Influence of Pre-Fermentation Treatments on Wine Volatile and Sensory Profile of the New Disease Tolerant Cultivar Solaris
Abstract
:1. Introduction
2. Results and Discussion
Wine Code | Pre-Fermentation Treatments |
---|---|
DP | Direct press after crushing |
WC | Whole cluster press |
6H_CM | 6 h cold maceration |
24H_CM | 24 h cold maceration |
6H_CM + SF | 6 h cold maceration + 30 h skin fermentation |
24H_CM + SF | 24 h cold maceration + 30 h skin fermentation |
2.1. Impact of Pre-fermentation Treatments on Wine Chemical Parameters
Parameters | Pre-fermentation Treatments | |||||
---|---|---|---|---|---|---|
DP | WC | 6H_CM | 24H_CM | 6H_CM + SF | 24H_CM + SF | |
Juice | ||||||
°Brix | 21.1 | 21.2 | 21.3 | 21.8 | - | - |
Potassium (in juice, g/L) | 0.71 a,b | 0.52 b | 0.87 a,b | 0.94 a | - | - |
Ammonia (mg/L) | 107 | 109 | 108 | 113 | - | - |
α-Amino nitrogen (mg/L) | 188 b | 184 b | 238 a | 233 a | - | - |
YAN | 276 b | 274 b | 326 a | 327 a | - | - |
Wine | ||||||
pH | 3.18 c | 3.09 d | 3.31 b | 3.40 a | 3.36 a | 3.43 a |
Tartaric acid (g/L) | 5.33 b | 5.52 a | 4.69 c | 4.14 d | 3.69 e | 2.97 f |
Titratable acidity (g/L) | 9.57 b | 10.2 a | 8.91 c | 8.36 d | 8.40 d | 7.93 e |
Deacidification (g/L) | 2.50 | 2.00 | 1.00 | 1.00 | 1.00 | - |
Parameters | Wines | |||||
---|---|---|---|---|---|---|
DP | WC | 6H_CM | 24H_CM | 6H_CM + SF | 24H_CM + SF | |
Ethanol (% v/v) | 12.2 c | 12.5 b | 12.4 b | 12.7 a | 12.8 a | 12.9 a |
pH | 3.43 a,b | 3.23 b | 3.41 b | 3.48 a | 3.51 a | 3.37 b |
Titratable acidity (g/L) | 6.40 c | 7.58 a | 6.80 b | 6.44 c | 6.20 c | 6.77 b |
Volatile acid (g/L) | 0.180 a,b | 0.190 a,b | 0.270 a | 0.270 a | 0170 a,b | 0.150 b |
Tartaric acid (g/L) | 1.81 a,b | 2.10 a | 2.31 a | 1.34 a,b | 1.00 b | 1.00 b |
Malic acid (g/L) | 3.21 d | 3.35 c,d | 3.56 b,c | 3.60 b,c | 3.70 a,b | 3.95 a |
Fructose (g/L) | 0.640 b | 0.600 b | 0.630 b | 1.33 a | 0.600 b | 0.540 b |
Total polyphenol index | 12.6 c | 12.2 b,c | 18.5 b | 16.3 b,c | 18.5 a,b | 21.9 a |
Glycerol (g/L) | 5.95 b | 6.23 b | 6.09 a,b | 6.11 a,b,c | 5.74 a,b,c | 6.60 a |
Reducing sugar (g/L) | 0.690 d | 0.960 c | 0.840 c | 1.47 a | 0.92 c,d | 1.19 b |
2.2. Impact of Pre-Fermentation Treatments on Volatile Profile in Wine
Code | Compounds | Cal. LRI 1 | Std. LRI 2 | Odour Description 3 | Concentration (μg/L) | Sig. | Odor | OAV 5 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DP | WC | 6H_CM | 24H_CM | 6H_CM + SF | 24H_CM + SF | Threshold (μg/L) 4 | |||||||
Esters | |||||||||||||
Ethyl esters | |||||||||||||
e1 | Ethyl propanoate | 971 | 962 | Fruit | 202 | 221 | 199 | 183 | 213 | 209 | ns | 1800 (1) | 0.11–0.12 |
e2 | Ethyl 2-methylpropanoate | 969 | 969 | Sweet, rubber | 28.6 a,b | 36.9 a | 22.9 b,c | 24.3 b,c | 14.9 c | 16.7 c | ** | 15 (2) | 0.99–2.5 |
e3 | Ethyl butanoate | 1038 | 1040 | Apple | 346 | 327 | 351 | 414 | 391 | 364 | ns | 20 (2) | 17–1 |
e4 | Ethyl 2-methylbutanoate | 1053 | 1058 | Apple | 1.79 a,b | 2.28 a | 1.34 b | 1.32 b | 0.97 b | 1.20 b | ** | 1 (2) | 0.97–2.28 |
e5 | Ethyl 3-methylbutanoate | 1072 | 1079 | Fruit | 6.17 a,b | 7.90 a | 4.43 b,c | 4.15 c | 3.69 c | 4.51 b,c | * | 3 (2) | 1.2–2.6 |
e6 | Ethyl pentanoate | 1153 | 1150 | Yeast, fruit | 0.420 | 0.342 | 0.437 | 0.501 | 0.387 | 0.455 | ns | 94 (3) | <0.001 |
e7 | Ethyl (E)-butenoate | 1178 | 1174 | - | 4.910 | 4.340 | 5.280 | 5.940 | 6.580 | 5.680 | ns | - | - |
