Green Chemistry Metrics with Special Reference to Green Analytical Chemistry
Abstract
:1. Introduction
2. Green Metrics Commonly Applied throughout the Industry
2.1. Eco-Footprint
2.2. E-Factor
Industry Sector | Product Tonnage | E-Factor (kg Waste/kg Product) |
---|---|---|
Oil refining | 106–108 | <0.1 |
Bulk chemicals | 104–106 | <1.0 to 5.0 |
Fine chemicals industry | 102–104 | 5.0 to > 50 |
Pharmaceutical industry | 10–103 | 25 to > 100 (25 to >200 *) |
3. Green Metrics Applied to Organic Synthesis
Parameter | Formula | Short Characteristics | Comments | Ref. |
---|---|---|---|---|
Carbon Efficiency (CE) | It is used to estimate the percentage of carbon in the reagents used in organic synthesis that remain in the final desired product | This parameter is dedicated to evaluation of the greenness of organic synthesis based solely on carbon accounting | [26,39] | |
Effective Mass Yield (EMY) | This parameter quantifies a percentage of the final product in all reagents and materials used in organic synthesis | Reagents having low or very low environmental impact (e.g., sodium chloride or acetic acid) are excluded from calculation of EMY | [40,41] | |
Mass Intensity (MI) | The MI takes into account reaction efficiency, stoichiometry, amount of solvents, all reagents and auxiliary substances used in synthesis. | This parameter has a value of 1 for an ideal synthesis, in which the total mass of input is equal to the mass of product | [26,39] | |
Reaction Mass Efficiency (RME) | where Em is a value of E-factor based on mass | The RME factor is inversely related to the overall E-factor described by Sheldon. The RME offers a better and easy way of identification of the best or the worst reactions that have influence on whole industrial process or synthesis. | This parameter was described very precisely by Andraos and Sayed (2007). The final version of RME equation depends on conditions of reaction or process (recovery of reaction solvents or post-reaction materials). This parameter is most effective in efforts to reduce waste at the intrinsic and global level | [39,42,43,44,45,46] |
where: —reaction yield; AE—atom economy; SF—stoichiometric factor; c—the mass of reaction catalyst; s—the mass of reaction solvent; w—the masses of all other post-reaction materials; mcp—the mass of the collected target product | ||||
Atom Utilization (AU) | This parameter defines percentage ratio of the mass of final product to the mass of all products (final product and byproducts) obtained in synthesis. The solvents are excluded from calculations | It provides fast and simple evaluation of the greenness of a process or individual reaction in terms of produced waste. Nowadays it is seldom used | [39,47] | |
Solvent and catalyst environmental impact parameter (f) | Evaluation of this parameter takes into account actual masses of materials used in the process | This parameter has a value of 0 only if all materials (solvents, catalysts etc.) used in the process or in individual step of synthesis are recycled, recovered or eliminated. In every other case, f > 0 | [42,43,44,48] | |
Stoichiometric Factor (SF) | This parameter is calculated in case of syntheses in which one or more reagents are used in excessive amount | The SF has a value of 1 for stoichiometric reactions. If the reaction is nonstoichiometric the SF > 1 |
4. Green Analytical Chemistry
Sub-Total Penalty Points | Total Penalty Points | ||
---|---|---|---|
Reagents | |||
Amount | <10 mL (<10 g) | 1 | Amount penalty points × hazard penalty points |
10–100 mL (10–100 g) | 2 | ||
>100 mL (>100 g) | 3 | ||
Hazard | None | 0 | |
Less severe hazard | 1 | ||
More severe hazard | 2 | ||
Instruments | |||
Energy | <0.1 kWh per sample | 0 | |
<1.5 kWh per sample | 1 | ||
>1.5 kWh per sample | 2 | ||
Occupational hazard | Hermetization of analytical process | 0 | |
Emission of vapors to the atmosphere | 3 | ||
Waste | None | 0 | |
<1 mL (<1 g) | 1 | ||
1–10 mL (1–10 g) | 3 | ||
>10 mL (>10 g) | 5 | ||
Recycling | 0 | ||
Degradation | 1 | ||
Passivation | 2 | ||
No treatment | 3 |
Solvents/Reagents | Pictograms | Signal | Penalty Points |
---|---|---|---|
dichloromethane | warning | 2 | |
hexane | danger | 8 | |
diethyl ether | danger | 4 | |
methanol | danger | 6 | |
ethyl acetate | danger | 4 | |
MTBE | danger | 4 | |
acetone | danger | 4 | |
benzene | danger | 6 | |
isooctane | danger | 8 | |
acetonitrile | danger | 4 | |
isopropanol | danger | 4 | |
toluene | danger | 6 | |
chloroform | danger | 2 | |
elemental mercury | danger | 8 |
5. Education in Green Chemistry
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Anastas, P.T.; Warner, J. Green Chemistry Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Poliakoff, M.; Fitzpatrick, J.M.; Farren, T.R.; Anastas, P.T. Green Chemistry: Science and Politics of Change. Science 2002, 297, 807–810. [Google Scholar] [CrossRef] [PubMed]
- Kirchoff, M.M. Promoting Green Engineering through Green Chemistry. Environ. Sci. Technol. 2003, 37, 5349–5353. [Google Scholar] [CrossRef]
