Significant Improvement of Optoelectronic and Photovoltaic Properties by Incorporating Thiophene in a Solution-Processable D–A–D Modular Chromophore
Abstract
:1. Introduction
2. Results and Discussion
2.1. Design Strategy, Synthesis
Identification Code | CCDC: 1420377 (1) | CCDC: 1420378 (AS2) |
---|---|---|
Empirical formula | C23H17NOS | C31H22OS |
Formula weight | 355.43 | 442.55 |
Temperature/K | 200(2) | 200(2) |
Crystal system | monoclinic | monoclinic |
Space group | P21/c | P21 |
a/Å | 19.916(3) | 5.5812(7) |
b/Å | 6.6680(9) | 47.120(6) |
c/Å | 13.4336(16) | 9.2435(11) |
α/° | 90 | 90 |
β/° | 96.613(3) | 103.343(3) |
γ/° | 90 | 90 |
Volume/Å3 | 1772.1(4) | 2365.3(5) |
Z | 4 | 4 |
ρcalcg/cm3 | 1.332 | 1.243 |
μ/mm−1 | 0.194 | 0.158 |
F(000) | 744.0 | 928.0 |
Crystal size/mm3 | 0.292 × 0.076 × 0.063 | 0.667 × 0.137 × 0.087 |
Radiation | MoKα (λ = 0.71073) | MoKα (λ = 0.71073) |
2Θ range for data collection/ | 4.118 to 48.588 | 3.458 to 67.842 |
Index ranges | −22 ≤ h ≤ 23, −7 ≤ k ≤ 7, −15 ≤ l ≤ 15 | −8 ≤ h ≤ 8, −73 ≤ k ≤ 73, −14 ≤ l ≤ 12 |
Reflections collected | 15255 | 83,300 |
Independent reflections | 2883 [Rint = 0.0707, Rsigma = 0.0447] | 19,180 [Rint = 0.0616, Rsigma = 0.0596] |
Data/restraints/parameters | 2883/0/235 | 19180/1/595 |
Goodness-of-fit on F2 | 0.949 | 1.028 |
Final R indexes [I ≥ 2σ (I)] | R1 = 0.0412, wR2 = 0.1095 | R1 = 0.0659, wR2 = 0.1531 |
Final R indexes [all data] | R1 = 0.0720, wR2 = 0.1274 | R1 = 0.0972, wR2 = 0.1684 |
Largest diff. peak/hole/e Å−3 | 0.17/−0.26 | 0.29/−0.39 |
2.2. Optoelectronic Properties
3. Experimental Section
3.1. Materials and Instruments
3.2. Synthesis and Characterization of Target Molecules
3.2.1. Synthesis of AS1
3.2.2. Synthesis of 5-(4-(Diphenylamino)phenyl)thiophene-2-carbaldehyde (1)
3.2.3. Synthesis of AS2
3.2.4. X-ray Crystallography
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, Y.; Wan, X.; Long, G. High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 2013, 46, 2645–2655. [Google Scholar] [CrossRef] [PubMed]
- Duan, C.; Huang, F.; Cao, Y. Recent development of push–pull conjugated polymers for bulk-heterojunction photovoltaics: Rational design and fine tailoring of molecular structures. J. Mater. Chem. 2012, 22, 10416–10434. [Google Scholar] [CrossRef]
- Günes, S.; Neugebauer, H.; Sariciftci, N.S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324–1338. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Li, Y.; Zhan, X. Small molecule semiconductors for high-efficiency organic photovoltaics. Chem. Soc. Rev. 2012, 41, 4245–4272. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Kramer, E.J.; Heeger, A.J.; Bazan, G.C. Bulk heterojunction solar cells: Morphology and performance relationships. Chem. Rev. 2014, 114, 7006–7043. [Google Scholar] [CrossRef] [PubMed]
- Heegar, A.J. 25th Anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation. Adv. Mater. 2014, 26, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Scharber, M.C.; Sariciftci, N.S. Efficiency of bulk-heterojunction organic solar cells. Prog. Polym. Sci. 2013, 38, 1929–1940. [Google Scholar] [CrossRef] [PubMed]
- Boudreault, P.-L.T.; Najari, A.; Leclerc, M. Processable Low-Bandgap Polymers for Photovoltaic Applications. Chem. Mater. 2011, 23, 456–469. [Google Scholar] [CrossRef]
- Facchetti, A. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 2011, 23, 733–758. [Google Scholar] [CrossRef]
- Gupta, A.; Watkins, S.E.; Scully, A.D.; Singh, T.B.; Wilson, G.J.; Rozanski, L.J.; Evans, R.A. Band-gap tuning of pendant polymers for organic light-emitting devices and photovoltaic applications. Synth. Met. 2011, 161, 856–863. [Google Scholar] [CrossRef]
- He, Y.; Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 2011, 13, 1970–1983. [Google Scholar] [CrossRef] [PubMed]
- Laquai, F.; Andrienko, D.; Mauer, R.; Blom, P.W.M. Charge carrier transport and photogeneration in P3HT:PCBM photovoltaic blends. Macromol. Rapid Commun. 2015, 36, 1001–1025. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.T.; Hirsch, L.; Wantz, G.; Wuest, J.D. Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester system. Chem. Rev. 2013, 113, 3734–3765. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Chen, C.-C.; Hong, Z.; Yoshimura, K.; Ohya, K.; Xu, R.; Ye, S.; Gao, J.; Li, G.; Yang, Y. 10.2% Power conversion efficiency polymer tandem solar cells consisting of two identical sub-cells. Adv. Mater. 2013, 25, 3973–3978. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G.; et al. A polymer tandem solar cell with 10.6% power conversion efficiency. Nat. Commun. 2013, 4. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zheng, T.; Wu, Q.; Schneider, A.M.; Zhao, D.; Yu, L. Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 2015. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Baumgarten, M.; Muellen, K. Designing π-conjugated polymers for organic electronics. Prog. Polym. Sci. 2013, 38, 1832–1908. [Google Scholar] [CrossRef]
- Gupta, A.; Ali, A.; Bilic, A.; Gao, M.; Hegedus, K.; Singh, B.; Watkins, S.E.; Wilson, G.J.; Bach, U.; Evans, R.A. Absorption enhancement of oligothiophene dyes through the use of a cyanopyridone acceptor group in solution-processed organic solar cells. Chem. Commun. 2012, 48, 1889–1891. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.J.; Churches, Q.I.; Subbiah, J.; Gupta, A.; Ali, A.; Evans, R.A.; Holmes, A.B. Enhanced photovoltaic efficiency via light-triggered self-assembly. Chem. Commun. 2013, 49, 6552–6554. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Guo, Q.; Li, Z.; Pei, J.; Tian, W. Solution processable D-A small molecules for bulk-heterojunction solar cells. Energy Environ. Sci. 2010, 3, 1427–1436. [Google Scholar] [CrossRef]
- Mishra, A.; Bäuerle, P. Small molecule organic semiconductors on the move: Promises for future solar energy technology. Angew. Chem. Int. Ed. 2012, 51, 2020–2067. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Walker, B.; Nguyen, T.-Q. Solution-processed molecular bulk heterojunction solar cells. In Organic Photovoltaics, 2nd ed.; Brabec, C.J., Scherf, U., Dyakonov, V., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 95–137. [Google Scholar]