e8 | Ethyl hexanoate | 1263 | 1255 | Apple peel, fruit | 994 | 946 | 970 | 1070 | 950 | 870 | ns | 5 (2) | 170–210 |
e9 | Ethyl (E)-3-hexenoate | 1327 | 1327 | Pineapple, fruity | 0.189 a,b | 0.161 a,b | 0.236 a | 0.175 a,b | 0.116 b | 0.980 b | * | - | - |
e10 | Ethyl heptanoate | 1354 | 1351 | Fruit | 0.100 c | 0.100 c | 0.142 b,c | 0.166 b | 0.179 b | 0.233 a | *** | 220 (1) | <0.001 |
e11 | Ethyl lactate | 1353 | 1353 | Fruit | 59.0 | 55.1 | 51.3 | 35.4 | 54.7 | 62.8 | ns | 157,360 (1) | <0.001 |
e12 | Ethyl octanoate | 1447 | 1450 | Fruit, fat | 617 | 544 | 648 | 743 | 661 | 560 | ns | 14 (4) | 39–53 |
e13 | Diethyl succinate | 1691 | 1689 | Wine, fruit | 1600 | 1280 | 1390 | 850 | 1300 | 1820 | ns | 200,000 (1) | 0.0043–0.010 |
e14 | Ethyl 2-furoate | 1641 | - | - | 7.25 | 7.50 | 6.22 | 6.43 | 8.09 | 8.85 | ns | 16,000 (5) | <0.001 |
e15 | Ethyl decanoate | 1649 | 1651 | Grape | 180 a,b | 120 b | 174ab | 231 a | 160 a,b | 110 b | ** | 200 (5) | 0.55–1.2 |
e16 | Ethyl benzoate | 1686 | 1690 | Heavy, floral, fruity | 7.23 | 9.58 | 16.0 | 8.76 | 8.12 | 10.7 | ns | 575 (5) | 0.020–0.030 |
e17 | Ethyl 9-decenoate | 1703 | 1705 | Fruit | - | - | 0.0680 | - | - | - | *** | 100 (6) | <0.001 |
e18 | Ethyl dodecanoate | 1854 | 1861 | Leaf | 3.50 a | 1.21 c | 3.50a | 3.83 a | 2.95 b | 1.37 c | * | 500 (7) | <0.01 |
e19 | Ethyl myristate | 2071 | 2064 | Floral, honey | 0.202 | 0.188 | 0.200 | 0.128 | 0.0521 | 0.0700 | ns | 2000 (6) | <0.001 |
Total Ethyl esters | 4050 | 3560 | 3850 | 3590 | 3780 | 4050 | ns | ||||||
Acetate esters | |||||||||||||
ac1 | Propyl acetate | 981 | 978 | Sweet, fruity, | 144 | 113 | 178 | 212 | 185 | 146 | ns | 4700 (1) | 0.024–0.045 |
ac2 | 2-Methylpropyl acetate | 1017 | 1018 | Fruit, apple, banana | 87.6 | 70.6 | 103 | 129 | 93.9 | 81.1 | ns | 1600 (8) | 0.041–0.081 |
ac3 | Butyl acetate | 1078 | 1082 | Pear | 5.25 | 3.39 | 5.47 | 9.04 | 6.19 | 3.77 | ns | 1880 (1) | <0.001 |
ac4 | 3-Methylbutyl acetate | 1140 | 1142 | Banana | 10,300 | 8640 | 10,900 | 11,900 | 10,200 | 9110 | ns | 30 (2) | 290–360 |
ac5 | Hexyl acetate | 1299 | 1293 | Fruit, herb | 198 | 139 | 199 | 233 | 149 | 112 | ns | 1500 (1) | 0.075–0.15 |
ac6 | (Z)-3-Hexenyl acetate | 1327 | 1328 | Green, banana | 0.0160 | - | - | - | - | - | *** | - | - |
ac7 | (E)-3-Hexenyl acetate | 1333 | 1337 | Sweet, Green, Sharp-fruity | 4.97 a,b | 2.34 b | 4.45 a,b | 9.84 a | 5.41 a,b | 3.50 a,b | * | - | - |
ac8 | Benzyl acetate | 1749 | 1738 | Fresh, boiled vegetable | - | - | 0.214 b | 0.494 a | 0.430 a,b | 0.457 a | ** | 2 (9) | <0.001 |
ac9 | Phenethyl acetate | 1837 | 1835 | Rose, honey, tobacco | 361 | 255 | 332 | 358 | 351 | 334 | ns | 250 (2) | 1.0–1.4 |
Total acetate esters | 11,100 | 9220 | 11,800 | 12,800 | 11,000 | 9790 | ns | ||||||
Other esters | |||||||||||||
oe1 | Methyl hexanoate | 1198 | 1196 | Fruit, fresh, sweet | 0.648 b | 0.648 b | 1.03 b | 1.73 a | 1.97 a | 2.04 a | *** | 84 (10) | 0.0077–0.024 |
oe2 | Isopentyl butanoate | 1289 | 1289 | Sweet, apricot, banana | 0.278 | 0.375 | 0.318 | 0.274 | 0.304 | 0.353 | ns | - | - |
oe3 | Methyl octanoate | 1400 | 1401 | Orange | 0.263 b | 0.224 b | 0.484 a,b | 0.841 a,b | 0.984 a | 0.872 a,b | * | - | - |
oe4 | Methyl decanoate | 1606 | 1608 | Wine | 0.0569 a,b | 0.0447 b | 0.0910 a,b | 0.171 a | 0.167 a | 0.136 a,b | * | 1200 (4) | <0.001 |
