Hinokinin, an Emerging Bioactive Lignan
Abstract
:1. Introduction
2. Phytochemistry
3. Distribution
4. Biological acitivities
4.1. Cytotoxic Activity
P-388 | HT-29 | A-549 | MCF-7 | B16F10 | HeLa | MK-1 | |
---|---|---|---|---|---|---|---|
Hinokinin (1) | 1.54 b | 4.61 b | 8.01 b | 2.72 c | 2.58 c | 1.67 c | |
11.4 d | 26.1 d | 13.8 d | |||||
5.87 e | 3.52 e | 6.61 e | |||||
Mithramycin | 0.08 b | 0.07 b | 0.06 b | ||||
0.06 e | 0.08 e | 0.07 e | |||||
Adriamycin | 0.1 d | 0.02 d | 0.1 c | ||||
Podophyllotoxin e | 0.001 | 0.0025 | 0.006 |
4.2. Anti-Inflammatory Activity
Cytokine Production Ratio a | LTI d | ||||
---|---|---|---|---|---|
TNF-α | IL-12 | IL-10 | IL-6c | ||
Hinokinin (1) | 0.36 b | 0.44 b | 0.37 b | 25.94 ± 1.02 | |
77.5 c | 20.5 | ||||
LPS b | 1 | 1 | 1 | ||
Prednisolone b | 0.6 | 0.2 | 0.41 | ||
Dexamethasone | 9.17 ± 0.53 |
4.3. Anti-Parasitic Activities
4.3.1. Activity against Trypanosoma cruzi
Free Amastigotes Y Strain b | Intracellular Amastigotes CL Strain c | Epimastigotes Forms of CL Strain c | % of Parasitaemia Reduction c | Trypomastigotes d | Intracellular Amastigotes d | |
---|---|---|---|---|---|---|
Hinokinin (1) | 0.7 | 18.36 | 0.67 | 70.8 | 94.49 | >141.24 |
BZN | 0.8 | 20.00 | 30.89 | 29.0 | 146.02 | >190.83 |
Groups | Area (μm2) | ||
---|---|---|---|
Spleen | Heart | Liver | |
CINF a | 10.86 ± 2.45 | 18.20 ± 8.81 | 32.99 ± 7.78 |
C b | 8.12 ± 2.04 | 15.05 ± 8.64 | 28.56 ± 5.69 |
Hinokinin 20 c | 9.32 ± 2.22 | 17.48 ± 8.53 | 30.15 ± 7.90 |
Hinokinin 50 d | 10.00 ± 2.68 | 18.56 ± 7.74 | 30.50 ± 7.49 |
BZN 20 c | 9.69 ± 2.50 | 17.59 ± 7.08 | 29.46 ± 8.03 |
BZN 50 d | 9.62 ± 2.37 | 20.42 ± 10.75 | 28.56 ± 6.45 |
4.3.2. Antiplasmodial Activity
4.4. Antimicrobial Activity
E. faecalis | S. salivarius | S. sanguinis | S. mitis | S. mutans | S. sobrinus | C. albicans | |
---|---|---|---|---|---|---|---|
Hinokinin (1) | 0.38 | 0.25 | 0.25 | 0.25 | 0.32 | 0.28 | 0.28 a |
Chlorhexidine b | 5.9 | 1.7 | 3.9 | 5.9 | 5.9 | 1.5 | 7.9 |
4.6. Genotoxic and Antigenotoxic Activities
4.7. Target-Based Studies
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Moss, G.P. Nomenclature of lignans and neolignans (IUPAC Recommendations 2000). Pure Appl.Chem. 2000, 72, 1493–1523. [Google Scholar]
- Suzuki, S.; Umezawa, T. Biosynthesis of lignans and norlignans. J. Wood Sci. 2007, 53, 273–284. [Google Scholar]
- Khaled, M.; Jiang, Z.Z.; Zhang, L.Y. Deoxypodophyllotoxin: A promising therapeutic agent from herbal medicine. J. Ethnopharmacol. 2013, 149, 24–34. [Google Scholar]
- Liu, Y.Q.; Yang, L.; Tian, X. Podophyllotoxin: current perspectives. Curr. Bioact. Compd. 2007, 3, 37–66. [Google Scholar]
- Gordaliza, M.; Castro, M.A.; del Corral, J.M.; Feliciano, A.S. Antitumor properties of podophyllotoxin and related compounds. Curr. Pharm. Des. 2000, 6, 1811–1839. [Google Scholar] [CrossRef]
- Ríos, J.L.; Giner, R.M.; Prieto, J.M. New Findings on the Bioactivity of Lignans. In Studies in Natural Products Chemistry; Atta ur, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2002; Volume 26, pp. 183–292. [Google Scholar]