- Roncali, J.; Leriche, P.; Blanchard, P. Molecular materials for organic photovoltaics: Small is beautiful. Adv. Mater. 2014, 26, 3821–3838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 2014, 136, 15529–15532. [Google Scholar] [CrossRef] [PubMed]
- Patil, H.; Gupta, A.; Bilic, A.; Jackson, S.L.; Latham, K.; Bhosale, S.V. Donor-acceptor-donor modular small organic molecules based on the naphthalene diimide acceptor unit for solution-processable photovoltaic devices. J. Electron. Mater. 2014, 43, 3243–3254. [Google Scholar] [CrossRef]
- Sonar, P.; Williams, E.T.; Singh, S.P.; Manzhos, S.; Dodabalapur, A. A benzothiadiazole end capped donor-acceptor based small molecule for organic electronics. Phys. Chem. Chem. Phys. 2013, 15, 17064–17069. [Google Scholar] [CrossRef] [PubMed]
- Walker, B.; Tamayo, A.B.; Dang, X.-D.; Zalar, P.; Seo, J.H.; Garcia, A.; Tantiwiwat, M.; Nguyen, T.-Q. Nanoscale phase separation and high photovoltaic efficiency in solution-processed, small-molecule bulk heterojunction solar cells. Adv. Funct. Mater. 2009, 19, 3063–3069. [Google Scholar] [CrossRef]
- Loser, S.; Bruns, C.J.; Miyauchi, H.; Ortiz, R.O.P.; Facchetti, A.; Stupp, S.I.; Marks, T.J. A naphthodithiophene-diketopyrrolopyrrole donor molecule for efficient solution-processed solar cells. J. Am. Chem. Soc. 2011, 133, 8142–8145. [Google Scholar] [CrossRef] [PubMed]
- Yong, W.; Zhang, M.; Xin, X.; Li, Z.; Wu, Y.; Guo, X.; Yang, Z.; Hou, J. Solution-processed indacenodithiophene-based small molecule for bulk heterojunction solar cells. J. Mater. Chem. A 2013, 1, 14214–14220. [Google Scholar] [CrossRef]
- Gupta, A.; Ali, A.; Gao, M.; Singh, T.B.; Bilic, A.; Watkins, S.E.; Bach, U.; Evans, R.A. Small molecules containing rigidified thiophenes and a cyanopyridone acceptor unit for solution-processable bulk-heterojunction solar cells. Dyes Pigm. 2015, 119, 122–132. [Google Scholar] [CrossRef]
- Yuan, M.-S.; Wang, Q.; Wang, W.-J.; Li, T.-B.; Wang, L.; Deng, W.; Du, Z.-T.; Wang, J.-R. Symmetrical and asymmetrical (multi)branched truxene compounds: Structure and photophysical properties. Dyes Pigm. 2012, 95, 236–243. [Google Scholar] [CrossRef]
- Li, Z.; Dong, Q.; Li, Y.; Xu, B.; Deng, M.; Pei, J.; Zhang, J.; Chen, F.; Wen, S.; Gao, Y.; et al. Design and synthesis of solution processable small molecules towards high photovoltaic performance. J. Mater. Chem. 2011, 21, 2159–2168. [Google Scholar] [CrossRef]
- Shi, Q.; Cheng, P.; Li, Y.; Zhan, X. A solution processable D-A-D molecule based on thiazolothiazole for high performance organic solar cells. Adv. Energy Mater. 2012, 2, 63–67. [Google Scholar] [CrossRef]
- Gupta, A.; Hangarge, R.V.; Wang, X.; Alford, B.; Chellapan, V.; Jones, L.A.; Rananaware, A.; Bilic, A.; Sonar, P.; Bhosale, S.V. Crowning of dibenzosilole with a naphthalenediimide functional group to prepare an electron acceptor for organic solar cells. Dyes Pigm. 2015, 120, 314–321. [Google Scholar] [CrossRef]
- Patil, H.; Gupta, A.; Alford, B.; Ma, D.; Privér, S.H.; Bilic, A.; Sonar, P.; Bhosale, S.V. Conjoint use of dibenzosilole and indan-1,3-dione functionalities to prepare an efficient non-fullerene acceptor for solution-processable bulk-heterojunction solar cells. Asian J. Org. Chem. 2015. [Google Scholar] [CrossRef]