oe5 | 3-Methylbutyl octanoate | 1668 | 1672 | - | 2.78 | 1.85 | 2.07 | 2.51 | 2.60 | 1.99 | ns | 125 (5) | 0.015–0.022 |
oe6 | Methyl salicylate | 1800 | 1797 | Pepper, mint | 0.305 a,b | 0.130 b | 0.516 a,b | 0.641 a | 0.550 a | 0.500 a,b | * | - | - |
oe7 | Ethyl phenylacetate | 1806 | - | Fruit, sweet | 1.90 | 1.88 | 1.29 | 1.44 | 1.58 | 2.06 | ns | - | - |
Total other esters | 6.23 b,c | 5.15 c | 5.79 b,c | 7.61 a,b | 8.16 a | 7.95 a,b | * | ||||||
Alcohols | |||||||||||||
Higher alcohols | |||||||||||||
alc1 | 1-Propanol | 1041 | 1041 | Alcohol, pungent | 447 a,b | 357 a,b | 502 a | 296 a,b | 188 b | 217 b | * | 9000 (11) | 0.024–0.056 |
alc2 | 2-Methyl-1-propanol | 1104 | 1100 | Wine, solvent, bitter | 1020 | 1060 | 1210 | 1040 | 906 | 970 | ns | 40,000 (2) | 0.023–0.030 |
alc3 | 1-Butanol | 1164 | 1165 | Medicine, fruit | 251 | 216 | 267 | 348 | 227 | 196 | ns | 150,000 (4) | <0.001 |
alc4 | 3-Methyl-1-butanol | 1237 | 1238 | Whiskey, malt, burnt | >10,000 | >10,000 | >10,000 | >10,000 | >10,000 | >10,000 | ns | 30,000 (2) | >0.33 |
alc5 | 1-Pentanol | 1279 | 1274 | Balsamic | 59.4 b | 58.8 b | 61.6 a,b | 64.8 a,b | 71.0 a,b | 98.5 a | * | 64,000 (1) | <0.001 |
alc6 | 1-Heptanol | 1468 | 1471 | Chemical, green | 10.2 | 10.0 | 8.61 | 9.36 | 14.5 | 17.7 | ns | - | - |
alc7 | 2-Ethyl-hexanol | 1502 | 1499 | Rose, green | 0.981 | 0.991 | 1.25 | 1.36 | 1.69 | 1.42 | ns | 8000 (6) | <0.001 |
alc8 | 1-Octanol | 1570 | 1573 | Chemical, metal, burnt | 7.38 | 6.89 | 9.04 | 6.35 | 11.2 | 14.1 | ns | 900 (6) | 0.01–0.016 |
alc9 | Decanol | 1774 | 1778 | Fat | 0.490 | 0.450 | 0.619 | 0.616 | 0.699 | 0.862 | ns | 400 (8) | <0.001 |
alc10 | 2-Phenylethanol | 1936 | 1935 | Honey, spice, rose, lilac | 18,500 a,b | 11,400 b,c | 17,200 b,c | 9590 c | 20,100 a,b | 24,400 a | * | 10,000 (2) | 1.1–2.4 |
alc11 | Benzyl alcohol | 1896 | 1897 | Sweet, flower | 36.6 b | 37.2 b | 103 a | 105 a | 154 a | 151 a | *** | 200,000 (4) | <0.001 |
C6 alcohols | |||||||||||||
alc12 | 1-Hexanol | 1373 | 1372 | Resin, flower, green | 3250 a,b | 1730 b | 2900 a,b | 2340 a,b | 3520 a,b | 4280 a | * | 8000 (2) | 0.22–0.54 |
alc13 | (E)-3-Hexenol | 1382 | 1386 | Grass | 16.6 a,b,c | 10.0 c | 12.3 b,c | 17.7 a,b | 20.2 a | 23.1 a | ** | 150,000 (1) | <0.001 |
alc14 | (Z)-3-Hexenol | 1398 | 1390 | Grass | 1.86 c | 1.06 d | 2.44 c | 4.65 a | 3.15 b | 3.29 b | *** | 400 (2) | <0.001 |
alc15 | (E)-2-Hexenol | 1421 | 1420 | Green, leaf, walnut | 0.502 c | 0.377 c | 1.12 b,c | 1.79 a,b | 1.92 a,b | 2.53 a | ** | 15,000 (12) | <0.001 |
alc16 | (Z)-2-Hexenol | 1430 | 1430 | Leaf, green, wine, fruit | 0.321 c | 0.218 c | 1.10 b | 1.98 a | 1.85 a | 2.06 a | *** | - | - |
Aldehydes | |||||||||||||
ald1 | 3-Methylbutanal | 921 | 917 | Malt | 13.6 | 14.6 | 13.7 | 13.9 | 13.9 | 16.7 | ns | 4.6 (1) | 3.0–3.6 |
ald2 | Hexanal | 1087 | 1087 | Grass, tallow, fat | 1.40 b | 1.18 b | 1.25 b | 1.31 b | 1.76 a,b | 2.08 a | * | 9.1 (13) | 0.13–0.24 |
ald3 | Heptanal | 1194 | 1192 | Fat, citrus, rancid | 0.472 | 0.439 | 0.406 | 0.543 | 0.477 | 0.554 | ns | - | - |
ald4 | Octanal | 1313 | 1311 | Fat, soap, lemon, green | 0.887 | 0.461 | 0.727 | 0.897 | 0.824 | 0.566 | ns | - | - |
ald5 | Nonanal | 1405 | 1402 | Fat, citrus, green | 1.13 a,b | 0.789 b | 0.982 b | 1.45 a,b | 1.79 a | 1.31 a,b | * | 15 (14) | 0.053–0.12 |
ald6 | Decanal | 1510 | 1511 | Soap, orange peel, tallow | 0.287 | 0.212 | 0.326 | 0.380 | 0.400 | 0.410 | ns | 10 (4) | 0.021–0.041 |
