Bactericidal Effect of Extracts and Metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis Causing Dental Plaque and Periodontal Inflammatory Diseases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Results
Plant Fractions | Concentration (mg/mL) | P. gingivalis | S. mutans | E. coli DH5α |
---|---|---|---|---|
Growth Inhibition (%) | ||||
Crude extract | 0.2 | 88 ± 20.23 ab,*,# | 36 ± 5.79 x | 4 ± 0.89 |
0.6 | 100 ± 0.09 a | 66 ± 8.37 vw | 3 ± 0.31 | |
1.8 | 100 ± 0.18 a | 73 ± 14.83 v | 1 ± 2.48 | |
Hexane Fr. | 0.008 | 0 ± 0.00 e | 11 ± 4.63 y | 0 ± 0.00 |
0.04 | 60 ± 9.81 c | 29 ± 0.03 x | 0 ± 0.00 | |
0.2 | 97 ± 0.31 a | 55 ± 4.11 w | 0 ± 0.00 | |
CHCl3 Fr. | 0.008 | 10 ± 3.56 e | 0 ± 0.00 z | 4 ± 1.42 |
0.04 | 21 ± 0.54 d | 2 ± 0.53 yz | 0 ± 0.00 | |
0.2 | 91 ± 1.80 ab | 31 ± 6.25 x | 0 ± 0.00 | |
EtOAc Fr. | 0.008 | 9 ± 1.05 e | 0 ± 3.65 z | 2 ± 2.76 |
0.04 | 8 ± 3.80 e | 5 ± 425 y | 8 ± 1.39 | |
0.2 | 82 ± 3.58 b | 0 ± 0.00 z | 2 ± 1.46 | |
BuOH Fr. | 0.008 | 5 ± 6.72 e | 0 ± 0.00 z | 7 ± 1.36 |
0.04 | 7 ± 3.39 e | 0 ± 0.00 z | 9 ± 1.36 | |
0.2 | 6 ± 1.79 e | 0 ± 0.00 z | 5 ± 2.94 |
Plant Fractions | P. gingivalis | S. mutans |
---|---|---|
Crude extract | 0.2 * | 0.6 |
Hexane Fr. | 0.04 | 0.2 |
CHCl3 Fr. | 0.2 | 0.2 |
EtOAc Fr. | 0.2 | >0.2 ** |
BuOH Fr. | >0.2 | >0.2 |
2.2. Discussion
3. Experimental Section
3.1. Plant Material
3.2. Test Pathogens
3.3. Evaluation of Antibacterial Activity
3.4. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Varghese, J.; Tumkur, V.K.; Ballal, V.; Bhat, G.S. Antimicrobial effect of Anacardium occidentale leaf extract against pathogens causing periodontal disease. Adv. Biosci. Biotechnol. 2013, 4, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Katsura, H.; Tsukiyama, R.I.; Suzuki, A.; Kobayashi, M. In vitro antimicrobial activities of bakuchiol against oral microorganisms. Antimicrob. Agents Chemother. 2001, 45, 3009–3013. [Google Scholar] [CrossRef] [PubMed]
- Jebashree, H.S.; Kingsley, S.J.; Sathish, E.S.; Devapriya, D. Antimicrobial activity of few medicinal plants against clinically isolated human cariogenic pathogens—An in vitro study. Int. Sch. Res. Net. Dent. 2011, 2011. [Google Scholar] [CrossRef]
- Kleinberg, I. A mixed-bacteria ecological approach to understanding the role of the oral bacteria in dental caries causation: An alternative to Streptococcus mutans and the specific-plaque hypothesis. Crit. Rev. Oral Biol. Med. 2002, 13, 108–125. [Google Scholar] [CrossRef] [PubMed]
- Abdus-Salam, M.; Matsumoto, N.; Martin, K.; Tsuda, Y.; Nakao, R.; Hanada, N.; Senpuku, H. Establishment of an animal model using recombinant NOD.B10.D2 mice to study initial adhesion of oral streptococci. Clin. Diagn. Lab. Immunol. 2004, 11, 379–386. [Google Scholar] [PubMed]
- Jenkinson, H.F.; Lamont, R.J. Oral microbial communities in sickness and inhealth. Trends Microbiol. 2005, 13, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Yanagida, A.; Kanda, T.; Tanabe, M.; Matsudaira, F.; Cordeiro, J.G.O. Inhibitory effects of apple polyphenols and related compounds on cariogenic factors of mutans Streptococci. J. Agric. Food Chem. 2000, 48, 5666–5671. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Katayama, S.; Matsubara, M.; Honda, Y.; Kuwahara, M. Antibacterial carbohydrate monoesters suppressing cell growth of Streptococcus mutans in the presence of sucrose. Curr. Microbiol. 2000, 41, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Ohara, A.; Saito, F.; Matsuhisa, T. Screening of antibacterial activities of edible plants against Streptococcus mutans. Food Sci. Technol. Res. 2008, 14, 190–193. [Google Scholar] [CrossRef]
- Palombo, E.A. Traditional plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evid. Based Complement. Altern. Med. 2011, 2011, 680354. [Google Scholar]
