Degradation Dynamics of Glyphosate in Different Types of Citrus Orchard Soils in China
Abstract
:1. Introduction
2. Results and Discussion
2.1. Recovery Percentage of Glyphosate and Its Metabolite AMPA
Concentration of Glyphosate (mg/kg) | Recovery Percentage (%) | |
---|---|---|
Glyphosate | AMPA | |
0.05 | 95.60 ± 3.23 | 97.60 ± 4.83 |
0.50 | 96.40 ± 3.67 | 98.20 ± 4.72 |
5.00 | 98.82 ± 4.16 | 99.60 ± 4.91 |
2.2. Standard Curve of Glyphosate and Its Metabolite AMPA
2.3. Degradation Dynamics of Glyphosate Soluble Powder
Days after Spraying | Residue of Glyphosate (mg/kg) | ||
---|---|---|---|
Medium Loam (Zhejiang) | Medium Loam
(Guangdong) | Brown Loam
(Guizhou) | |
1 | 1.32 ± 0.11 | 1.25 ± 0.10 | 2.07 ± 0.16 |
3 | 0.92 ± 0.09 | 0.60 ± 0.03 | 2.01 ± 0.16 |
7 | 0.56 ± 0.18 | 0.40 ± 0.02 | 1.92 ± 0.18 |
14 | 0.38 ± 0.10 | 0.32 ± 0.01 | 0.75 ± 0.11 |
21 | 0.18 ± 0.05 | 0.26 ± 0.01 | 0.32 ± 0.03 |
28 | 0.18 ± 0.03 | 0.19 ± 0.02 | 0.30 ± 0.03 |
35 | 0.15 ± 0.01 | 0.10 ± 0.01 | 0.25 ± 0.04 |
42 | 0.13 ± 0.01 | <0.10 | 0.14 ± 0.03 |
T1/2 (day) | 12.6 | 11.7 | 10.0 |
Equation | Ct = 0.9501e−0.0550t (R2 = 0.8926) | Ct = 0.8452e−0.0594t (R2 = 0.8996) | Ct = 2.2562e−0.0690t (R2 = 0.9446) |
2.4. Degradation Dynamics of AMPA
Days after Spraying | Residue of Glyphosate AMPA (mg/kg) | ||
---|---|---|---|
Medium Loam
(Zhejiang) | Medium Loam
(Guangdong) | Brown Loam
(Guizhou) | |
1 | 2.99 ± 0.16 | <0.10 | 3.21 ± 0.34 |
3 | 1.85 ± 0.08 | <0.10 | 2.25 ± 0.21 |
7 | 1.72 ± 0.11 | <0.10 | 1.34 ± 0.16 |
14 | 1.52 ± 0.03 | <0.10 | 1.08 ±0.18 |
21 | 1.43 ± 0.04 | <0.10 | 0.97 ± 0.25 |
28 | 1.41 ± 0.13 | <0.10 | 0.91 ± 0.16 |
35 | 1.26 ± 0.09 | <0.10 | 0.62 ± 0.09 |
42 | 0.99 ± 0.01 | <0.10 | 0.33 ± 0.03 |
T1/2 (day) | 36.9 | / | 10.0 |
Equation | Ct = 2.2347e−0.0188t (R2 = 0.7811) | / | Ct = 2.5019e−0.0444t (R2 = 0.9041) |
2.5. Degradation Dynamics of Aqueous Solution
Days after Spraying | Residue of Glyphosate (µg/g) | ||
---|---|---|---|
Red Soil
(Zhejiang) | Clay
(Guangxi) | Red Soil
(Hunan) | |
1 | 9.10 ± 0.16 | 6.33 ± 0.17 | 6.22 ± 0.17 |
3 | 8.59 ± 0.09 | 5.30 ±0.23 | 5.43 ± 0.11 |
7 | 1.89 ± 0.09 | 4.91 ± 0.11 | 4.79 ± 0.05 |
14 | 1.09 ± 0.05 | 3.24 ± 0.04 | 2.06 ± 0.10 |
21 | 0.84 ± 0.03 | 2.50 ± 0.21 | 1.64 ± 0.25 |
28 | 0.77 ± 0.03 | 1.95 ± 0.18 | 1.41 ± 0.18 |
35 | 0.31 ± 0.02 | 1.39 ± 0.14 | 1.04 ± 0.09 |
42 | 0.13 ± 0.01 | 0.35 ± 0.06 | 0.91 ± 0.06 |
T1/2 (day) | 7.5 | 11.8 | 14.2 |
Equation | Ct = 6.9105e−0.0929t (R2= 0.9140) | Ct = 7.3944e−0.0587t (R2= 0.8968) | Ct = 5.7277e−0.0488t (R2= 0.9630) |
3. Experimental Section
3.1. Glyphosate Formulations
3.2. Experimental Design of Soluble Powder Degradation
Soil Type | Site | pH | CEC (cmol/kg) | Organic Matter (g/kg) | Soil Texture | ||
---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | |||||
Medium loam | Jiande, Zhejiang | 5.61 | 6.81 | 19.1 | 40.22 | 44.50 | 15.30 |
Medium loam | Guangzhou, Guangdong | 7.30 | 23.21 | 26.5 | 47.60 | 14.20 | 38.20 |
Brown loam | Guiyang, Guizhou | 4.26 | 10.10 | 46.9 | 14.80 | 67.10 | 18.10 |
3.3. Experimental Design of Aqueous Solution Degradation
Soil type | Site | pH | CEC
(cmol/kg) | Organic Matter
(g/kg) | Soil Texture | ||
---|---|---|---|---|---|---|---|