ald7 | Benzaldehyde | 1541 | 1537 | Almond, burnt sugar | 3.84 b | 3.03 b | 4.82 b | 7.52 b | 12.5 b | 15.7 a | ** | 2000 (11) | <0.01 |
Total aldehydes | 21.3 a,b | 20.8 b | 22.2 a,b | 26.0 a,b | 31.7 a,b | 37.4 a | ** | ||||||
Ketones | |||||||||||||
k1 | 2-Heptanone | 1192 | 1190 | Soap | 0.643 | 0.567 | 0.726 | 0.718 | 0.977 | 0.853 | ns | - | - |
k2 | Acetoin | 1310 | 1307 | Butter, cream | 2.98 b | 2.27 b | 3.23 b | 5.66 a | 1.89 b | 1.96 b | *** | 150,000 (1) | <0.001 |
Total ketones | 3.63 | 2.84 | 3.96 | 6.38 | 2.87 | 2.81 | ns | ||||||
Terpenes | |||||||||||||
t1 | Myrcene | 1171 | 1170 | Balsamic, must, spice | 0.0667 a,b | - | 0.0764 a,b | 0.0904 a,b | 0.139 a | 0.174 a | * | 36 (13) | 0.0040–0.012 |
t2 | Limonene | 1200 | 1200 | Lemon, orange | 0.256 | 0.280 | 0.278 | 0.354 | 0.634 | 0.596 | ns | 15 (4) | 0.017–0.042 |
t3 | (E)-β-Ocimene | 1277 | 1277 | Herbaceous, mild, citrus, sweet, orange | 0.205 b | 0.212 b | 0.259 b | 0.333 a,b | 0.507 a | 0.567 a | ** | - | - |
t4 | p-Cymene | 1291 | 1283 | Lemon, fruity | 0.0845 | 0.104 | 0.0427 | 0.0436 | 0.0706 | 0.0841 | ns | 11.4 (13) | <0.001 |
t5 | Neroloxide | 1482 | 1485 | Oil, flower | 5.69 | 5.89 | 6.80 | 6.83 | 6.75 | 8.93 | ns | - | - |
t6 | Linalool | 1559 | 1560 | Flower, lavender | 7.85 b,c | 4.61 c | 11.8 b | 12.2 b | 12.40 b | 21.7 a | * | 15 (8) | 0.31–1.4 |
t7 | Hotrienol | 1623 | 1621 | Hyacinth | 2.52 c | 2.06 c | 7.37 b | 6.57 b | 7.55 b | 14.6 a | * | 100 (13) | 0.021–0.15 |
t8 | α-Terpineol | 1712 | 1716 | Oil, anise, mint | 2.26 b,c | 1.30 c | 2.48 b,c | 3.40 b | 3.49 b | 5.76 a | *** | 250 (8) | <0.001 |
Total terpenes | 18.9 c | 14.5 c | 29.1 b,c | 29.9 b,c | 31.5 b | 52.4 a | *** | ||||||
Other compounds | |||||||||||||
ot1 | S-Methyl thioacetate | 1050 | 1050 | Rotten, cooked vegetables | 1.04 b | 0.980 b | 0.954 b | 0.443 c | 0.973 b | 1.41 a | * | 4500 (15) | <0.001 |
ot2 | Dihydro-2-methyl-3(2H)-thiophenone | 1546 | 1544 | Cabbage, onion, must | 3.33 | 3.08 | 1.98 | 1.38 | 5.48 | 5.00 | ns | - | - |
ot3 | β-Damascenone | 1841 | 1844 | Apple, rose, honey | 0.310 c | 0.217 c | 0.583 b,c | 1.07 a,b | 1.56 a | 1.61 a | *** | 0.05 (2) | 4.3–32 |
Total other compounds | 4.68 b | 4.28 b | 3.52 b | 2.90 c | 8.02 a | 8.02 a | ** |
2.3. Sensory Evaluations
2.4. Relationship between Instrumental Analysis and Sensory Properties of Wines
3. Experimental Section
3.1. Chemical Standards
3.2. Grapes and Winemaking
3.3. Chemical Parameters Analysis
3.4. Volatile Compound Analysis
3.5. Sensory Evaluation
3.6. Statistical Analyses
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Selli, S.; Cabaroglu, T.; Canbas, A.; Erten, H.; Nurgel, C. Effect of skin contact on the aroma composition of the musts of Vitis vinifera L. cv. Muscat of Bornova and Narince grown in Turkey. Food Chem. 2003, 81, 341–347. [Google Scholar] [CrossRef]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Günata, Z. Effect of skin contact on the free and bound aroma compounds of the white wine of Vitis vinifera L. cv Narince. Food Control 2006, 17, 75–82. [Google Scholar] [CrossRef]
- Vazquez, L.C.; Perez-Coello, M.S.; Cabezudo, M.D. Effects of enzyme treatment and skin extraction on varietal volatiles in Spanish wines made from Chardonnay, Muscat, Airen, and Macabeo grapes. Anal. Chim. Acta 2002, 458, 39–44. [Google Scholar] [CrossRef]