- Cunha, W.R.; Andrade e Silva, M.L.; Sola Veneziani, R.C.; Ambrósio, S.R.; Kenupp Bastos, J. Lignans: Chemical and Biological Properties. In Phytochemicals-A Global Perspective of their Role in Nutrition and Health; Rao, V., Ed.; InTech: Rijeka, Croatia, 2012. [Google Scholar]
- Yoshiki, Y.; Ishiguro, T. Crystalline constituents of hinoki oil. Yakugaku Zasshi 1933, 53, 73–151, (in German 112–130). [Google Scholar]
- Mameli, E. Cubebin.VIII. Identity of cubebinolide with hinokinin. Gazz. Chim. Ital. 1935, 65, 886–888. [Google Scholar]
- Keimatsu, S.; Ishiguro, T. Constituents of hinokiol.II. A comparison of hinokinin and cubebinolide. Yakugaku Zasshi 1935, 55, 96–99. [Google Scholar]
- Briggs, L.H. Hinokinin the enantiomorph of cubebinolide. J. Am. Chem. Soc. 1935, 57, 1383–1384. [Google Scholar]
- Haworth, R.D.; Woodcock, D. Constituents of natural phenolic resins. XIII. Synthesis of dl-, d- and l-hinokinin. J. Chem. Soc. 1938, 1985–1989. [Google Scholar] [CrossRef]
- Bayindir, Ü.; Alfermann, A.W.; Fuss, E. Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J. 2008, 55, 810–820. [Google Scholar]
- Mohagheghzadeh, A.; Schmidt, T.J.; Bayindir, R.N.; Fuss, E.; Mehregan, I.; Alfermann, A.W. Diarylbutyrolactone lignans from Linum corymbulosum in vitro cultures. Planta Med. 2006, 72, 1165–1167. [Google Scholar] [CrossRef]
- Takaku, N.; Okunishi, T.; Mikame, K.; Suzuki, S.; Sakakibara, N.; Umezawa, T. Lignans from Chamaecyparis obtusa cv. Breviramea and cell suspension cultures of Daphne odora. Wood Res. 2001, 88, 44–45. [Google Scholar]
- Lin, T.C.; Fang, J.M.; Cheng, Y.S. Terpenes and lignans from leaves of Chamaecyparis formosensis. Phytochemistry 1999, 51, 793–801. [Google Scholar] [CrossRef]
- Ingert, N.; Bombarda, I.; Herbette, G.; Faure, R.; Moretti, C.; Raharivelomanana, P. Oleodaphnoic acid and coriaceol, two new natural products from the stem bark of Wikstroemia coriacea. Molecules 2013, 18, 2988–2996. [Google Scholar]
- Lin, R.W.; Tsai, I.L.; Duh, C.Y.; Lee, K.H.; Chen, I.S. New lignans and cytotoxic constituents from Wikstroemia lanceolata. Planta Med. 2004, 70, 234–238. [Google Scholar]
- Kato, M.; He, Y.M.; Dibwe, D.F.; Li, F.; Awale, S.; Kadota, S.; Tezuka, T. New Guaian-type sesquiterpene from Wikstroemia indica. Nat. Prod. Commun. 2014, 9, 1–2. [Google Scholar]
- Sousa de Lucena, H.F.; Madeiro, S.A.L.; Siqueira, C.D.; Filho, J.M.B.; de Fátima Agra, M.; da Silva, M.S.; Fechine Tavares, J. Hypenol, a new lignan from Hypenia salzmannii. Helv. Chim. Acta 2013, 96, 1121–1125. [Google Scholar]
- Yamamoto, S.; Cox, R.E.; Simoneit, B.R.T. Gas Chromatography/Mass Spectrometry of the lignans in resin of Callitris preissii. J. Mass Spectrom. Soc. Jpn. 2010, 58, 195–209. [Google Scholar]
- Salmoun, M.; Braekman, J.C.; Ranarivelo, Y.; Rasamoelisendra, R.; Ralambomanana, D.; Dewelle, J.; Darro, F.; Kiss, R. New calamenene sesquiterpenes from Tarenna madagascariensis. Nat. Prod. Res. 2007, 21, 111–120. [Google Scholar]
- Rios, M.Y.; Aguilar-Guadarrama, A.B.; Gutierrez Mdel, C. Analgesic activity of affinin, an alkamide from Heliopsis longipes (Compositae). J. Ethnopharmacol. 2007, 110, 364–367. [Google Scholar]
- Chen, I.S.; Wu, S.J.; Tsai, I.L.; Wu, T.S.; Pezzuto, J.M.; Lu, M.C.; Chai, H.; Suh, N.; Teng, C.M. Chemical and bioactive constituents from Zanthoxylum simulans. J. Nat. Prod. 1994, 57, 1206–1211. [Google Scholar]