- Patil, H.; Zu, W.X.; Gupta, A.; Chellappan, V.; Bilic, A.; Sonar, P.; Rananaware, A.; Bhosale, S.V.; Bhosale, S.V. A non-fullerene electron acceptor based on fluorene and diketopyrrolopyrrole building blocks for solution-processable organic solar cells with an impressive open-circuit voltage. Phys. Chem. Chem. Phys. 2014, 16, 23837–23842. [Google Scholar] [CrossRef] [PubMed]
- Raynor, A.M.; Gupta, A.; Patil, H.; Bilic, A.; Bhosale, S.V. A diketopyrrolopyrrole and benzothiadiazole based small molecule electron acceptor: Design, synthesis, characterization and photovoltaic properties. RSC Adv. 2014, 4, 57635–57638. [Google Scholar] [CrossRef]
- Gupta, A.; Ali, A.; Singh, T.B.; Bilic, A.; Bach, U.; Evans, R.A. Molecular engineering for panchromatic absorbing oligothiophene donor-π-acceptor organic semiconductors. Tetrahedron 2012, 68, 9440–9447. [Google Scholar] [CrossRef]
- Kronenberg, N.M.; Deppisch, M.; Würthner, F.; Lademann, H.W.A.; Deing, K.; Meerholz, K. Bulk heterojunction organic solar cells based on merocyanine colorants. Chem. Commun. 2008, 48, 6489–6491. [Google Scholar] [CrossRef] [PubMed]
- Grimsdale, A.C.; Chan, K.L.; Martin, R.E.; Jokisz, P.G.; Holmes, A.B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109, 897–1091. [Google Scholar] [CrossRef] [PubMed]
- Halliday, D.A.; Burn, P.L.; Friend, R.H.; Bradley, D.D.C.; Holmes, A.B. Determination of the average molecular weigth of poly(p-phenylenevinylene). Synth. Met. 1993, 55, 902–907. [Google Scholar] [CrossRef]
- Pond, S.J.K.; Rumi, M.; Levin, M.D.; Parker, T.C.; Beljonne, D.; Day, M.W.; Brédas, J.-L.; Marder, S.R.; Perry, J.W. One- and two-photon spectroscopy of donor−acceptor−donor distyrylbenzene derivatives: Effect of cyano substitution and distortion from planarity. J. Phys. Chem. A 2002, 106, 11470–11480. [Google Scholar] [CrossRef]
- Maurin, M.; Vurth, L.; Vial, J.-C.; Baldeck, P.; Marder, S.R.; van der Sanden, B.; Stephan, O. Pluronic organic fluorescent probes for two-photon vascularisation imaging. Nonlinear Opt. Quantum Opt. 2010, 40, 175–181. [Google Scholar]
- Fang, H.-H.; Chen, Q.-D.; Yang, J.; Xia, H.; Gao, B.-R.; Feng, J.; Ma, Y.-G.; Sun, H.-B. Two-photon pumped amplified spontaneous emission from cyano-substituted oligo(p-phenylenevinylene) crystals with aggregation-induced emission enhancement. J. Phys. Chem. C 2010, 114, 11958–11961. [Google Scholar] [CrossRef]
- Yan, Z.-Q.; Yang, Z.-Y.; Wang, H.; Li, A.-W.; Wang, L.-P.; Yang, H.; Gao, B.-R. Study of aggregation induced emission of cyano-substituted oligo(p-phenylenevinylene) by femtosecond time resolved fluorescence. Spectrochim Acta A Mol Biomol Spectrosc. 2011, 78, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Maurin, M.; Stephan, O.; Vial, J.-C.A.; Marder, S.R.; van der Sanden, B.P.J. Deep in vivo two-photon imaging of blood vessels with a new dye encapsulated in pluronic nanomicelles. J. Biomed. Opt. 2011, 16, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Xiang, W.; Gupta, A.; Kashif, M.K.; Duffy, N.; Bilic, A.; Evans, R.A.; Spiccia, L.; Bach, U. Cyanomethylbenzoic acid: An acceptor for donor–π–acceptor chromophores used in dye-sensitized solar cells. ChemSusChem 2013, 6, 256–260. [Google Scholar] [CrossRef] [PubMed]