- Cabaroglu, T.; Canbas, A.; Baumes, R.; Bayonove, C.; Lepoutre, J.P.; Gunata, Z. Aroma composition of a white wine of Vitis vinifera L. cv. Emir as affected by skin contact. J. Food Sci. 1997, 62, 680–683. [Google Scholar] [CrossRef]
- Palomo, E.S.; González-Viñas, M.A.; Díaz-Maroto, M.C.; Soriano-Pérez, A.; Pérez-Coello, M.S. Aroma potential of Albillo wines and effect of skin-contact treatment. Food Chem. 2007, 103, 631–640. [Google Scholar] [CrossRef]
- Singleton, V.L.; Sieberhagen, H.A.; Wet, P.D.; Vanwyk, C.J. Composition and Sensory Qualities of Wines Prepared from White Grapes by Fermentation with and without Grape Solids. Am. J. Enol. Vitic. 1975, 26, 62–69. [Google Scholar]
- Ferreira, V.; Lopez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Ferreira, B.; Hory, C.; Bard, M.H.; Taisant, C.; Olsson, A.; Lefur, Y. Effects of Skin Contact and Settling on the Level of the C18/2, C18/3 Fatty-Acids and C6 Compounds in Burgundy Chardonnay Musts and Wines. Food Qual. Preference 1995, 6, 35–41. [Google Scholar] [CrossRef]
- Losada, M.M.; Andrés, J.; Cacho, J.; Revilla, E.; López, J.F. Influence of some prefermentative treatments on aroma composition and sensory evaluation of white Godello wines. Food Chem. 2011, 125, 884–891. [Google Scholar] [CrossRef]
- Darias-Martin, J.J.; Rodriguez, O.; Diaz, E.; Lamuela-Raventos, R.M. Effect of skin contact on the antioxidant phenolics in white wine. Food Chem. 2000, 71, 483–487. [Google Scholar] [CrossRef]
- Gomez-Miguez, M.J.; Gonzalez-Miret, M.L.; Hernanz, D.; Fernandez, M.; Vicario, I.M.; Heredia, F.J. Effects of prefermentative skin contact conditions on colour and phenolic content of white wines. J. Food Eng. 2007, 78, 238–245. [Google Scholar] [CrossRef]
- Olejar, K.J.; Fedrizzi, B.; Kilmartin, P.A. Antioxidant activity and phenolic profiles of Sauvignon Blanc wines made by various maceration techniques. Aust. J. Grape Wine Res. 2015, 21, 57–68. [Google Scholar] [CrossRef]
- Peinado, R.A.; Moreno, J.; Bueno, J.E.; Moreno, J.A.; Mauricio, J.C. Comparative study of aromatic compounds in two young white wines subjected to pre-fermentative cryomaceration. Food Chem. 2004, 84, 585–590. [Google Scholar] [CrossRef]
- Garcia-Romero, E.; Perez-Coello, M.; Cabezudo, M.D.; Sanchez-Munoz, G.; Martin-Alvarez, P.J. Fruity flavor increase of Spanish Airen white wines made by brief fermentation skin contact. Food Sci. Technol. Int. 1999, 5, 149–157. [Google Scholar] [CrossRef]
- Cai, J.; Zhu, B.Q.; Wang, Y.H.; Lu, L.; Lan, Y.B.; Reeves, M.J.; Duan, C.Q. Influence of pre-fermentation cold maceration treatment on aroma compounds of Cabernet Sauvignon wines fermented in different industrial scale fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Jackson, R.S. Fermentation. In Wine Science, 3rd ed.; Jackson, R.S., Ed.; Academic Press: San Diego, CA, USA, 2008; pp. 332–417. [Google Scholar]
- Esti, M.; Tamborra, P. Influence of winemaking techniques on aroma precursors. Anal. Chim. Acta 2006, 563, 173–179. [Google Scholar] [CrossRef]
- Selli, S.; Canbas, A.; Cabaroglu, T.; Erten, H.; Günata, Z. Aroma components of cv. Muscat of Bornova wines and influence of skin contact treatment. Food Chem. 2006, 94, 319–326. [Google Scholar] [CrossRef]
- Arnold, R.A.; Noble, A.C. Effect of Pomace Contact on the Flavor of Chardonnay Wine. Am. J. Enol. Vitic. 1979, 30, 179–181. [Google Scholar]