- Horvath, I.T.; Anastas, P.T. Innovations and Green Chemistry. Chem. Rev. 2007, 107, 2169–2173. [Google Scholar] [CrossRef] [PubMed]
- Jamali-Zghal, N.; Amponsah, N.Y.; Lacarriere, B.; le Corre, O.; Feidt, M. Carbon footprint and emergy combination for eco-environmental assessment of cleaner heat production. J. Clean. Prod. 2013, 47, 446–456. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Jiang, Q.; Yang, X.M. Carbon Footprint Incorporation into Least-cost Planning of Eco-city Schemes: Practices in Coastal China. Procedia Environ. Sci. 2012, 13, 582–589. [Google Scholar] [CrossRef]
- Leseurre, L.; Merea, C.; Duprat de Paule, S.; Pinchart, A. Eco-footprint: A new tool for the ‘Made in Chimex’ considered approach. Green Chem. 2014, 16, 1139–1148. [Google Scholar] [CrossRef]
- Teng, J.; Wu, X. Eco-footprint-based life-cycle eco-efficiency assessment of building projects. Ecol. Indic. 2014, 39, 160–168. [Google Scholar] [CrossRef]
- Cerutti, A.K.; Beccaro, G.L.; Bagliani, M.; Donno, D.; Bounous, G. Multifunctional Ecological Footprint Analysis for assessing eco-efficiency: A case study of fruit production systems in Northern Italy. J. Clean. Prod. 2013, 40, 108–117. [Google Scholar] [CrossRef]
- Galli, A. On the rationale and policy usefulness of Ecological Footprint Accounting: The case of Morocco. Environ. Sci. Policy 2015, 48, 210–224. [Google Scholar] [CrossRef]
- Egilmez, G.; Park, Y.S. Transportation related carbon, energy and water footprint analysis of U.S. manufacturing: An eco-efficiency assessment. Transportat. Res. D-Tr E 2014, 32, 143–159. [Google Scholar] [CrossRef]
- Kratena, K. From ecological footprint to ecological rent: An economic indicator for resource constraints. Ecol. Econ. 2008, 64, 507–516. [Google Scholar] [CrossRef]
- Bagliani, M.; Galli, A.; Niccolucci, V.; Marchettini, N. Ecological footprint analysis applied to a sub-national area: The case of the Province of Siena (Italy). J. Environ. Manag. 2008, 86, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Agostinho, F.; Pereira, L. Support area as an indicator of environmental load: Comparison between Embodied Energy, Ecological Footprint, and Emergy Accounting methods. Ecol. Indic. 2013, 24, 494–503. [Google Scholar] [CrossRef]
- Fu, W.; Turner, J.C.; Zhao, J.; Du, G. Ecological footprint (EF): An expanded role in calculating resource productivity (RP) using China and the G20 member countries as examples. Ecol. Indic. 2015, 48, 464–471. [Google Scholar] [CrossRef]
- Sala, S.; Goralczyky, M. Chemical footprint: A methodological framework for bridging life cycle assessment and planetary boundaries for chemical pollution. Integr. Environ. Assess. Manag. 2013, 9, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Laakso, S.; Lettenmeier, M. Household-level transition methodology towards sustainable material footprints. J. Clean. Prod. 2015. [Google Scholar] [CrossRef]
- Vujanovic, A.; Cucek, L.; Pahor, B.; Kravanja, Z. Multi-objective synthesis of a company’s supply network by accounting for several environmental footprints. Process Saf. Environ. 2014, 92, 456–466. [Google Scholar] [CrossRef]
- Khoo, H.H. Review of bio-conversion pathways of lignocellulose-to-ethanol: Sustainability assessment based on land footprint projections. Renew. Sustain. Ener. Rev. 2015, 46, 100–119. [Google Scholar] [CrossRef]
- Manzardo, A.; Ren, J.; Piantella, A.; Mazzi, A.; Fedele, A.; Scipioni, A. Integration of water footprint accounting and costs for optimal chemical pulp supply mix in paper industry. J. Clean. Prod. 2014, 72, 167–173. [Google Scholar] [CrossRef]
- Rodriguez-Caballero, A.; Aymerich, I.; Marques, R.; Poch, M.; Pijuan, M. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor. Water Res. 2015, 71, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Bakshi, B.R. Footprints of carbon and nitrogen: Revisiting the paradigm and exploring their nexus for decision making. Ecol. Indic. 2015, 53, 49–60. [Google Scholar] [CrossRef]
- Wang, F.; Sims, J.T.; Ma, L.; Ma, W.; Dou, Z.; Zhang, F. The phosphorus footprint of China’s food chain: Implications for food security, natural resource management, and environmental quality. J. Environ. Qual. 2011, 40, 1081–1089. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A. Utilisation of biomass for sustainable fuels and chemicals: Molecules, methods and metrics. Catal. Today 2011, 167, 3–13. [Google Scholar] [CrossRef]
- Sheldon, R.A. Atom efficiency and catalysis in organic synthesis. Pure Appl. Chem. 2000, 72, 1233–1246. [Google Scholar] [CrossRef]
- Constable, D.J.C.; Curzons, A.D.; Cunningham, V.L. Metrics to ‘green’ chemistry—Which are the best? Green Chem. 2002, 4, 521–527. [Google Scholar] [CrossRef]
- Manley, J.B.; Anastas, P.T.; Cue, B.W., Jr. Frontiers in Green Chemistry: meeting the grand challenges for sustainability in R&D and manufacturing. J. Clean. Prod. 2008, 16, 743–750. [Google Scholar]
- Sheldon, R.A. The E Factor: fifteen years on. Green Chem. 2007, 9, 1273–1283. [Google Scholar] [CrossRef]
- Dunn, P.J. The importance of Green Chemistry in Process Research and Development. Chem. Soc. Rev. 2012, 41, 1452–1461. [Google Scholar] [CrossRef] [PubMed]
- