Antioxidant and Nitrite-Scavenging Capacities of Phenolic Compounds from Sugarcane (Saccharum officinarum L.) Tops
Abstract
:1. Introduction
2. Results and Discussion
2.1. Total Phenolic Content
2.2. Identification of Major Phenolic Compounds in Sugarcane Tops
2.3. Antioxidant Capacity
2.3.1. ORAC Assay
TP Content | ORAC | FRAP | DPPH Scavenging Capacities | ABTS Scavenging Capacities | Nitrite-Scavenging Capacities |
---|---|---|---|---|---|
Correlation coefficient | 0.824 | 0.926 | 0.982 | 0.979 | 0.971 |
Significance (bilateral) | 0.086 | 0.024 | 0.003 | 0.004 | 0.006 |
2.3.2. DPPH and ABTS Radical Scavenging Capacities
2.3.3. FRAP Assay
2.4. Nitrite-Scavenging Capacity
3. Experimental Section
3.1. Plant Materials
3.2. Chemicals and Reagents
3.3. Preparation of Sugarcane Tops Extracts
3.4. Determination of Total Phenolic Content
3.5. Isolation and Identification of Major Phenolic Compounds
3.6. Antioxidant and Nitrite-Scavenging Capacity Assays
3.6.1. Oxygen Radical Absorbance Capacity
3.6.2. DPPH Radical-Scavenging Capacity
3.6.3. ABTS Radical-Scavenging Capacity
3.6.4. Ferric-Reducing Antioxidant Power
3.6.5. Nitrite-Scavenging Capacity Assay
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Takashima, M.; Horie, M.; Shichiri, M.; Hagihara, Y.; Yoshida, Y.; Niki, E. Assessment ofantioxidantcapacityfor scavenging free radicals in vitro: A rational basis and practical application. Free Radic. Biol. Med. 2012, 52, 1242–1252. [Google Scholar] [CrossRef]
- Suryo Rahmanto, A.; Pattison, D.I.; Davies, M.J. Photo-oxidant-induced inactivation of the selenium-containing protective enzymes thioredoxin reductase and glutathione peroxidase. Free Radic. Biol. Med. 2012, 53, 1308–1316. [Google Scholar] [CrossRef]
- Choi, D.B.; Cho, K.-A.; Na, M.-S.; Choi, H.-S.; Kim, Y.-O.; Lim, D.-H.; Cho, S.J.; Cho, H. Effect of bamboo oil on antioxidative activity and nitrite scavenging activity. J. Ind. Eng. Chem. 2008, 14, 765–770. [Google Scholar] [CrossRef]
- Niki, E. Antioxidant capacity: Which capacity and how to assess it? J. Berry Res. 2011, 4, 169–176. [Google Scholar]
- Niki, E. Do antioxidants impair signaling by reactive oxygen species and lipid oxidation products? FEBS Lett. 2012, 586, 3767–3770. [Google Scholar] [CrossRef]
- Sun, J.; Nagendra, P.K.; Amin, I.; Yang, B.; You, X.; Li, L. Polyphenols: Chemistry,Dietary Sources and Health Benefits; Nova Science Publishers: New York, NY, USA, 2013; pp. 13–14. [Google Scholar]
- Perumal, S.; Sellamuthu, M. The antioxidant activity and free radical-scavenging capacity of dietary phenolic extracts from horse gram (Macrotyloma uniflorum (Lam.) Verdc.) seeds. Food Chem. 2007, 105, 950–958. [Google Scholar] [CrossRef]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 2005, 579, 200–213. [Google Scholar] [CrossRef]
- Loliger, J. The use of antioxidants in foods. In Free Radicals and Food Additives; Aruoma, O.I., Halliwell, B., Eds.; Taylor & Francis: London, UK, 1991; p. 121. [Google Scholar]
- Karbhari, P.S.; Balakrishnan, V.; Murugan, M. Substitutional feeding value of ensiled sugarcane tops and its effect in crossbred Heifer’s/cow’s reproductive performance. Asian J. Anim. Vet. Adv. 2007, 2, 21–26. [Google Scholar] [CrossRef]
- Li, X.; Yao, S.; Tu, B.; Li, X.; Jia, C.; Song, H. Determination and comparison of flavonoids and anthocyanins in Chinese sugarcane tops, stems, roots and leaves. J. Sep. Sci. 2010, 33, 1216–1223. [Google Scholar]
- Harrison, H.F.; Peterson, J. K.; Snook, M.E.; Bohac, J.R.; Jackson, D.M. Quantity and potential biological activity of caffeic acid in sweet potato (Ipomoeabatatas (L.) Lam.) storage root periderm. J. Agric. Food Chem. 2003, 51, 2943–2948. [Google Scholar] [CrossRef]
- Whitaker, B.D.; Stommel, J.R. Distribution of hydroxycinnamic acid conjugates in fruit of commercial eggplant (Solanum melongena L.) cultivars. J. Agric. Food Chem. 2003, 51, 3448–3554. [Google Scholar] [CrossRef]
- Boyer, J.; Brown, D.; Liu, H.R. Uptake of quercetin and quercetin 3-glucoside from whole onion and apple peel extracts by Caco-2 cell monolayers. J. Agric. Food Chem. 2004, 52, 7172–7179. [Google Scholar] [CrossRef]
- Wang, K.Q.; Luo, J.W.; Liu, Z.H.; Chen, L.; Chen, J.P. Separation, purification and identification of flavonoids from celery leaves. Food Mach. 2009, 25, 66–70. [Google Scholar]