- Rodrıguez-Bencomo, J.J.; Méndez-Siverio, J.J.; Pérez-Trujillo, J.P.; Cacho, J. Effect of skin contact on bound aroma and free volatiles of Listán blanco wine. Food Chem. 2008, 110, 214–225. [Google Scholar] [CrossRef] [PubMed]
- Ambrosi, H.; Hill, B.; Maul, E.; Rühl, E.; Schmid, J.; Schumann, F. Farbatlas Rebsorten—300 Sorten und Ihre Weine, 3rd ed.; Verlag Eugen Ulmer: Stuttgart, Germany, 2011. [Google Scholar]
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Principles and Practices of Winemaking; Springer: New York, NY, USA, 1999. [Google Scholar]
- Fischer, U.; Strasser, M.; Gutzler, K. Impact of fermentation technology on the phenolic and volatile composition of German red wines. Int. J. Food Sci. Technol. 2000, 35, 81–94. [Google Scholar] [CrossRef]
- Nieuwoudt, H.H.; Prior, B.A.; Pretorius, I.S.; Bauer, F.F. Glycerol in South African Table Winess: An Assessment of its Relationship to Wine Quality. S. Afr. J. Enol. Vitic. 2002, 23, 22–23. [Google Scholar]
- Komes, D.; Ulrich, D.; Lovric, T. Characterization of odor-active compounds in Croatian Rhine Riesling wine, subregion Zagorje. Eur. Food Res. Technol. 2006, 222, 1–7. [Google Scholar] [CrossRef]
- Dennis, E.G.; Keyzers, R.A.; Kalua, C.M.; Maffei, S.M.; Nicholson, E.L.; Boss, P.K. Grape Contribution to Wine Aroma: Production of Hexyl Acetate, Octyl Acetate, and Benzyl Acetate during Yeast Fermentation Is Dependent upon Precursors in the Must. J. Agric. Food Chem. 2012, 60, 2638–2646. [Google Scholar] [CrossRef] [PubMed]
- Sener, H.; Yildirim, H.K. Influence of different maceration time and temperatures on total phenols, colour and sensory properties of Cabernet Sauvignon wines. Food Sci. Technol. Int. 2013, 19, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Perez, A.; Vila-Lopez, R.; Fernandez-Fernandez, J.I.; Martinez-Cutillas, A.; Gil-Munoz, R. Influence of cold pre-fermentation treatments on the major volatile compounds of three wine varieties. Food Chem. 2013, 139, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Clarke, R.J. Volatile Components. In Wine Flavour Chemistry; Bakker, J., Clarke, R.J., Eds.; Wiley-Blackwell: Chichester, UK, 2011; pp. 155–238. [Google Scholar]
- Bell, S.J.; Henschke, P.A. Implications of nitrogen nutrition for grapes, fermentation and wine. Aust. J. Grape Wine Res. 2005, 11, 242–295. [Google Scholar] [CrossRef]
- Slegers, A.; Angers, P.; Ouellet, E.; Truchon, T.; Pedneault, K. Volatile compounds from grape skin, juice and wine from five interspecific hybrid grape cultivars grown in Quebec (Canada) for wine production. Molecules 2015, 20, 10980–11016. [Google Scholar] [CrossRef] [PubMed]
- Vilanova, M.; Ugliano, M.; Varela, C.; Siebert, T.; Pretorius, I.S.; Henschke, P.A. Assimilable nitrogen utilisation and production of volatile and non-volatile compounds in chemically defined medium by saccharomyces cerevisiae wine yeasts. Appl. Microbiol. Biotechnol. 2007, 77, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Sefton, M.A.; Francis, I.L.; Williams, P.J. The volatile composition of chardonnay juices—A study by flavor precursor analysis. Am. J. Enol. Vitic. 1993, 44, 359–370. [Google Scholar]
- Campo, E.; Ferreira, V.; Escudero, A.; Marques, J.C.; Cacho, J. Quantitative gas chromatography-olfactometry and chemical quantitative study of the aroma of four Madeira wines. Anal. Chim. Acta 2006, 563, 180–187. [Google Scholar] [CrossRef]