- Bastos, J.K.; Albuquerque, S.; Silva, M.L.A. Evaluation of the trypanocidal activity of lignans isolated from the leaves of Zanthoxylum naranjillo. Planta Med. 1999, 65, 541–544. [Google Scholar]
- Adesina, S.K.; Olugbade, T.A.; Akinwusi, D.D.; Bergenthal, D. Extractives from Zanthoxylum lemairie root and stem. Pharmazie 1997, 52, 720–724. [Google Scholar]
- Cuca S, L.E.; Martinez V, J.C.; Delle Monache, F. Chemical constituents of Zanthoxylum monophyllum. Rev. Colomb. Quim. 1998, 27, 17–27. [Google Scholar]
- Chen, J.J.; Huang, H.Y.; Duh, C.Y.; Chen, I.S. Cytotoxic constituents from the stem bark of Zanthoxylum pistaciiflorum. J. Chin. Chem. Soc. 2004, 51, 659–663. [Google Scholar]
- Cheng, M.J.; Lee, K.H.; Tsai, I.L.; Chen, I.S. Two new sesquiterpenoids and anti-HIV principles from the root bark of Zanthoxylum ailanthoides. Bioorg. Med. Chem. 2005, 13, 5915–5920. [Google Scholar]
- Huang, Y.L.; Chen, C.C.; Ou, J.C. Isolintetralin: A New Lignan from Phyllanthus niruri. Planta Med. 1992, 58, 473–474. [Google Scholar]
- Huang, Y.L.; Chen, C.C.; Hsu, F.L.; Chen, C.F. A New Lignan from Phyllanthus virgatus. J. Nat. Prod. 1996, 59, 520–521. [Google Scholar]
- Chang, C.C.; Lien, Y.C.; Liu, K.C.S.C.; Lee, S.S. Lignans from Phyllanthus urinaria. Phytochemistry 2003, 63, 825–833. [Google Scholar]
- Achari, B.; Bandyopadhyay, S.; Saha, C.R.; Pakrashi, S.C. A phenanthroid lactone, steroid and lignans from Aristolochia indica. Heterocycles 1983, 20, 771–774. [Google Scholar]
- Lopes, L.M.X.; Bolzani, V.D.S.; Trevusan, L.M.V. Lignans from Brazilian Aristolochiaceae. Rev. Latinoam. Quim. 1988, 19, 113–117. [Google Scholar]
- Leitào, G.G.; Kaplan, M.A.C.; Galeffi, C. Epi-populifolic acid from Aristolochia cymbifera. Phytochemistry 1992, 31, 3277–3279. [Google Scholar]
- Kuo, P.C.; Li, Y.C.; Wu, T.S. Chemical constituents and pharmacology of the Aristolochia species. J. Trad. Compl. Med. 2012, 2, 249–266. [Google Scholar]
- Marchesini, A.M.; Prado, G.G.; Messiano, G.B.; Machado, M.B.; Lopes, L.M.X. Chemical constituents of Aristolochia giberti. J. Braz. Chem. Soc. 2009, 20, 1598–1608. [Google Scholar]
- De Pascoli, I.C.; Nascimento, I.R.; Lopes, L.M.X. Configurational analysis of cubebins and bicubebin from Aristolochia lagesiana and Aristolochia pubescens. Phytochemistry 2006, 67, 735–742. [Google Scholar]
- Shi, L.S.; Kuo, P.C.; Tsai, Y.L.; Damu, A.G.; Wu, T.S. The alkaloids and other constituents from the root and stem of Aristolochia elegans. Bioorg. Med. Chem. 2004, 12, 439–446. [Google Scholar]
- Nascimento, I.R.; Lopes, L.M. Diterpene esters of aristolochic acids from Aristolochia pubescens. Phytochemistry 2003, 63, 953–957. [Google Scholar]
- Navickiene, H.M.D.; Lopes, L.M.X. Alkamides and phenethyl derivatives from Aristolochia gehrtii. J. Braz. Chem. Soc. 2001, 12, 467–472. [Google Scholar]
- Wu, T.S.; Chan, Y.Y.; Leu, Y.L. The constituents of the root and stem of Aristolochia cucurbitifolia Hayata and their biological activity. Chem. Pharm. Bull. 2000, 48, 1006–1009. [Google Scholar]
- Bomm, M.D.; Zukerman-Schpector, J.; Lopes, L.M.X. Rearranged (4→2)-abeo-clerodane and clerodane diterpenes from Aristolochia chamissonis. Phytochemistry 1999, 50, 455–461. [Google Scholar]
