Influence of Fruit Maturity at Harvest on the Intensity of Smoke Taint in Wine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Smoke Exposure and Fruit Maturity on Composition of Grapes and Wine
Chardonnay | Sauvignon Blanc | Merlot | Shiraz | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Harvest A | Harvest B | Harvest A | Harvest B | Harvest A | Harvest B | Harvest A | Harvest B | |||||||||
C | S | C | S | C | S | C | S | C | S | C | S | C | S | C | S | |
berry weight (g) | 0.86 | 1.04 | 1.03 | 1.00 | 1.06 b | 1.14 b | 1.29 a | 1.28 a | 1.42 | 1.34 | 1.38 | 1.39 | 1.34 | 1.42 | 1.23 | 1.37 |
berry TSS (°Brix) | 17.4 b | 18.2 b | 24.9 a | 25.5 a | 14.5 b | 16.0 b | 24.3 a | 24.4 a | 17.8 b | 18.2 b | 22.3 a | 22.2 a | 19.7 b | 19.6 b | 25.1 a | 24.3 a |
wine color density | - | - | - | - | - | - | - | - | 1.9 b | 2.4 b | 3.9 a | 4.1 a | 4.1 b | 4.2 b | 8.4 a | 7.4 a |
wine hue | - | - | - | - | - | - | - | - | 0.60 | 0.57 | 0.58 | 0.58 | 0.56 | 0.57 | 0.53 | 0.55 |
total phenolics (au) | 1.5 d | 2.3 c | 3.0 b | 5.9 a | 1.4 c | 1.6 c | 2.4 b | 3.1 a | 13.4 b | 15.5 b | 19.7 a | 21.4 a | 19.2 b | 21.9 b | 36.7 a | 32.2 a |
pH | 3.0 c | 2.9 d | 3.2 a | 3.2 b | 2.4 c | 2.6 b | 3.1 a | 3.2 a | 3.3 | 3.3 | 3.3 | 3.3 | 3.5 a | 3.3 b | 3.3 bc | 3.3 c |
TA † (g/L) | 7.1 b | 8.6 a | 6.2 c | 8.6 a | 12.3 a | 10.6 b | 6.8 c | 6.5 c | 7.1 a | 6.8 ab | 6.4 c | 6.5 bc | 6.6 c | 7.3 b | 7.9 a | 8.0 a |
VA † (g/L) | 0.14 c | 0.24 a | 0.18 b | 0.22 a | 0.45 a | 0.33 b | 0.26 c | 0.27 c | 0.18 | 0.17 | 0.19 | 0.17 | 0.15 c | 0.20 b | 0.30 a | 0.31 a |
alcohol (% abv) | 10.4 c | 10.3 c | 13.0 a | 11.9 b | 8.0 d | 9.0 c | 14.7 b | 15.6 a | 9.5 b | 9.7 b | 13.0 a | 12.9 a | 10.7 b | 10.9 b | 13.7 a | 13.3 a |
proline (g/L) | 315 b | 493 b | 1092 a | 1303 a | 203 b | 305 b | 536 a | 657 a | 411 b | 764 b | 1574 a | 1807 a | 299 c | 228 c | 971 a | 687 b |
Chardonnay | Sauvignon Blanc | Merlot | Shiraz | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Harvest A | Harvest B | Harvest A | Harvest B | Harvest A | Harvest B | Harvest A | Harvest B | |||||||||
C | S | C | S | C | S | C | S | C | S | C | S | C | S | C | S | |
guaiacol | nd | 3 | nd | 2 | nd | 4 | nd | 3 | tr | 21 a | 1 b | 18 a | 8 c | 22 b | 11 c | 28 a |
4-methylguaiacol | nd | tr | nd | tr | nd | 1 | nd | nd | nd | 6 a | nd | 5 a | nd | 3 a | nd | 3 a |
syringol | nd | 5 a | nd | 2 b | nd | 6 a | nd | 3 b | 2 c | 15 a | 3 c | 9 b | 5 b | 8 a | 6 b | 9 a |
4-methylsyringol | nd | nd | nd | nd | nd | nd | nd | nd | nd | 3 a | nd | 3 a | nd | tr | nd | nd |
total cresols | nd | nd | nd | nd | nd | 6 | nd | nd | tr | 4 a | tr | 5 a | 2 c | 4 b | 3 c | 6 a |
2.2. Influence of Smoke Exposure and Fruit Maturity on Wine Sensory Properties
Attribute | Description |
---|---|
Aroma | |
Fruit | The overall intensity of fruit aroma |
Smoke | Perception of smoke aroma, including smoked meat/bacon, toasty, charry, cigar box |
Cold ash | Burnt aroma associated with ash, including ashtray, tarry, campfire |
Earthy | Aromas associated with musty, dusty, wet wood, barnyard, mushroom, dank, moldy |
Medicinal | Aromas characteristic of band-aids, disinfectant, cleaning products, solvents |
Palate | |
Fruit flavor | The overall intensity of fruit flavor |
Smoky flavor | Perception of smoke flavor, including bacon and smoked meat |
Ashy aftertaste | Length of taste associated with residue of ashtray perceived in the mouth after expectorating, including coal ash, ashtray, tarry, acrid, campfire |
Woody aftertaste | Length of taste associated with woody residue, including wood, oak, pencil shavings |
Medicinal flavor | Flavors characteristic of band-aids, disinfectant, cleaning products, solvents |
Metallic | The “tinny” flavor associated with metals |
Bitter | Intensity of bitter taste/aftertaste |
Drying | Drying, puckering mouthfeel after expectoration of the wine |
Acidity | Intensity of sour/acid taste |
2.3. Influence of Smoke Exposure and Fruit Maturity on Grape and Yeast-Derived Wine Volatiles
Volatile Compounds (Aroma Descriptors [27 and References Therein]) | Chardonnay | Sauvignon Blanc | Merlot | Shiraz | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Harvest A | Harvest B | Harvest A | Harvest B | Harvest A | Harvest B | Harvest A | Harvest B | |||||||||
C | S | C | S | C | S | C | S | C | S | C | S | C | S | C | S | |
trans-3-hexen-1-ol (grassy) | 12 | 10 | 19 | 14 | 23 c | 69 a | 42 b | 18 c | tr | tr | tr | tr | 323 a | 192 b | 144 b | 53 c |
cis-3-hexen-1-ol (green) | 14 | 16 | 8 | 11 | 145 a | 144 a | 19 b | 18 b | tr | tr | tr | tr | 113 b | 148 a | 72 c | 69 c |
2-phenylethanol (rose) | 2429 | 3416 | 6633 | 3657 | 4178 b | 8170 b | 12,519 a | 12,613 a | 4379 c | 4964 bc | 6374 ab | 7322 a | 14,892 b | 16,012 b | 24,075 a | 20,569 a |
isoamyl alcohol (solvent) | 3561 b | 3635 b | 4795 a | 4365 a | 8757 d | 10,347c | 16,762 b | 18,001 a | 4595 b | 4671 b | 6562 a | 6159 a | 15,357 | 16,941 | 18,379 | 18,567 |
isobutyl acetate (banana, pear) | 254 d | 290 c | 361 b | 442 a | 55 d | 97 c | 248 b | 332 a | 162 a | 178 a | 103 b | 98 b | nd | nd | nd | nd |
2-phenylethyl acetate (rosewater) | 128 | 196 | 283 | 240 | 154 c | 260 c | 966 b | 1157 a | 25 | 20 | 27 | 28 | 45 | 51 | 56 | 43 |
diethyl succinate (caramel) | 394 c | 397 c | 727 b | 1148 a | 538 b | 749 b | 2323 a | 2416 a | 414 b | 475 b | 1071 a | 1044 a | 1431 b | 1548 b | 2994 a | 2828 a |
ethyl 2-methyl butanoate (berry) | 23 b | 22 b | 39 a | 31 ab | 66 c | 73 c | 85 b | 95 a | 43 b | 51 b | 82 a | 104 a | 180 b | 188 b | 329 a | 244 ab |
ethyl butanoate (fruity, strawberry) | 326 | 271 | 345 | 300 | 943 b | 979 b | 1813 a | 1747 a | 116 b | 127 b | 174 a | 171 a | 333 b | 325 b | 540 a | 152 c |
ethyl 3-methylbutanoate (red fruit) | 49 c | 112 a | 65 b | 48 c | 103 c | 112 c | 166 b | 185 a | 79 b | 78 b | 79 b | 122 a | 201 b | 249 b | 245 b | 402 a |
isoamyl acetate (banana) | 4261 c | 5174 b | 3519 d | 7613 a | 8504 d | 12,504 c | 33,395 b | 40,277 a | 304 c | 675 b | 935 a | 667 b | 4667 a | 3873 b | 4852 a | 4372 a |
ethyl phenylacetate (floral) | 70 | 21 | 40 | 26 | 49 | 55 | 66 | 66 | 28 c | 32 bc | 49 ab | 63 a | 117 c | 120 c | 260 a | 201 b |
trans-3-hexen-1-ol acetate (fruity) | 35 b | 50 a | 17 b | 25 ab | 141 b | 318 a | 67 c | 82 c | tr | tr | tr | tr | 29 | 19 | 12 | 14 |
cis-3-hexen-1-ol acetate (fruity) | 40 b | 37 b | 61 a | 9 c | 68 c | 192 bc | 207 b | 373 a | tr | tr | tr | tr | tr | tr | tr | tr |
ethyl acetate (nail polish) | 248 b | 286 ab | 358 ab | 435 a | 490 b | 653 b | 1991 a | 2174 a | 215 b | 212 b | 319 a | 311 a | 770 b | 691 b | 1171 a | 1117 a |
ethyl hexanoate (green apple) | 7760 | 7607 | 8087 | 5674 | 40 bc | 37 c | 47 b | 63 a | 2267 b | 2611 b | 3654 a | 2509 b | 8227 | 7574 | 9007 | 8318 |