- Bobe, S.R.; Gupta, A.; Rananaware, A.; Bilic, A.; Bhosale, S.V.; Bhosale, S.V. Improvement of optoelectronic and photovoltaic properties through the insertion of a naphthalenediimide unit in donor–acceptor oligothiophenes. RSC Adv. 2015, 5, 4411–4415. [Google Scholar] [CrossRef]
- Würthner, F.; Wortmann, R.; Matschiner, R.; Lukaszuk, K.; Meerholz, K.; DeNardin, Y.; Bittner, R.; Brauchle, C.; Sens, R. Merocyanine dyes in the cyanine limit: A new class of chromophores for photorefractive materials. Angew. Chem. Int. Ed. 1997, 36, 2765–2768. [Google Scholar] [CrossRef]
- Gupta, A.; Armel, V.; Xiang, W.; Fanchini, G.; Watkins, S.E.; MacFarlane, D.R.; Bach, U.; Evans, R.A. The effect of direct amine substituted push-pull oligothiophene chromophores on dye-sensitized and bulk heterojunction solar cells performance. Tetrahedron 2013, 69, 3584–3592. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta. Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Struct. Chem. 2014, 71, 3–8. [Google Scholar]
- Hagberg, D.P.; Marinado, T.; Karlsson, K.M.; Nonomura, K.; Qin, P.; Boschloo, G.; Brinck, T.; Hagfeldt, A.; Sun, L. Tuning the HOMO and LUMO energy levels of organic chromophores for dye sensitized solar cells. J. Org. Chem. 2007, 72, 9550–9556. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, revision D.01; Gaussian Incorporation: Wallingford, CT, USA, 2013. [Google Scholar]
- Sample Availability: Samples of the compounds S10 and S11 are available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raynor, A.M.; Gupta, A.; Plummer, C.M.; Jackson, S.L.; Bilic, A.; Patil, H.; Sonar, P.; Bhosale, S.V. Significant Improvement of Optoelectronic and Photovoltaic Properties by Incorporating Thiophene in a Solution-Processable D–A–D Modular Chromophore. Molecules 2015, 20, 21787-21801. https://doi.org/10.3390/molecules201219798
Raynor AM, Gupta A, Plummer CM, Jackson SL, Bilic A, Patil H, Sonar P, Bhosale SV. Significant Improvement of Optoelectronic and Photovoltaic Properties by Incorporating Thiophene in a Solution-Processable D–A–D Modular Chromophore. Molecules. 2015; 20(12):21787-21801. https://doi.org/10.3390/molecules201219798
Chicago/Turabian StyleRaynor, Aaron M., Akhil Gupta, Christopher M. Plummer, Sam L. Jackson, Ante Bilic, Hemlata Patil, Prashant Sonar, and Sheshanath V. Bhosale. 2015. "Significant Improvement of Optoelectronic and Photovoltaic Properties by Incorporating Thiophene in a Solution-Processable D–A–D Modular Chromophore" Molecules 20, no. 12: 21787-21801. https://doi.org/10.3390/molecules201219798
APA StyleRaynor, A. M., Gupta, A., Plummer, C. M., Jackson, S. L., Bilic, A., Patil, H., Sonar, P., & Bhosale, S. V. (2015). Significant Improvement of Optoelectronic and Photovoltaic Properties by Incorporating Thiophene in a Solution-Processable D–A–D Modular Chromophore. Molecules, 20(12), 21787-21801. https://doi.org/10.3390/molecules201219798