- Koul, S.K.; Taneja, S.C.; Dhar, K.L.; Atal, C.K. Lignans of Piper clusii. Phytochemistry 1983, 22, 999–1000. [Google Scholar]
- Elfahmi; Ruslan, K.; Batterman, S.; Bos, R.; Kayser, O.; Woerdenbag, H.J.; Quax, W.J. Lignan profile of Piper cubeba, an Indonesian medicinal plant. Biochem. Syst. Ecol. 2007, 35, 397–402. [Google Scholar]
- Parmar, V.S.; Jain, S.C.; Bisht, K.S.; Jain, R.; Taneja, P.; Jha, A.; Tyagi, O.D.; Prasad, A.K.; Wengel, J.; Olsen, C.E.; et al. Phytochemistry of the genus Piper. Phytochemistry 1997, 46, 597–673. [Google Scholar]
- Prabhu, B.R.; Mulchandani, N.B. Lignans from Piper cubeba. Phytochemistry 1985, 24, 329–331. [Google Scholar]
- Koul, S.K.; Taneja, S.C.; Pushpangadan, P.; Dhar, K.L. Lignans of Piper trichostachyon. Phytochemistry 1988, 27, 1479–1482. [Google Scholar]
- Sumathykutty, M.A.; Rao, J.M. Lignans from leaves of Piper nigrum Linn. Indian J. Chem. Sect. B 1988, 27B, 388–389. [Google Scholar]
- Gangan, V.D.; Hussain, S.S. Alkaloids from Piper hookeri: Revision of NMR assignments by the application of 2D NMR spectroscopy. J. Pharm. Res. 2011, 4, 4265–4267. [Google Scholar]
- Bodiwala, H.; Singh, G.; Singh, R.; Dey, C.; Sharma, S.; Bhutani, K.; Singh, I. Antileishmanial amides and lignans from Piper cubeba and Piper retrofractum. J. Nat. Med. 2007, 61, 418–421. [Google Scholar]
- Chen, Y.C.; Liao, C.H.; Chen, I.S. Lignans, an amide and anti-platelet activities from Piper philippinum. Phytochemistry 2007, 68, 2101–2111. [Google Scholar] [CrossRef]
- Kijjoa, A.; Pinto, M.M.M.; Tantisewie, B.; Herz, W. A new linalool derivative and other constituents from Piper ribesoides. Planta Med. 1989, 55, 193–194. [Google Scholar]
- Cavalcante, S.H.; Yoshida, M.; Gottlieb, O.R. The chemistry of Brazilian Myristicaceae.XXV. Neolignans from Virola carinata fruit. Phytochemistry 1985, 24, 1051–1055. [Google Scholar]
- Kato, M.J.; Yoshida, M.; Gottlieb, O.R. The chemistry of Brazilian Myristicaceae. Part 34. Flavones and lignans in flowers, fruits and seedlings of Virola venosa. Phytochemistry 1991, 31, 283–287. [Google Scholar]
- Vidigal, M.C.S.; Cavalheiro, A.J.; Kato, M.J.; Yoshida, M. Lignans from kernels of Virola michellii. Phytochemistry 1995, 40, 1259–1261. [Google Scholar]
- De Almeida Blumenthal, E.E.; Da Silva, M.S.; Yoshida, M. Lignoids, flavonoids and polyketides of Virola surinamensis. Phytochemistry 1997, 46, 745–749. [Google Scholar]
- Nunomura, S.M.; Yoshida, M. Lignans and benzoic acid derivatives from pericarps of Virola multinervia (Myristicaceae). Biochem. Syst. Ecol. 2002, 30, 985–987. [Google Scholar]
- Koulman, A.; Konuklugil, B. Lignan profile of Linum meletonis. Biochem. Syst. Ecol. 2004, 32, 91–93. [Google Scholar]
- Schmidt, T.J.; Hemmati, S.; Fuss, E.; Alfermann, A.W. A combined HPLC-UV and HPLC-MS method for the identification of lignans and its application to the lignans of Linum usitatissimum L. and L. bienne Mill. Phytochem. Anal. 2006, 17, 299–311. [Google Scholar]
- Schmidt, T.J.; Alfermann, A.W.; Fuss, E. High-performance liquid chromatography/mass spectrometric identification of dibenzylbutyrolactone-type lignans: insights into electrospray ionization tandem mass spectrometric fragmentation of lign-7-eno-9,9'-lactones and application to the lignans of Linum usitatissimum L. (Common Flax). Rapid. Commun. Mass Spectrom. 2008, 22, 3642–3650. [Google Scholar]