ethyl octanoate (fruity) | 20,348 | 21,380 | 22,801 | 19,213 | 20,653 b | 24,149 b | 41,157 a | 40,783 a | 3606 b | 4070 b | 7304 a | 6124 a | 8922 b | 8850 b | 11,432 a | 10,105 ab |
hexanoic acid (sweaty) | 1448 | 1164 | 1202 | 836 | 4050 a | 3586 a | 3268 ab | 2482 b | 280 | 320 | 356 | 332 | 315 b | 344 b | 671 a | 503 ab |
octanoic acid (rancid cheese) | 4386 | 3860 | 3908 | 3277 | 14,083 | 13,729 | 14,315 | 13,236 | 404 | 457 | 556 | 460 | 536 a | 558 ab | 239 bc | 181 c |
decanoic acid (plasticine) | 2576 | 1978 | 1994 | 1394 | 6788 | 7345 | 6271 | 5615 | tr | tr | tr | tr | 16 | 21 | 10 | 7 |
3. Experimental Section
3.1. Field Application of Smoke to Grapevines
3.2. Winemaking
3.3. Chemical Analysis
3.4. Non-Targeted Headspace Volatile Analysis
3.5. Sensory Analysis
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Jeffery, D.W.; Wilkinson, K.L. Wine. In The Oxford Handbook of Food Fermentations; Bamforth, C.W., Ward, R.E., Eds.; Oxford University Press: New York, NY, USA, 2014; pp. 54–147. [Google Scholar]
- Kennison, K.R.; Wilkinson, K.L.; Williams, H.G.; Smith, J.H.; Gibberd, M.R. Smoke-derived taint in wine: Effect of postharvest smoke exposure of grapes on the chemical composition and sensory characteristics of wine. J. Agric. Food Chem. 2007, 55, 10897–10901. [Google Scholar] [CrossRef] [PubMed]
- Sheppard, S.I.; Dhesi, M.K.; Eggers, N.J. Effect of pre- and post-veraison smoke exposure on guaiacol and 4-methylguaiacol concentration in mature grapes. Am. J. Enol. Vitic. 2009, 60, 98–103. [Google Scholar]
- Hayasaka, Y.; Baldock, G.A.; Parker, M.; Pardon, K.H.; Black, C.A.; Herderich, M.J.; Jeffery, D.W. Glycosylation of smoke-derived volatile phenols in grapes as a consequence of grapevine exposure to bushfire smoke. J. Agric. Food Chem. 2010, 58, 10989–10998. [Google Scholar] [CrossRef] [PubMed]
- Hayasaka, Y.; Dungey, K.A.; Baldock, G.A.; Kennison, K.R.; Wilkinson, K.L. Identification of a β-d-glucopyranoside precursor to guaiacol in grape juice following grapevine exposure to smoke. Anal. Chim. Acta 2010, 660, 143–148. [Google Scholar] [CrossRef] [PubMed]
- Dungey, K.A.; Hayasaka, Y.; Wilkinson, K.L. Quantitative analysis of glycoconjugate precursors of guaiacol in smoke-affected grapes using liquid chromatography-tandem mass spectrometry based stable isotope dilution analysis. Food Chem. 2011, 126, 801–806. [Google Scholar] [CrossRef]
- Kennison, K.R.; Gibberd, M.R.; Pollnitz, A.P.; Wilkinson, K.L. Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. J. Agric. Food Chem. 2008, 56, 7379–7383. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, K.L.; Ristic, R.; Pinchbeck, K.A.; Fudge, A.L.; Singh, D.P.; Pitt, K.M.; Downey, M.O.; Baldock, G.A.; Hayasaka, Y.; Parker, M.; et al. Comparison of methods for the analysis of smoke related phenols and their conjugates in grapes and wine. Aust. J. Grape Wine Res. 2011, 17, S22–S28. [Google Scholar] [CrossRef]
- Ristic, R.; Osidacz, P.; Pinchbeck, K.A.; Hayasaka, Y.; Fudge, A.L.; Wilkinson, K.L. The effect of winemaking techniques on the intensity of smoke taint in wine. Aust. J. Grape Wine Res. 2011, 17, S29–S40. [Google Scholar] [CrossRef]
- Ristic, R.; Pinchbeck, K.A.; Fudge, A.L.; Hayasaka, Y.; Wilkinson, K.L. Effect of leaf removal and grapevine smoke exposure on colour, chemical composition and sensory properties of Chardonnay wines. Aust. J. Grape Wine Res. 2013, 19, 230–237. [Google Scholar] [CrossRef]
