Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Compounds
2.2. Effect on Melanogenesis
2.3. Optimization of Extraction Conditionsadmas
2.3.1. Extraction Method Development
Run | Actual Variables | Observed Values | |||
---|---|---|---|---|---|
MeOH Concentration (%) | Extraction Temperature (°C) | Extraction Time (h) | Tyrosinase Inhibition (%) | Total Phenolic Content (μg GAE/mg extract) | |
1 | 0 | 60 | 13 | 0.0 | 4.1 |
2 | 0 | 20 | 13 | 0.0 | 5.0 |
3 | 50 | 40 | 13 | 30.9 | 20.4 |
4 | 50 | 20 | 2 | 20.0 | 25.3 |
5 | 0 | 40 | 2 | 0.0 | 13.9 |
6 | 100 | 40 | 24 | 83.1 | 20.1 |
7 | 50 | 20 | 24 | 15.3 | 25.1 |
8 | 0 | 40 | 24 | 0.0 | 16.7 |
9 | 50 | 40 | 13 | 22.0 | 21.7 |
10 | 100 | 40 | 2 | 81.6 | 15.7 |
11 | 100 | 60 | 13 | 81.5 | 16.8 |
12 | 50 | 60 | 2 | 46.0 | 25.6 |
13 | 50 | 40 | 13 | 59.8 | 20.4 |
14 | 100 | 20 | 13 | 82.5 | 7.6 |
15 | 50 | 60 | 24 | 36.4 | 23.9 |
Variation | Sum of Square | Degree of Freedom | Mean Square | F-Value | p-Value |
Model | 30301.50 | 9 | 3366.83 | 16.83 | 0.003 |
Residual error | 1000.20 | 5 | 200.04 | ||
Lack-of-fit | 219.40 | 3 | 73.30 | 0.19 | 0.897 |
Pure error | 11.25 | 2 | 5.62 | ||
Total | 31301.70 | 14 | |||
R2 = 0.968, adjusted R2 = 0.911 | |||||
[B] Total phenolic content | |||||
Variation | Sum of Square | Degree of Freedom | Mean Square | F-Value | P-Value |
Model | 687.36 | 9 | 76.37 | 44.00 | <0.001 |
Residual error | 8.68 | 5 | 1.74 | ||
Lack-of-fit | 7.18 | 3 | 2.39 | 3.19 | 0.247 |
Pure error | 1.50 | 2 | 0.75 | ||
Total | 696.04 | 14 | |||
R2 = 0.987, adjusted R2 = 0.965 |
2.3.2. Optimization of Extraction Parameters and Verification
Extraction Condition | Tyrosinase Inhibition a | Total phenolic Content b | ||||
---|---|---|---|---|---|---|
MeOH Concentration (%) | Extraction Temperature (°C) | Extraction Time (h) | Predicted | Observed | Predicted | Observed |
85.2 | 53.2 | 2.0 | 75.0 | 74.7 | 23.8 | 24.7 |
2.4. Discussion
3. Experimental Section
3.1. General Information
3.2. Isolation of Compounds 1–20
3.3. Evaluation of Anti-Melanogenesis Activity
3.3.1. Assessment of Tyrosinase Activity
3.3.2. Measurement of Melanin Contents
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Prota, G. Progress in the chemistry of melanins and related metabolites. Med. Res. Rev. 1988, 8, 525–556. [Google Scholar] [CrossRef] [PubMed]
- Rees, J.L. Genetics of hair and skin color. Annu. Rev. Genet. 2003, 37, 67–90. [Google Scholar] [CrossRef] [PubMed]
- Hah, Y.S.; Cho, H.Y.; Lim, T.Y.; Park, D.H.; Kim, H.M.; Yoon, J.; Kim, J.G.; Kim, C.Y.; Yoon, T.J. Induction of melanogenesis by rapamycin in human MNT-1 melanoma cells. Ann. Dermatol. 2012, 24, 151–157. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.S.; Kuan, Y.D.; Chiu, K.H.; Wang, W.K.; Chang, F.H.; Liu, C.H.; Lee, C.H. The extract of Rhodobacter sphaeroides inhibits melanogenesis through the MEK/ERK signaling pathway. Mar. Drugs 2013, 11, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Solano, F.; Briganti, S.; Picardo, M.; Ghanem, G. Hypopigmenting agents: An updated review on biological, chemical and clinical aspects. Pigment Cell Res. 2006, 19, 550–571. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.S. An updated review of tyrosinase inhibitors. Int. J. Mol. Sci. 2009, 10, 2440–2475. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-J.; Uyana, H. Tyrosinase inhibitors from natural and synthetic sources: Structure, inhibition mechanism and perspective for the future. Cell. Mol. Life Sci. 2005, 62, 1707–1723. [Google Scholar] [CrossRef] [PubMed]