- Meagher, L.P.; Beecher, G.R.; Flanagan, V.P.; Li, B.W. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. J. Agric. Food Chem. 1999, 47, 3173–3180. [Google Scholar]
- Schmidt, T.J.; Hemmati, S.; Klaes, M.; Konuklugil, B.; Mohagheghzadeh, A.; Ionkova, I.; Fuss, E.; Wilhelm Alfermann, A. Lignans in flowering aerial parts of Linum species—Chemodiversity in the light of systematics and phylogeny. Phytochemistry 2010, 71, 1714–1728. [Google Scholar]
- Koulman, A. Podophyllotoxin: A Study of the Biosynthesis, Evolution, Function and Use of Podophyllotoxin and Related Lignans. Ph.D. Thesis, University of Groningen, Groningen.
- Maldini, M.; Montoro, P.; Piacente, S.; Pizza, C. Phenolic compounds from Bursera simaruba Sarg. bark: Phytochemical investigation and quantitative analysis by tandem mass spectrometry. Phytochemistry 2009, 70, 641–649. [Google Scholar]
- Cao, X.L.; Xu, J.; Bai, G.; Zhang, H.; Liu, Y.; Xiang, J.F.; Tang, Y.L. Isolation of anti-tumor compounds from the stem bark of Zanthoxylum ailanthoides Sieb. & Zucc. by silica gel column and counter-current chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2013, 929, 6–10. [Google Scholar]
- Chang, S.T.; Wang, D.S.Y.; Wu, C.L.; Shiah, S.G.; Kuo, Y.H.; Chang, C.J. Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 2000, 55, 227–232. [Google Scholar]
- Ikeda, R.; Nagao, T.; Okabe, H.; Nakano, Y.; Matsunaga, H.; Katano, M.; Mori, M. Antiproliferative constituents in Umbelliferae plants.IV. Constituents in the fruits of Anthriscus sylvestris Hoffm. Chem. Pharm. Bull. 1998, 46, 875–878. [Google Scholar]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Met. 1983, 65, 55–63. [Google Scholar]
- Pusztai, R.; Abrantes, M.; Sherly, J.; Duarte, N.; Molnar, J.; Ferreira, M.J.U. Antitumor-promoting activity of lignans: Inhibition of human cytomegalovirus IE gene expression. Anticancer Res. 2010, 30, 451–454. [Google Scholar]
- Stuffness, M.S.; Pezzuto, J.M. Assays related to cancer drug discovery. In Methods in Plant Biochemistry; Hostettmann, K., Ed.; Academic Press Ltd.: London, UK, 1991; Volume 6, Assays for bioactivity. [Google Scholar]
- Mansoor, T.A.; Ramalho, R.M.; Rodrigues, C.M.; Ferreira, M.J. Dibenzylbutane- and butyrolactone-type lignans as apoptosis inducers in human hepatoma HuH-7 cells. Phytother. Res. 2012, 26, 692–696. [Google Scholar]
- Huang, J.M.; Nakade, K.; Kondo, M.; Yang, C.S.; Fukuyama, Y. Brine shrimp lethality test active constituents and new highly oxygenated seco-prezizaane-type sesquiterpenes from Illicium merrillianum. Chem. Pharm. Bull. 2002, 50, 133–136. [Google Scholar]
- Awale, S.; Kato, M.; Dibwe, D.F.; Li, F.; Miyoshi, C.; Esumi, H.; Kadota, S.; Tezuka, Y. Antiausterity activity of arctigenin enantiomers: importance of (2R,3R)-absolute configuration. Nat. Prod. Commun. 2014, 9, 79–82. [Google Scholar]
- Cheng, M.J.; Lee, S.J.; Chang, Y.Y.; Wu, S.H.; Tsai, I.L.; Jayaprakasam, B.; Chen, I.S. Chemical and cytotoxic constituents from Peperomia sui. Phytochemistry 2003, 63, 603–608. [Google Scholar]