- Kennison, K.R.; Wilkinson, K.L.; Pollnitz, A.P.; Williams, H.G.; Gibberd, M.R. Effect of timing and duration of grapevine exposure to smoke on the composition and sensory properties of wine. Aust. J. Grape Wine Res. 2009, 15, 228–237. [Google Scholar] [CrossRef]
- Kennison, K.R.; Wilkinson, K.L.; Pollnitz, A.P.; Williams, H.G.; Gibberd, M.R. Effect of smoke application to field-grown Merlot grapevines at key phenological growth stages on wine sensory and chemical properties. Aust. J. Grape Wine Res. 2011, 17, S5–S12. [Google Scholar] [CrossRef]
- Fudge, A.L.; Ristic, R.; Wollan, D.; Wilkinson, K.L. Amelioration of smoke taint in wine by reverse osmosis and solid phase adsorption. Aust. J. Grape Wine Res. 2011, 17, S41–S48. [Google Scholar] [CrossRef]
- Fudge, A.L.; Schiettecatte, M.; Ristic, R.; Hayasaka, Y.; Wilkinson, K.L. Amelioration of smoke taint in wine by treatment with commercial fining agents. Aust. J. Grape Wine Res. 2012, 18, 302–307. [Google Scholar] [CrossRef]
- Mohammadkhani, N.; Heidari, R.; Abbaspour, N.; Rahmani, F. Evaluation of salinity effects on ionic balance and compatible solute contents in nine grape (Vitis L.) genotypes. J. Plant Nutr. 2014, 37, 1817–1836. [Google Scholar] [CrossRef]
- Hernandez-Orte, P.; Guitart, A.; Cacho, J. Changes in the concentration of amino acids during the ripening of Vitis vinifera Tempranillo variety from the Denomination d'Origine Somontano (Spain). Am. J. Enol. Vitic. 1999, 50, 144–154. [Google Scholar]
- Jogaiah, S.; Oulkar, D.P.; Banerjee, K.; Raveendran, P.; Rokade, N.D. Amino acid composition of major table and wine grape cultivars growing under semiarid climate in India. Hortic. Environ. Biotechnol. 2010, 51, 226–234. [Google Scholar]
- Sefton, M.A. Hydrolytically-released volatile secondary metabolites from a juice sample of Vitis vinifera grape cvs. Merlot and Cabernet Sauvignon. Aust. J. Grape Wine Res. 1998, 4, 30–38. [Google Scholar] [CrossRef]
- Hayasaka, Y.; Parker, M.; Baldock, G.A.; Pardon, K.H.; Black, C.A.; Jeffery, D.W.; Herderich, M.J. Assessing the impact of smoke exposure in grapes: Development and validation of a HPLC-MS/MS method for quantitative analysis of smoke-derived phenolic glycosides in grapes and wine. J. Agric. Food Chem. 2013, 61, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Ferrerira, V.; Lopez, R.; Cacho, J.F. Quantitative determination of the odorants of young red wines from different grape varieties. J. Sci. Food Agric. 2000, 80, 1659–1667. [Google Scholar] [CrossRef]
- Czerny, M.; Christlbauer, M.; Christlbauer, M.; Fischer, A.; Granvogl, M.; Hammer, M.; Hartl, C.; Hernandez, N.M.; Scheiberle, P. Re-investigation on odour thresholds of key food aroma compounds and development of an aroma language based on odour qualities of defined aqueous odorant solutions. Eur. Food Res. Technol. 2008, 228, 265–273. [Google Scholar] [CrossRef]
- Burdock, G.A. Fenaroli’s Handbook of Flavor Ingredients, 4th ed.; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Jounela-Eriksson, P.; Lehtonen, M. Phenols in the aroma of distilled beverages. In The Quality of Foods and Beverages; Chemistry and Technology; Charalambous, G., Ed.; Academic Press: New York, NY, USA, 1981; Volume 1, pp. 167–181. [Google Scholar]
- Parker, M.; Osidacz, P.; Baldock, G.A.; Hayasaka, Y.; Black, C.A.; Pardon, K.H.; Jeffery, D.W.; Geue, J.P.; Herderich, M.J.; Francis, I.L. Contribution of several volatile phenols and their glycoconjugates to smoke-related sensory properties of red wine. J. Agric. Food Chem. 2012, 60, 2629–2637. [Google Scholar] [CrossRef] [PubMed]