Sand (%) | Silt (%) | Clay (%) | |||||
Red soil | Hangzhou, Zhejiang | 6.34 | 14.20 | 3.72 | 35.50 | 34.00 | 29.50 |
Clay | Nanning, Guangxi | 5.38 | 20.64 | 3.23 | 23.79 | 34.29 | 36.85 |
Red soil | Changsha, Hunan | 5.50 | 6.90 | 0.81 | 16.74 | 76.69 | 6.57 |
3.4. Measurement of Soil Parameters
3.5. Standard Curve of Glyphosate and Its Metabolite AMPA
3.6. Sample Preparation
3.7. HPLC Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Stephen, O.D.; Stephen, B.P. Glyphosate: A once-in-a-century herbicide: Mini-review. Pest Manag. Sci. 2008, 64, 319–325. [Google Scholar]
- Steinrücken, H.C.; Amrhein, N. The herbicide glyphosate is a potent inhibitor of 5-enolpyruvyl-shikimic acid-3-phosphate synthase. Biochem. Biophys. Res. Commun. 1980, 94, 1207–1212. [Google Scholar]
- Schönbrunn, E.; Eschenburg, S.; Shuttleworth, W.A.; Schloss, J.V.; Amrhein, N.; Evans, J.N.; Kabsch, W. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate 3-phosphate synthase in atomic detail. Proc. Natl. Acad. Sci. USA 2001, 98, 1376–1380. [Google Scholar]
- Mink, P.J.; Mandel, J.S.; Sceurman, B.K.; Lundin, J.I. Epidemiologic studies of glyphosate and cancer: A review. Regul. Toxicol. Pharmacol. 2012, 63, 440–452. [Google Scholar]
- Kier, L.D.; Kirkland, D.J. Review of genotoxicity studies of glyphosate and glyphosate-based formulations. Crit. Rev. Toxicol. 2013, 43, 283–315. [Google Scholar]
- Albers, C.N.; Banta, G.T.; Hansen, P.E.; Jacobsen, O.S. The influence of organic matter on sorption and fate of glyphosate in soil—Comparing different soils and humic substances. Environ. Pollut. 2009, 157, 2865–2870. [Google Scholar]
- Yamada, T.; Kremer, R.J.; de Camargo e Castro, P.R.; Wood, B.W. Glyphosate interactions with physiology, nutrition, and diseases of plants: Threat to agricultural sustainability? Eur. J. Agron. 2009, 31, 111–113. [Google Scholar]
- Islas, G.; Rodriguez, J.A.; Mendoza-Huizar, L.H.; Perez-Moreno, F.; Carrillo, E.G. Determination of glyphosate and aminomethylphosphonic acid in soils by HPLC with pre-column derivatization using 1,2-naphthoquinone-4-sulfonate. J. Liquid Chromatogr. Relat. Technol. 2014, 37, 1298–1309. [Google Scholar]
- Aparicio, V.C.; de Geronimo, E.; Marino, D.; Primost, J.; Carriquiriborde, P.; Costa, J.L. Environmental fate of glyphosate and aminomethylphosphonic acid in surface waters and soil of agricultural basins. Chemosphere 2013, 93, 1866–1873. [Google Scholar]
- Zhang, C.P.; Zhao, H.; Cai, X.M.; He, H.M.; Zhu, Y.H.; Li, Z. Residue analysis and degradation dynamics of tebuconazole in rice. Agrochemicals 2012, 51, 675–677. [Google Scholar]
- He, H.M.; Zhang, C.R.; Zhu, Y.H.; Zhang, C.P.; Ping, L.F.; Zhao, H.; Wu, M.; Tang, T.; Cai, X.M.; Li, Z. Residue and degradation of cyantraniliprole and its main metabolite in pepper and soil. Chin. J. Anal. Chem. 2014, 42, 1177–1182. [Google Scholar]
- Li, Y.F.; Zhang, C.; Yin, Y.H.; Cui, F.; Cai, J.Y.; Chen, Z.H.; Jin, Y.H.; Robson, M.G.; Li, M.; Ren, Y.T.; et al. Neurological effects of pesticide use among farmers in China. Int. J. Environ. Res. Public Health 2014, 11, 3995–4006. [Google Scholar]