- Elinav, E.; Nowarski, R.; Thaiss, C.A.; Hu, B.; Jin, C.; Flavell, R.A. Inflammation-induced cancer: Crosstalk between tumours, immune cells and microorganisms. Nat. Rev. Cancer 2013, 13, 759–771. [Google Scholar]
- Chen, J.J.; Chung, C.Y.; Hwang, T.L.; Chen, J.F. Amides and benzenoids from Zanthoxylum ailanthoides with inhibitory activity on superoxide generation and elastase release by neutrophils. J. Nat. Prod. 2009, 72, 107–111. [Google Scholar]
- Lee, D.Y.; Seo, K.H.; Jeong, R.H.; Lee, S.M.; Kim, G.S.; Noh, H.J.; Kim, S.Y.; Kim, G.W.; Kim, J.Y.; Baek, N.I. Anti-inflammatory lignans from the fruits of Acanthopanax sessiliflorus. Molecules 2013, 18, 41–49. [Google Scholar]
- Da Silva, R.; de Souza, G.H.B.; da Silva, A.A.; de Souza, V.A.; Pereira, A.C.; Royo, V.D. A.; e Silva, M.L.A.; Donate, P.M.; de Matos Araujo, A.L.S.; Carvalho, J.C.T.; et al. Synthesis and biological activity evaluation of lignan lactones derived from (−)-cubebin. Bioorg. Med. Chem. Lett. 2005, 15, 1033–1037. [Google Scholar]
- Cai, X.F.; Lee, I.S.; Dat, N.T.; Shen, G.; Kang, J.S.; Kim, D.H.; Kim, Y.H. Inhibitory lignans against NFAT transcription factor from Acanthopanax koreanum. Arch. Pharmacal Res. 2004, 27, 738–741. [Google Scholar]
- Ramos, F.; Takaishi, Y.; Kawazoe, K.; Osorio, C.; Duque, C.; Acuna, R.; Fujimoto, Y.; Sato, M.; Okamoto, M.; Oshikawa, T.; et al. Immunosuppressive diacetylenes, ceramides and cerebrosides from Hydrocotyle leucocephala. Phytochemistry 2006, 67, 1143–1150. [Google Scholar]
- Zhang, W.; Yao, Z.; Zhang, Y.W.; Zhang, X.X.; Takaishi, Y.; Duan, H.Q. Immunosuppressive sesquiterpenes from Buddleja daviddi. Planta Med. 2010, 76, 1882–1887. [Google Scholar]
- Desai, D.C.; Jacob, J.; Almeida, A.; Kshirsagar, R.; Manju, S.L. Isolation, structural elucidation and anti-inflammatory activity of astragalin, (−)-hinokinin, aristolactam I and aristolochic acids (I & II) from Aristolochia indica. Nat. Prod. Res. 2014, 1–5. [Google Scholar]
- Lima, L.M.; Perazzo, F.F.; Carvalho, J.C.T.; Bastos, J.K. Anti-inflammatory and analgesic activities of the ethanolic extracts from Zanthoxylum riedelianum (Rutaceae) leaves and stem bark. J. Pharm. Pharmacol. 2007, 59, 1151–1158. [Google Scholar]
- Rassi, A., Jr.; Rassi, A.; Marin-Neto, J.A. Chagas disease. Lancet 2010, 375, 1388–1402. [Google Scholar]
- Schmidt, J.T.; Khalid, A.S.; Romanha, J.A.; Alves, M.T.; Biavatti, W.M.; Brun, R.; Da Costa, B.F.; de Castro, L.S.; Ferreira, F.V.; de Lacerda, V.G.M.; et al. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases—Part II. Curr. Med. Chem. 2012, 19, 2176–2228. [Google Scholar]
- Burleigh, B.A.; Andrews, N.W. A 120-kDa alkaline peptidase from Trypanosoma cruzi is involved in the generation of a novel Ca2+-signaling factor for mammalian cells. J. Biol. Chem. 1995, 270, 5172–5180. [Google Scholar]
- De Souza, V.A.; da Silva, R.; Pereira, A.C.; Royo Vde, A.; Saraiva, J.; Montanheiro, M.; de Souza, G.H.; da Silva Filho, A.A.; Grando, M.D.; Donate, P.M.; et al. Trypanocidal activity of (−)-cubebin derivatives against free amastigote forms of Trypanosoma cruzi . Bioorg. Med. Chem. Lett. 2005, 15, 303–307. [Google Scholar]