- Genovese, A.; Gambuti, A.; Piombino, P.; Moio, L. Sensory properties and aroma compounds of sweet Fiano wine. Food Chem. 2007, 103, 1228–1236. [Google Scholar] [CrossRef]
- Lopez-Tamames, E.; CarroMarino, N.; Gunata, Y.Z.; Sapis, C.; Baumes, R.; Bayonove, C. Potential aroma in several varieties of spanish grapes. J. Agric. Food Chem. 1997, 45, 1729–1735. [Google Scholar] [CrossRef]
- Mateo, J.J.; Jimenez, M. Monoterpenes in grape juice and wines. J. Chromatogr. A 2000, 881, 557–567. [Google Scholar] [CrossRef]
- Sefton, M.A.; Skouroumounis, G.K.; Elsey, G.M.; Taylor, D.K. Occurrence, sensory impact, formation, and fate of damascenone in grapes, wines, and other foods and beverages. J. Agric. Food Chem. 2011, 59, 9717–9746. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Careri, M.; Mangia, A.; Musci, M. Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. J. Sep. Sci. 2007, 30, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Etiévant, P.X. Wine. In Volatile Compounds in Foods and Beverages, 1st ed.; Maarse, H., Ed.; Marcel Dekker: New York, NY, USA, 1991; pp. 483–546. [Google Scholar]
- Guth, H. Comparison of different white wine varieties in odor profiles by instrumental analysis and sensory studies. Abstr. Pap. Am. Chem. Soc. 1997, 45, 3027–3032. [Google Scholar]
- Takeoka, G.R.; Buttery, R.G.; Turnbaugh, J.G.; Benson, M. Odor Thresholds of Various Branched Esters. LWT Food Sci. Technol. 1995, 28, 153–156. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; Cacho, J.F.; Ferreira, V.; Vicario, I.M.; Heredia, F.J. Volatile components of Zalema white wines. Food Chem. 2007, 100, 1464–1473. [Google Scholar] [CrossRef]
- Tao, Y.S.; Zhang, L. Intensity prediction of typical aroma characters of cabernet sauvignon wine in Changli County (China). LWT Food Sci. Technol. 2010, 43, 1550–1556. [Google Scholar] [CrossRef]
- Moyano, L.; Zea, L.; Moreno, J.; Medina, M. Analytical study of aromatic series in sherry wines subjected to biological aging. J. Agric. Food Chem. 2002, 50, 7356–7361. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Ortin, N.; Escudero, A.; Lopez, R.; Cacho, J. Chemical characterization of the aroma of Grenache rose wines: Aroma extract dilution analysis, quantitative determination, and sensory reconstitution studies. J. Agric. Food Chem. 2002, 50, 4048–4054. [Google Scholar] [CrossRef] [PubMed]
- Buttery, R.G.; Seifert, R.M.; Ling, L.C.; Soderstrom, E.L.; Ogawa, J.M.; Turnbaugh, J.G. Additional Aroma Components of Honeydew Melon. J. Agric. Food Chem. 1982, 30, 1208–1211. [Google Scholar] [CrossRef]
- Takeoka, G.R.; Buttery, R.G.; Teranishi, R.; Flath, R.A.; Guntert, M. Identification of Additional Pineapple Volatiles. J. Agric. Food Chem. 1991, 39, 1848–1851. [Google Scholar] [CrossRef]
- Franco, M.; Peinado, R.A.; Medina, M.; Moreno, J. Off-vine grape drying effect on volatile compounds and aromatic series in must from Pedro Ximenez grape variety. J. Agric. Food Chem. 2004, 52, 3905–3910. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, E.M.; Dennison, R.A.; Dougherty, R.H.; Shaw, P.E. Flavor and Odor Thresholds in Water of Selected Orange Juice Components. J. Agric. Food Chem. 1978, 26, 187–191. [Google Scholar] [CrossRef]