- Lee, C.S.; Cho, H.J.; Yi, H. Stand dynamics of introduced black locust (Robinia pseudoacacia L.) plantation under different disturbance regimes in Korea. For. Ecol. Manag. 2004, 189, 281–293. [Google Scholar] [CrossRef]
- Veitch, N.C.; Elliott, P.C.; Kite, G.C.; Lewis, G.P. Flavonoid glycosides of the black locust tree, Robinia pseudoacacia (Leguminosae). Phytochemistry 2010, 71, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.; Chang, C.J.; Grutzner, J.B.; Nicholsa, D.E.; McLaughlin, J.L. Robinlin: A novel bioactive homo-monoterpene from Robinia pseudoacacia L. (Fabaceae). Bioorganic Med. Chem. Lett. 2001, 11, 2603–2606. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Dai, G.H.; Zhuge, Y.Y.; Li, Y.B. Protective effect of Robinia pseudoacacia Linn1 extracts against cucumber powdery mildew fungus, Sphaerotheca fuliginea. Crop Prot. 2008, 27, 920–925. [Google Scholar] [CrossRef]
- Rosu, A.F.; Bita, A.; Calina, D.; Rosu, L.; Zlatian, O.; Calina, V. Synergic antifungal and antibacterial activity of alcoholic extract of the species Robinia pseudoacacia L. (Fabaceae). Eur. J. Hosp. Pharm. 2012, 19, 216. [Google Scholar] [CrossRef]
- Kang, C.G.; Hah, D.S.; Kim, C.H.; Kim, Y.H.; Kim, E.; Kim, J.S. Evaluation of antimicrobial activity of the methanol extracts from 8 traditional medicinal plants. Toxicol. Res. 2011, 27, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Dahiya, P.; Purkayastha, S. Phytochemical screening and antimicrobial activity of some medicinal plants against multi-drug resistant bacteria from clinical isolates. Indian J. Pharm. Sci. 2012, 74, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Kuete, V.; Seo, E.J.; Krusche, B.; Oswald, M.; Wiench, B.; Schroder, S.; Greten, H.J.; Lee, I.S.; Efferth, T. Cytotoxicity and pharmacogenomics of medicinal plants from traditional Korean medicine. Evid. Based Complement. Altern. Med. 2013, 2013. [Google Scholar] [CrossRef]
- Cai, L.; Wu, C.D. Compounds from Syzygium aromaticum possessing growth inhibitory activity against oral pathogens. J. Nat. Prod. 1996, 59, 987–990. [Google Scholar] [CrossRef] [PubMed]
- Jeong, M.R.; Kim, H.Y.; Cha, J.D. Antimicrobial activity of methanol extract from Ficus carica leaves against oral bacteria. J. Bact. Virol. 2009, 39, 97–102. [Google Scholar] [CrossRef]
- Todar, K. Online Textbook of Bacteriology. Available online: http://textbookofbacteriology.net/normalflora.html (accessed on 30 March 2015).
- Ferrazzano, G.F.; Roberto, L.; Catania, M.R.; Chiaviello, A.; de-Natale, A.; Roscetto, E.; Pinto, G.; Pollio, A.; Ingenito, A.; Palumbo, G. Screening and scoring of antimicrobial and biological activities of Italian vulnerary plants against major oral pathogenic bacteria. Evid. Based Complement. Altern. Med. 2013, 2013, 316280. [Google Scholar] [CrossRef]
- Cowan, M.M. Plant products as antimicrobial agents. Clin. Microbiol. Rev. 1999, 12, 564–582. [Google Scholar] [PubMed]
- Gao, Y.; van-Belkum, M.J.; Stiles, M.E. The outer membrane of Gram-negative bacteria inhibits antibacterial activity of brochocin-C. Appl. Environ. Microbiol. 1999, 65, 4329–4333. [Google Scholar] [PubMed]
- Rosas-Pinon, Y.; Mejia, A.; Diaz-Ruiz, G.; Aguilara, M.I.; Sanchez-Nieto, S.; Rivero-Cruza, J.F. Ethnobotanical survey and antibacterial activity of plants used in the Altiplane region of Mexico for the treatment of oral cavity infections. J. Ethnopharmacol. 2012, 141, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.H.; Tsai, T.H.; Chien, Y.C.; Lee, C.W.; Tsai, P.J. In vitro antimicrobial activities against cariogenic Streptococci and their antioxidant capacities: A comparative study of green tea versus different herbs. Food Chem. 2008, 110, 859–864. [Google Scholar] [CrossRef]
- D’Souza, L.; Wahidulla, S.; Devi, P. Antibacterial phenolics from the mangrove Lumnitzera racemosa. Indian J. Mar. Sci. 2010, 39, 294–298. [Google Scholar]