- Saraiva, J.; Vega, C.; Rolon, M.; da, S.R.; Andrade, E.S.M.L.; Donate, P.M.; Bastos, J.K.; Gomez-Barrio, A.; de, A.S. In vitro and in vivo activity of lignan lactones derivatives against Trypanosoma cruzi. Parasitol. Res. 2007, 100, 791–795. [Google Scholar]
- Sartorelli, P.; Carvalho, C.S.; Reimao, J.Q.; Lorenzi, H.; Tempone, A.G. Antitrypanosomal activity of a diterpene and lignans isolated from Aristolochia cymbifera. Planta Med. 2010, 76, 1454–1456. [Google Scholar]
- Saraiva, J.; Lira, A.A.M.; Esperandim, V.R.; da, S.F.D.; Ferraudo, A.S.; Bastos, J.K.; Andrade, E.S.M.L.; de, G.C.M.; de, A.S.; Marchetti, J.M. Hinokinin-loaded poly(d,l-lactide-co-glycolide) microparticles for Chagas disease. Parasitol. Res. 2010, 106, 703–708. [Google Scholar]
- Esperandim, V.R.; da, S.F.D.; Saraiva, J.; Silva, M.L.A.; Costa, E.S.; Pereira, A.C.; Bastos, J.K.; de, A.S. Reduction of parasitism tissue by treatment of mice chronically infected with Trypanosoma cruzi with lignano lactones. Parasitol. Res. 2010, 107, 525–530. [Google Scholar]
- Esperandim, V.R.; da Silva Ferreira, D.; Rezende, K.C.; Cunha, W.R.; Saraiva, J.; Bastos, J.K.; e Silva, M.L.; de Albuquerque, S. Evaluation of the in vivo therapeutic properties of (−)-cubebin and (−)-hinokinin against Trypanosoma cruzi. Experim. Parasitol. 2013, 133, 442–446. [Google Scholar]
- Abrantes, M.; Mil-Homens, T.; Duarte, N.; Lopes, D.; Cravo, P.; Madureira, M.D.C.; Ferreira, M.J.U. Antiplasmodial activity of lignans and extracts from Pycnanthus angolensis. Planta Med. 2008, 74, 1408–1412. [Google Scholar]
- Silva, M.L.A.; Coimbra, H.S.; Pereira, A.C.; Almeida, V.A.; Lima, T.C.; Costa, E.S.; Vinholis, A.H.C.; Royo, V.A.; Silva, R.; Filho, A.A.S.; et al. Evaluation of Piper cubeba extract, (−)-cubebin and its semi-synthetic derivatives against oral pathogens. Phytoth. Res. 2007, 21, 420–422. [Google Scholar]
- Silva, M.L.A.; Martins, C.H.G.; Lucarini, R.; Sato, D.N.; Pavanb, F.R.; Freitas, N.H.A.; Andrade, L.N.; Pereira, A.C.; Bianco, T.N.C.; Vinholis, A.H.C.; et al. Antimycobacterial activity of natural and semi-synthetic lignans. Z. Naturforsch. C 2009, 64, 779–784. [Google Scholar]
- Huang, R.L.; Huang, Y.L.; Ou, J.C.; Chen, C.C.; Hsu, F.L.; Chang, C. Screening of 25 compounds isolated from Phyllanthus species for anti-human Hepatitis B virus in vitro. Phytother. Res. 2003, 17, 449–453. [Google Scholar]
- Wen, C.C.; Kuo, Y.H.; Jan, J.T.; Liang, P.H.; Wang, S.Y.; Liu, H.G.; Lee, C.K.; Chang, S.T.; Kuo, C.J.; Lee, S.S.; et al. Specific plant terpenoids and lignoids possess potent antiviral activities against severe acute respiratory syndrome coronavirus. J. Med. Chem. 2007, 50, 4087–4095. [Google Scholar]
- Resende, F.A.; Barbosa, L.C.; Tavares, D.C.; de Camargo, M.S.; de Souza Rezende, K.C.; e Silva, M.L.; Varanda, E.A. Mutagenicity and antimutagenicity of (−)-hinokinin a trypanosomicidalcompound measured by Salmonella microsome and comet assays. BMC Complement. Altern. Med. 2012, 12, 203. [Google Scholar]
- Resende, F.A.; Tomazella, I.M.; Barbosa, L.C.; Ponce, M.; Furtado, R.A.; Pereira, A.C.; Bastos, J.K.; Andrade, e Silva, M.L.; Tavares, D.C. Effect of the dibenzylbutyrolactone lignan (−)-hinokinin on doxorubicin and methyl methanesulfonate clastogenicity in V79 Chinese hamster lung fibroblasts. Mutat. Res. 2010, 700, 62–66. [Google Scholar]