- Cullere, L.; Escudero, A.; Cacho, J.; Ferreira, V. Gas chromatography-olfactometry and chemical quantitative study of the aroma of six premium quality Spanish aged red wines. J. Agric. Food Chem. 2004, 52, 1653–1660. [Google Scholar] [CrossRef] [PubMed]
- Moreira, N.; Guedes de Pinho, P.; Santos, C.; Vasconcelos, I. Volatile sulphur compounds composition of monovarietal white wines. Food Chem. 2010, 123, 1198–1203. [Google Scholar] [CrossRef]
- Vilanova, M.; Genisheva, Z.; Masa, A.; Oliveira, J.M. Correlation between volatile composition and sensory properties in Spanish Albarino wines. Microchem. J. 2010, 95, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Campo, E.; Ferreira, V.; Escudero, A.; Cacho, J. Prediction of the wine sensory properties related to grape variety from dynamic-headspace gas chromatography-olfactometry data. J. Agric. Food Chem. 2005, 53, 5682–5690. [Google Scholar] [CrossRef] [PubMed]
- Falque, E.; Fernandez, E.; Dubourdieu, D. Differentiation of white wines by their aromatic index. Talanta 2001, 54, 271–281. [Google Scholar] [CrossRef]
- Vilanova, M.; Escudero, A.; Grana, M.; Cacho, J. Volatile composition and sensory properties of North West Spain white wines. Food Res. Int. 2013, 54, 562–568. [Google Scholar] [CrossRef]
- Allen, M.S.; Lacey, M.J.; Boyd, S.J. Methoxypyrazines in Red Wines—Occurrence of 2-Methoxy-3-(1-Methylethyl)Pyrazine. J. Agric. Food Chem. 1995, 43, 769–772. [Google Scholar] [CrossRef]
- Allen, M.S.; Lacey, M.J.; Boyd, S. Determination of Methoxypyrazines in Red Wines by Stable-Isotope Dilution Gas-Chromatography Mass-Spectrometry. J. Agric. Food Chem. 1994, 42, 1734–1738. [Google Scholar] [CrossRef]
- Sala, C.; Mestres, M.; Marti, M.P.; Busto, O.; Guasch, J. Headspace solid-phase microextraction analysis of 3-alkyl-2-methoxypyrazines in wines. J. Chromatogr. A 2002, 953, 1–6. [Google Scholar] [CrossRef]
- Hein, K.; Ebeler, S.E.; Heymann, H. Perception of fruity and vegetative aromas in red wine. J. Sens. Stud. 2009, 24, 441–455. [Google Scholar] [CrossRef]
- Hoff, S.; Damgaard, J.; Petersen, M.A.; Jespersen, B.M.; Andersen, M.L.; Lund, M.N. Influence of Barley Varieties on Wort Quality and Performance. J. Agric. Food Chem. 2013, 61, 1968–1976. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples are ot available from authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Petersen, M.A.; Liu, J.; Toldam-Andersen, T.B. Influence of Pre-Fermentation Treatments on Wine Volatile and Sensory Profile of the New Disease Tolerant Cultivar Solaris. Molecules 2015, 20, 21609-21625. https://doi.org/10.3390/molecules201219791
Zhang S, Petersen MA, Liu J, Toldam-Andersen TB. Influence of Pre-Fermentation Treatments on Wine Volatile and Sensory Profile of the New Disease Tolerant Cultivar Solaris. Molecules. 2015; 20(12):21609-21625. https://doi.org/10.3390/molecules201219791
Chicago/Turabian StyleZhang, Shujuan, Mikael Agerlin Petersen, Jing Liu, and Torben Bo Toldam-Andersen. 2015. "Influence of Pre-Fermentation Treatments on Wine Volatile and Sensory Profile of the New Disease Tolerant Cultivar Solaris" Molecules 20, no. 12: 21609-21625. https://doi.org/10.3390/molecules201219791
APA StyleZhang, S., Petersen, M. A., Liu, J., & Toldam-Andersen, T. B. (2015). Influence of Pre-Fermentation Treatments on Wine Volatile and Sensory Profile of the New Disease Tolerant Cultivar Solaris. Molecules, 20(12), 21609-21625. https://doi.org/10.3390/molecules201219791