- Savoia, D. Plant derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol. 2012, 7, 979–990. [Google Scholar] [CrossRef] [PubMed]
- Tunc, K.; Hos, A.; Gunes, B. Investigation of antibacterial properties of Cotinus coggygria from Turkey. Pol. J. Environ. Stud. 2013, 22, 1559–1561. [Google Scholar]
- Calina, D.; Olah, N.K.; Patru, E.; Docea, A.; Popescu, H.; Bubulica, M.V. Chromatographic analysis of the flavonoids from Robinia pseudoacacia species. Curr. Health Sci. J. 2013, 39, 232–236. [Google Scholar] [PubMed]
- Ogras, T.T.; Ipekci, Z.; Bajrovic, K.; Gozukirmizi, N. Antibacterial activity of seed proteins of Robinia pseudoacacia. Fitoterapia 2005, 76, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Khan, R.A.; Khan, M.R.; Ahmed, M.; Sahreen, S.; Shah, N.A.; Shah, M.S.; Bokhari, J.; Rashid, U.; Ahmad, B.; Jan, S. Hepatoprotection with a chloroform extract of Launaea procumbens against CCl4-induced injuries in rats. BMC Complement. Altern. Med. 2012, 12, 114. [Google Scholar] [CrossRef] [PubMed]
- Da-Costa, M.P.; Bozinis, M.C.V.; Andrade, W.M.; Costa, C.R.; da-Silva, A.L.; de-Oliveira, C.M.A.; Lucilia-Kato, L.; Fernandes, O.F.L.; Souza, L.K.H.; Silva, M.R.R. Antifungal and cytotoxicity activities of the fresh xylem sap of Hymenaea courbaril L. and its major constituent fisetin. BMC Complement. Altern. Med. 2014, 14, 245. [Google Scholar] [CrossRef] [PubMed]
- Pimia, R.P.; Nohynek, L.; Meier, C.; Kahkonen, M.; Heinonen, M.; Oksman-Caldentey, K.M.; Hopia, A. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Sheets, S.M.; Robles-Price, A.G.; McKenzie, R.M.E.; Casiano, C.A.; Fletcher, H.M. Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis. Front. Biosci. 2012, 13, 3215–3238. [Google Scholar]
- Deris, Z.Z.; Akter, J.; Sivanesan, S.; Roberts, K.D.; Thompson, P.E.; Nation, R.L.; Li, J.; Velkov, T. A secondary mode of action of polymyxins against Gram-negative bacteria involves the inhibition of NADH-quinone oxidoreductase activity. J. Antibiot. 2014, 67, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Scheres, N.; Laine, M.L.; Sipos, P.M.; Bosch-Tijhof, C.J.; Crielaard, W.; de-Vries, T.J.; Everts, V. Periodontal ligament and gingival fibroblasts from periodontitis patients are more active in interaction with Porphyromonas gingivalis. J. Periodontal Res. 2011, 46, 407–416. [Google Scholar] [CrossRef] [PubMed]
- Nassar, H.M.; Li, M.; Gregory, R.L. Effect of honey on Streptococcus mutans growth and biofilim formation. Appl. Environ. Microbiol. 2012, 78, 536–540. [Google Scholar] [CrossRef] [PubMed]
- Serrone, P.D.; Nicoletti, M. Antimicrobial activity of a neem cake extract in a broth model meat system. Int. J. Environ. Res. Public Health 2013, 10, 3282–3295. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: The crude extract of Robinia pseudoacacia L. can be available from E.S. Kim.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patra, J.K.; Kim, E.S.; Oh, K.; Kim, H.-J.; Dhakal, R.; Kim, Y.; Baek, K.-H. Bactericidal Effect of Extracts and Metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis Causing Dental Plaque and Periodontal Inflammatory Diseases. Molecules 2015, 20, 6128-6139. https://doi.org/10.3390/molecules20046128
Patra JK, Kim ES, Oh K, Kim H-J, Dhakal R, Kim Y, Baek K-H. Bactericidal Effect of Extracts and Metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis Causing Dental Plaque and Periodontal Inflammatory Diseases. Molecules. 2015; 20(4):6128-6139. https://doi.org/10.3390/molecules20046128
Chicago/Turabian StylePatra, Jayanta Kumar, Eun Sil Kim, Kyounghee Oh, Hyeon-Jeong Kim, Radhika Dhakal, Yangseon Kim, and Kwang-Hyun Baek. 2015. "Bactericidal Effect of Extracts and Metabolites of Robinia pseudoacacia L. on Streptococcus mutans and Porphyromonas gingivalis Causing Dental Plaque and Periodontal Inflammatory Diseases" Molecules 20, no. 4: 6128-6139. https://doi.org/10.3390/molecules20046128