- Medola, J.F.; Cintra, V.P.; Pesqueira e Silva, É.P.C.; de Andrade Royo, V.; da Silva, R.; Saraiva, J.; Albuquerque, S.; Bastos, J.K.; e Silva, M.L.; Tavares, D.C. (−)-Hinokinin causes antigenotoxicity but not genotoxicity in peripheral blood of Wistar rats. Food Chem. Toxicol. 2007, 45, 638–642. [Google Scholar]
- Zhang, G.; Shimokawa, S.; Mochizuki, M.; Kumamoto, T.; Nakanishi, W.; Watanabe, T.; Ishikawa, T.; Matsumoto, K.; Tashima, K.; Horie, S.; et al. Chemical constituents of Aristolochia constricta: Antispasmodic effects of its constituents in guinea-pig ileum and isolation of a diterpeno-lignan hybrid. J. Nat. Prod. 2008, 71, 1167–1172. [Google Scholar]
- Kuroyanagi, M.; Ikeda, R.; Gao, H.Y.; Muto, N.; Otaki, K.; Sano, T.; Kawahara, N.; Nakane, T. Neurite outgrowth-promoting active constituents of the Japanese cypress (Chamaecyparis obtusa). Chem. Pharm. Bull. 2008, 56, 60–63. [Google Scholar]
- Cameron, H.A.; Hazel, T.G.; McKay, R.D. Regulation of neurogenesis by growth factors and neurotransmitters. J. Neurobiol. 1998, 36, 287–306. [Google Scholar]
- Yoon, J.S.; Koo, K.A.; Ma, C.J.; Sung, S.H.; Kim, Y.C. Neuroprotective lignans from Biota orientalis leaves. Nat. Prod. Sci. 2008, 14, 167–170. [Google Scholar]
- Timple, J.M.; Magalhaes, L.G.; Souza Rezende, K.C.; Pereira, A.C.; Cunha, W.R.; e Silva, M.L.; Mortensen, O.V.; Fontana, A.C. The lignan (−)-hinokinin displays modulatory effects on human monoamine and GABA transporter activities. J. Nat. Prod. 2013, 76, 1889–1895. [Google Scholar]
- Wilkinson, C.F.; Murray, M.; Marcus, C.B. Interactions of methylenedioxyphenyl compounds with cytochrome P-450 and effects on microsomal oxidation. Rev. Biochem. Toxicol. 1984, 6, 27–63. [Google Scholar]
- Tsukamoto, S.; Tomise, K.; Miyakawa, K.; Cha, B.C.; Abe, T.; Hamada, T.; Hirota, H.; Ohta, T. CYP3A4 Inhibitory Activity of New Bisalkaloids, Dipiperamides D and E, and Cognates from White Pepper. Bioorg. Med. Chem. 2002, 10, 2981–2985. [Google Scholar]
- Usia, T.; Watabe, T.; Kadota, S.; Tezuka, Y. Potent CYP3A4 inhibitory constituents of Piper cubeba. J. Nat. Prod. 2005, 68, 64–68. [Google Scholar] [CrossRef]
- Usia, T.; Watabe, T.; Kadota, S.; Tezuka, Y. Metabolite-cytochrome P450 complex formation by methylenedioxyphenyl lignans of Piper cubeba: Mechanism-based inhibition. Life Sci. 2005, 76, 2381–2391. [Google Scholar]
© 2014 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Marcotullio, M.C.; Pelosi, A.; Curini, M. Hinokinin, an Emerging Bioactive Lignan. Molecules 2014, 19, 14862-14878. https://doi.org/10.3390/molecules190914862
Marcotullio MC, Pelosi A, Curini M. Hinokinin, an Emerging Bioactive Lignan. Molecules. 2014; 19(9):14862-14878. https://doi.org/10.3390/molecules190914862
Chicago/Turabian StyleMarcotullio, Maria Carla, Azzurra Pelosi, and Massimo Curini. 2014. "Hinokinin, an Emerging Bioactive Lignan" Molecules 19, no. 9: 14862-14878. https://doi.org/10.3390/molecules190914862
APA StyleMarcotullio, M. C., Pelosi, A., & Curini, M. (2014). Hinokinin, an Emerging Bioactive Lignan. Molecules, 19(9), 14862-14878. https://doi.org/10.3390/molecules190914862