- Zheng, Z.P.; Cheng, K.W.; Zhu, Q. Tyrosinase inhibitory constituents from the boots of Morus nigra: A structure-activity relationship study. J. Agric. Food Chem. 2010, 58, 5368–5373. [Google Scholar] [CrossRef]
- Ko, H.H.; Yu, S.M.; Ko, F.N. Bioactive constituents of Morus australis and Broussonetia papyrifera. Plant Biochem. 1997, 60, 1008–1011. [Google Scholar]
- Su, B.N.; Cuendet, M.; Hawthorne, M.E.; Kardono, L.B.S.; Riswan, S.; Fong, H.S. Consitituents of the bark and twigs of Artocarpus dadah with cyclooxygenase inhibitory activity. J. Nat. Prod. 2002, 65, 163–169. [Google Scholar] [CrossRef]
- Heim, K.E.; Tagliaferro, A.R.; Bobilya, D.J. Flavonoid antioxidants: Chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem. 2002, 13, 572–584. [Google Scholar] [CrossRef]
- Cao, G.; Verdon, C.; Wu, A.A.; Prio, R. Automated assay of oxygen radical absorbance capacity with the COBAS FARA II. Clin. Chem. 1995, 41, 1738–1744. [Google Scholar]
- Joseph, A.P.; Charles, G.S.; Dennis, S. Application of manual assessment of oxygen radical absorbent capacity (ORAC) for use in high throughput assay of ‘‘total’’ antioxidant activity of drugs and natural products. J. Pharmacol. Toxicol. Methods 2006, 54, 56–61. [Google Scholar] [CrossRef]
- Cao, G. Antioxidant and prooxidant behavior of flavonoids structure-activity relationshio. Free Radic. Biol. Med. 1997, 22, 749–760. [Google Scholar] [CrossRef]
- Smith, M.; Zhu, X. Increased iron and free radical generation in preclinical Alzheimer disease and mild cognitive impairment. J. Alzheimers Dis. 2010, 19, 363–372. [Google Scholar]
- Kadam, U.S.; Ghosh, S.B.; Strayo, D.; Suprasanna, P. Antioxidant activity in sugarcane juice and its protective role against radiation induced DNA damage. Food Chem. 2008, 106, 1154–1160. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationshipsof flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Pin-Der, D. Antioxidant activity of Budrock (Arctium lappa Linn.): Its scavenging effect on free radical and active oxygen. J. Am. Oil Chem. Soc. 1998, 75, 455–461. [Google Scholar] [CrossRef]
- Liu, J.; Lin, S.Y.; Wang, Z.Z. Supercritical fluid extraction of flavonoids from Maydis stigma and its nitrite-scavenging ability. Food Bioprod. Process. 2011, 89, 333–339. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Peltoketo, A.; Hiltunen, R.; Tikkanen, M.J. Characterization of the antioxidant properties of de-odourised aqueousextracts from selected Lamiaceae herbs. Food Chem. 2003, 83, 255–262. [Google Scholar] [CrossRef]
- Cao, G.; Prior, R.L. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol. 2002, 299, 50–62. [Google Scholar]
- Ana, Z.; Maria, J.E.; Ana, F. ORAC and TEAC assays comparison to measure the antioxidant capacity of food products. Food Chem. 2009, 114, 310–316. [Google Scholar] [CrossRef]
- Lin, L.; Cui, C.; Wen, L.; Yang, B.; Luo, W.; Zhao, M. Assessment of in vitro antioxidant capacity of stem and leaf extracts of Rabdosia serra (MAXIM.) HARA and identification of the major compound. Food Chem. 2011, 126, 54–59. [Google Scholar] [CrossRef]
- Luo, W.; Zhao, M.; Yang, B.; Shen, G.; Rao, G. Identification of bioactive compounds in Phyllanthus emblica L. fruit and their free radical scavenging activities. Food Chem. 2009, 114, 499–504. [Google Scholar] [CrossRef]
- Roberta, R.; Nicoletta, P.; Anna, P.; Ananth, P.; Min, Y.; Catherine, R. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Jayaprakasha, G.K.; Singh, R.P.; Sakarich, K.K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001, 73, 285–290. [Google Scholar] [CrossRef]
- Sample Availability: Not available.
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Sun, J.; He, X.-M.; Zhao, M.-M.; Li, L.; Li, C.-B.; Dong, Y. Antioxidant and Nitrite-Scavenging Capacities of Phenolic Compounds from Sugarcane (Saccharum officinarum L.) Tops. Molecules 2014, 19, 13147-13160. https://doi.org/10.3390/molecules190913147
Sun J, He X-M, Zhao M-M, Li L, Li C-B, Dong Y. Antioxidant and Nitrite-Scavenging Capacities of Phenolic Compounds from Sugarcane (Saccharum officinarum L.) Tops. Molecules. 2014; 19(9):13147-13160. https://doi.org/10.3390/molecules190913147
Chicago/Turabian StyleSun, Jian, Xue-Mei He, Mou-Ming Zhao, Li Li, Chang-Bao Li, and Yi Dong. 2014. "Antioxidant and Nitrite-Scavenging Capacities of Phenolic Compounds from Sugarcane (Saccharum officinarum L.) Tops" Molecules 19, no. 9: 13147-13160. https://doi.org/10.3390/molecules190913147