- Mayr, C.M.; Parker, M.; Baldock, G.A.; Black, C.A.; Pardon, K.H.; Williamson, P.O.; Herderich, M.J.; Francis, I.L. Determination of the importance of in-mouth release of volatile phenol glycoconjugates to the flavor of smoke-tainted wines. J. Agric. Food Chem. 2014, 62, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Boss, P.K.; Bottcher, C.; Davies, C. Various influences of harvest date and fruit sugar content on different wine flavor and aroma compounds. Am. J. Enol. Vitic. 2014, 65, 341–353. [Google Scholar] [CrossRef]
- Smyth, H.E. The Compositional Basis of the Aroma of Riesling and Unwooded Chardonnay Wine. Ph.D. Thesis, The University of Adelaide, Australia, January 2005. [Google Scholar]
- Keyzers, R.A.; Boss, P.K. Changes in the volatile compound production of fermentations made from musts with increasing grape content. J. Agric. Food Chem. 2010, 58, 1153–1164. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.G.; Keyzers, R.A.; Kalua, C.M.; Maffei, S.M.; Nicholson, E.L.; Boss, P.K. Grape contribution to wine aroma: Production of hexyl acetate, octyl acetate, and benzyl acetate during yeast fermentation is dependent upon precursors in the must. J. Agric. Food Chem. 2012, 60, 2638–2646. [Google Scholar] [CrossRef] [PubMed]
- Iland, P.G.; Bruer, N.; Edwards, G.; Weeks, S.; Wilkes, E. Chemical Analysis of Grapes and Wine: Techniques and Concepts; Patrick Iland Wine Promotions Pty Ltd: Adelaide, Australia, 2004. [Google Scholar]
- Long, D.; Wilkinson, K.L.; Poole, K.; Taylor, D.K.; Warren, T.; Astorga, A.M.; Jiranek, V. Rapid method for proline determination in grape juice and wine. J. Agric. Food Chem. 2012, 60, 4259–4264. [Google Scholar] [CrossRef] [PubMed]
- Pollnitz, A.P.; Pardon, K.H.; Sykes, M.; Sefton, M.A. The effects of sample preparation and gas chromatograph injection techniques on the accuracy of measuring guaiacol, 4-methylguaiacol and other volatile oak compounds in oak extracts by stable isotope dilution analyses. J. Agric. Food Chem. 2004, 52, 3244–3252. [Google Scholar] [CrossRef] [PubMed]
- Forde, C.G.; Cox, A.; Williams, E.R.; Boss, P.K. Associations between the sensory attributes and volatile composition of Cabernet Sauvignon wines and the volatile composition of the grapes used for their production. J. Agric. Food Chem. 2011, 59, 2573–2583. [Google Scholar] [CrossRef] [PubMed]
- Lawless, H.T.; Heymann, H. Descriptive analysis. In Sensory Evaluation of Food: Principles and Practices; Heldman, D.R., Ed.; Springer: New York, NY, USA, 2010; pp. 227–253. [Google Scholar]
- Sample Availability: Not available.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ristic, R.; Boss, P.K.; Wilkinson, K.L. Influence of Fruit Maturity at Harvest on the Intensity of Smoke Taint in Wine. Molecules 2015, 20, 8913-8927. https://doi.org/10.3390/molecules20058913
Ristic R, Boss PK, Wilkinson KL. Influence of Fruit Maturity at Harvest on the Intensity of Smoke Taint in Wine. Molecules. 2015; 20(5):8913-8927. https://doi.org/10.3390/molecules20058913
Chicago/Turabian StyleRistic, Renata, Paul K. Boss, and Kerry L. Wilkinson. 2015. "Influence of Fruit Maturity at Harvest on the Intensity of Smoke Taint in Wine" Molecules 20, no. 5: 8913-8927. https://doi.org/10.3390/molecules20058913