- Lesmes-Fabian, C.; Binder, C.R. Pesticide flow analysis to assess human exposure in greenhouse flower production in Colombia. Int. J. Environ. Res. Public Health 2013, 10, 1168–1185. [Google Scholar]
- Kim, J.H.; Kim, J.; Cha, E.S.; Ko, Y.; Kim, D.H.; Lee, W.J. Work-related risk factors by severity for acute pesticide poisoning among male farmers in South Korea. Int. J. Environ. Res. Public Health 2013, 10, 1100–1112. [Google Scholar]
- Piel, S.; Baures, E.; Thomas, O. Contribution to surface water contamination understanding by pesticides and pharmaceuticals, at a watershed scale. Int. J. Environ. Res. Public Health 2012, 9, 4433–4451. [Google Scholar]
- Pasiani, J.O.; Torres, P.; Silva, J.R.; Diniz, B.Z.; Caldas, E.D. Knowledge, attitudes, practices and biomonitoring of farmers and residents exposed to pesticides in Brazil. Int. J. Environ. Res. Public Health 2012, 9, 3051–3068. [Google Scholar]
- Chowdhury, M.A.Z.; Banik, S.; Uddin, B.; Moniruzzaman, M.; Karim, N.; Gan, S.H. Organophosphorus and carbamatepesticide residues detected in water samples collected from paddy and vegetable fields of the Savar and DhamraiUpazilas in Bangladesh. Int. J. Environ. Res. Public Health 2012, 9, 3318–3329. [Google Scholar]
- Munro, I.C. Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regul. Toxicol. Pharm. 2000, 31, 117–165. [Google Scholar]
- Catrinck, T.C.P.G.; Dias, A.; Aguiar, M.C.S.; Silverio, F.O.; Fidencio, P.H.; Pinho, G.P. A simple and efficient method for derivatization of glyphosate and AMPA using 9-fluorenylmethyl chloroformate and spectrophotometric analysis. J. Braz. Chem. Soc. 2014, 25, 1194–1199. [Google Scholar]
- Nagatomi, Y.; Yoshioka, T.; Yanagisawa, M.; Uyama, A.; Mochizuki, N. Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients. Biosci. Biotechnol. Biochem. 2013, 77, 2218–2221. [Google Scholar]
- Botero-Coy, A.M.; Ibanez, M.; Sancho, J.V.; Hernandez, F. Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry. J. Chromatogr. A 2013, 1292, 132–141. [Google Scholar]
- Zhang, Y.Y.; Zhang, Y.; Qu, Q.S.; Wang, G.X.; Wang, C.Y. Determination of glyphosate and aminomethylphosphonic acid in soybean samples by high performance liquid chromatography using a novel fluorescent labeling reagent. Anal. Methods 2013, 5, 6465–6472. [Google Scholar]
- Goscinny, S.; Unterluggauer, H.; Aldrian, J.; Hanot, V.; Masselter, S. Determination of glyphosate and its metabolite AMPA (aminomethylphosphonic acid) in cereals after derivatization by isotope dilution and UPLC-MS/MS. Food Anal. Methods 2012, 5, 1177–1185. [Google Scholar]
- He, H.M.; Zhao, H.; Zhang, C.R.; Zhu, Y.H.; Ping, L.F.; Wu, M.; Zhang, C.P.; Cai, X.M.; Li, Z. Determination of abamectin residues in grain by ultra-performance liquid chromatography-tandem mass spectrometry. Chin. J. Anal. Chem. 2013, 41, 1627–1632. [Google Scholar]
- Zhang, C.P.; Zhao, H.; Wu, M.; Zhang, C.R.; Hu, X.Q.; Ping, L.F.; Li, Z. Residue analysis and degradation dynamics of fenoxanil in rice. Acta Agric. Zhejiangensis 2012, 24, 860–864. [Google Scholar]
- Zhang, C.P.; Liu, X.G.; Xu, J.; Dong, F.S.; Zheng, Y.Q. Determination of imazethapyr residues in soil using SPE and UPLC-MS/MS. J. Agro-Environ. Sci. 2010, 29, 2041–2044. [Google Scholar]