- Parvez, S.; Kang, M.; Chung, H.W.; Bae, H. Naturally occurring tyrosinase inhibitors: Mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res. 2007, 21, 805–816. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Eisenbrand, G. Morus alba. In Handbook of Chinese Medicinal Plants, 1st ed.; Wiley-VCH Verlag GmbH & Co. KGaA.: Weinheim, Germany, 2011; Volume 2, pp. 777–781. [Google Scholar]
- Wang, K.H.; Lin, R.D.; Hsu, F.L.; Huang, Y.H.; Chang, H.C.; Huang, C.Y.; Lee, M.H. Cosmetic applications of selected traditional Chinese herbal medicines. J. Ethnopharmacol. 2006, 106, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.T.; Lee, K.S.; Jeong, J.H.; Jo, B.K.; Heo, M.Y.; Kim, H.P. Inhibitory effects of Ramulus mori extracts on melanogenesis. J. Cosmet. Sci. 2003, 54, 133–142. [Google Scholar] [PubMed]
- Lee, S.H.; Choi, S.Y.; Kim, H.; Hwang, J.S.; Lee, B.G.; Gao, J.J.; Kim, S.Y. Mulberroside F isolated from the leaves of Morus alba inhibits melanin biosynthesis. Biol. Pharm. Bull. 2002, 25, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Park, K.T.; Kim, J.K.; Hwang, D.; Yoo, Y.; Lim, Y.H. Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by untraviolet B irradiation. Food Chem. Toxicol. 2011, 49, 3038–3045. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Takara, K.; Toyozato, T.; Wada, K. A novel bioactive chalcone of Morus australis inhibits tyrosinase activity and melanin biosynthesis in B16 melanoma cells. J. Oleo Sci. 2012, 61, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Shin, N.H.; Ryu, S.Y.; Choi, E.J.; Kang, S.H.; Chang, I.M.; Min, K.R.; Kim, Y. Oxyresveratrol as the potent inhibitor on dopa oxidase activity of mushroom tyrosinase. Biochem. Biophys. Res. Commun. 1998, 243, 801–803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.M.; Huang, W.Y.; Chen, W.X.; Han, L.; Zhang, H.D. Optimization of extraction condition of areca seed polyphenols and evaluation of their antioxidant activities. Molecules 2014, 19, 16416–16427. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.-L.; Zhu, Y.-F.; Hu, M.-M.; Wang, D.-M.; Zu, X.-J.; Lu, C.-J.; Zhu, W. Optimization of astilbin extraction from the rhizome of Smilax glabra, and evaluation of its anti-inflammatory effect and probable underlying mechanism in lipopolysaccharide-induced RAW264.7 macrophages. Molecules 2015, 20, 625–644. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.Y.; Jo, Y.H.; Lee, K.Y.; Do, S.-G.; Hwang, B.Y.; Lee, M.K. Optimization of pancreatic lipase inhibition by Cudrania tricuspidata fruits using response surface methodology. Bioorg. Med. Chem. Lett. 2014, 24, 2329–2333. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, Y.; Wang, H.; Zhang, N.; Xu, S.; Zhang, L. Application of response surface methodology to optimize extraction of flavonoids from Fructus sophorae. Food Chem. 2013, 138, 2122–2129. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandao, G.C.; da Silva, E.G.P.; Portugal, L.A.; Reis, P.S.; Souza, A.S.; et al. Box-Behnken design An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef] [PubMed]
- Eumkeb, G.; Siriwong, S.; Phitaktim, S.; Rojtinnakirn, N.; Sakdarat, S. Synergistic activity and mode of action of flavonoids isolated from smaller galangal and amoxicillin combinations against amoxicillin-resistant Escherichia coli. J. Appl. Microbiol. 2011, 112, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Chang, F.R.; Wu, Y.C. The constituents of Lindera glauca. J. Chin. Chem. Soc. 2000, 47, 373–380. [Google Scholar] [CrossRef]
