement by use of evolving factor analysis. Talanta 1986, 33, 943–951. [Google Scholar] [CrossRef]
- Maeder, M.; Neuhold, Y.M. Practical Data Analysis in Chemistry, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 40–75. [Google Scholar]
- Specfit. Available online: http://www.hi-techsci.com/products/specfitglobalanalysis (accessed on 23 December 2013).
- Graph-Pad Software, San Diego, CA, USA. Available online: http://www.graphpad.com (accessed on 26 November 2013).
- KyensLab Inc, Tokyo, Japan. Available online: http://www.kyenslab.com (accessed on 26 November 2013).
- Rowe, P. Essential Statistics for the Pharmaceutical Sciences, 1st ed.; Wiley: Chichester, UK, 2007; pp. 83–87. [Google Scholar]
- Samples Availability: Not available.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Martinić, R.; Šošić, H.; Turčić, P.; Konjevoda, P.; Fučić, A.; Stojković, R.; Aralica, G.; Gabričević, M.; Weitner, T.; Štambuk, N. Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice. Molecules 2014, 19, 11833-11845. https://doi.org/10.3390/molecules190811833
Martinić R, Šošić H, Turčić P, Konjevoda P, Fučić A, Stojković R, Aralica G, Gabričević M, Weitner T, Štambuk N. Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice. Molecules. 2014; 19(8):11833-11845. https://doi.org/10.3390/molecules190811833
Chicago/Turabian StyleMartinić, Roko, Hrvoje Šošić, Petra Turčić, Paško Konjevoda, Aleksandra Fučić, Ranko Stojković, Gorana Aralica, Mario Gabričević, Tin Weitner, and Nikola Štambuk. 2014. "Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice" Molecules 19, no. 8: 11833-11845. https://doi.org/10.3390/molecules190811833
APA StyleMartinić, R., Šošić, H., Turčić, P., Konjevoda, P., Fučić, A., Stojković, R., Aralica, G., Gabričević, M., Weitner, T., & Štambuk, N. (2014). Hepatoprotective Effects of Met-enkephalin on Acetaminophen-Induced Liver Lesions in Male CBA Mice. Molecules, 19(8), 11833-11845. https://doi.org/10.3390/molecules190811833