- Paramasivam, M.; Banerjee, H. Degradation dynamics of flubendiamide in different types of soils. Bull. Environ. Contam. Toxicol. 2012, 88, 511–514. [Google Scholar]
- Yu, H.Y.; Li, F.B.; Yu, W.M.; Li, Y.T.; Yang, G.Y.; Zhou, S.G.; Zhang, T.B.; Gao, Y.X.; Wan, H.F. Assessment of organochlorine pesticide contamination in relation to soil properties in the Pearl River Delta, China. Sci. Total Environ. 2013, 447, 160–168. [Google Scholar]
- Khandelwal, A.; Gupta, S.; Gajbhiye, V.T.; Varghese, E. Degradation of kresoxim-methyl in soil: Impact of varying moisture, organic matter, soil sterilization, soil type, light and atmospheric CO2 level. Chemosphere 2014, 111, 209–217. [Google Scholar]
- Zhang, K.K.; Hu, D.Y.; Zhu, H.J.; Yang, J.C.; Song, B.A. Enantioselective degradation of dufulin in four types of soil. J. Agric. Food Chem. 2014, 62, 1771–1776. [Google Scholar]
- Ghafoor, A.; Jarvis, N.J.; Thierfelder, T.; Stenström, J. Measurements and modeling of pesticide persistence in soil at the catchment scale. Sci. Total Environ. 2011, 409, 1900–1908. [Google Scholar]
- Borggaard, O.K.; Gimsing, A.L. Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: A review. Pest Manag. Sci. 2008, 64, 441–456. [Google Scholar]
- Ghafoor, A.; Moeys, J.; Stenström, J.; Tranter, G.; Jarvis, N. Modeling spatial variation in microbial degradation of pesticides in soil. Environ. Sci. Technol. 2011, 45, 6411–6419. [Google Scholar]
- Pipke, P.; Amrhein, N. Degradation of the phosphonate herbicide glyphosate by Arthrobacter atrocyaneus ATCC-13752. Appl. Environ. Microbiol. 1988, 54, 1293–1296. [Google Scholar]
- Kryuchkova, Y.V.; Burygin, G.L.; Gogoleva, N.E.; Gogolev, Y.V.; Chernyshova, M.P.; Makarov, O.E.; Fedorov, E.E.; Turkovskaya, O.V. Isolation and characterization of a glyphosate-degrading rhizosphere strain, Enterobacter cloacae K7. Microbiol. Res. 2014, 169, 99–105. [Google Scholar]
- Fan, J.Y.; Yang, G.X.; Zhao, H.Y.; Shi, G.Y.; Geng, Y.C.; Hou, T.P.; Tao, K. Isolation, identification and characterization of a glyphosate-degrading bacterium, Bacillus cereus CB4, from soil. J. Gen. Appl. Microbiol. 2012, 58, 263–271. [Google Scholar]
- Sample Availability: Samples of the compounds are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Hu, X.; Luo, J.; Wu, Z.; Wang, L.; Li, B.; Wang, Y.; Sun, G. Degradation Dynamics of Glyphosate in Different Types of Citrus Orchard Soils in China. Molecules 2015, 20, 1161-1175. https://doi.org/10.3390/molecules20011161
Zhang C, Hu X, Luo J, Wu Z, Wang L, Li B, Wang Y, Sun G. Degradation Dynamics of Glyphosate in Different Types of Citrus Orchard Soils in China. Molecules. 2015; 20(1):1161-1175. https://doi.org/10.3390/molecules20011161
Chicago/Turabian StyleZhang, Changpeng, Xiuqing Hu, Jinyan Luo, Zhiyi Wu, Li Wang, Bin Li, Yanli Wang, and Guochang Sun. 2015. "Degradation Dynamics of Glyphosate in Different Types of Citrus Orchard Soils in China" Molecules 20, no. 1: 1161-1175. https://doi.org/10.3390/molecules20011161
APA StyleZhang, C., Hu, X., Luo, J., Wu, Z., Wang, L., Li, B., Wang, Y., & Sun, G. (2015). Degradation Dynamics of Glyphosate in Different Types of Citrus Orchard Soils in China. Molecules, 20(1), 1161-1175. https://doi.org/10.3390/molecules20011161