- Choi, S.W.; Jang, Y.J.; Lee, Y.J.; Leem, H.H.; Kim, E.O. Analysis of functional constituents in mulberry (Morus alba L.) twigs by different cultivars, producing areas, and heat processing. Prev. Nutr. Food Sci. 2013, 18, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, M.; Hisama, M. Antimutagenic activity of flavonoids from Chrysanthemum morifolium. Biosci. Biotechnol. Biochem. 2003, 67, 2091–2099. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.P.; Cheng, K.W.; To, J.T.; Li, H.; Wang, M. Isolation of tyrosinase inhibitors from Artocarpus heterophyllus and use of its extract as antibrowning agent. Mol. Nutr. Food Res. 2008, 52, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Ryu, Y.B.; Ha, T.J.; Curtis-Long, M.J.; Ryu, H.W.; Gal, S.W.; Park, K.H. Inhibitory effects on mushroom tyrosinase by flavones from the stem barks of Morus lhou (S.) Koidz. J. Enzym. Inhib. Med. Chem. 2008, 23, 922–930. [Google Scholar] [CrossRef]
- Tan, Y.; Yang, Y.; Zang, T.; Chen, R.; Yu, D. Bioactive 2-arylbenzofuran derivatives from Morus wittiorum. Fitoterapia 2010, 81, 742–746. [Google Scholar] [CrossRef] [PubMed]
- Han, J.T.; Bang, M.H.; Chun, O.K.; Kim, D.O.; Lee, C.Y.; Baek, N.I. Flavonol glycosides from the aerial parts of Aceriphyllum rossii and their antioxidant activities. Arch. Pharm. Res. 2004, 27, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Xie, Q.; Fisher, D.; Sutherland, L. Separation of patuletin-3-O-glucoside, astragalin, quercetin, kaempferol and isorhamnetin from Flaveria bidentis (L.) Kuntze by elution-pump-out high-performance counter-current chromatography. J. Chromatogr. A 2011, 1218, 6206–6211. [Google Scholar] [CrossRef] [PubMed]
- Takasugi, M.; Ishikawa, S.; Masamune, T. Albafurans a and b, geranyl 2-phenylbenzofurans from mulberry. Chem. Lett. 1982, 8, 1221–1222. [Google Scholar] [CrossRef]
- Yang, Y.; Gong, T.; Liu, C.; Chen, R.Y. Four new 2-arylbenzofuran derivatives from leaves of Morus alba. Chem. Pharm. Bull. 2010, 58, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Cui, X.Q.; Gong, T.; Yan, R.Y.; Tan, Y.X. Three new compounds from the barks of Morus nigra. J. Asian Nat. Prod. Res. 2008, 10, 897–902. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.M. Polyphenol oxidases in plant: Recent progress. Phytochemistry 1987, 26, 11–20. [Google Scholar] [CrossRef]
- Seo, S.Y.; Sharma, V.K.; Sharma, N. Mushroom tyrosinase: Recent prospects. J. Agric. Food Chem. 2003, 51, 2837–2853. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are not available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.Y.; Liu, Q.; Kim, S.B.; Jo, Y.H.; Mo, E.J.; Yang, H.H.; Song, D.H.; Hwang, B.Y.; Lee, M.K. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology. Molecules 2015, 20, 8730-8741. https://doi.org/10.3390/molecules20058730
Jeong JY, Liu Q, Kim SB, Jo YH, Mo EJ, Yang HH, Song DH, Hwang BY, Lee MK. Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology. Molecules. 2015; 20(5):8730-8741. https://doi.org/10.3390/molecules20058730
Chicago/Turabian StyleJeong, Ji Yeon, Qing Liu, Seon Beom Kim, Yang Hee Jo, Eun Jin Mo, Hyo Hee Yang, Dae Hye Song, Bang Yeon Hwang, and Mi Kyeong Lee. 2015. "Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology" Molecules 20, no. 5: 8730-8741. https://doi.org/10.3390/molecules20058730
APA StyleJeong, J. Y., Liu, Q., Kim, S. B., Jo, Y. H., Mo, E. J., Yang, H. H., Song, D. H., Hwang, B. Y., & Lee, M. K. (2015). Characterization of Melanogenesis Inhibitory Constituents of Morus alba Leaves and Optimization of Extraction Conditions Using Response Surface Methodology. Molecules, 20(5), 8730-8741. https://doi.org/10.3390/molecules20058730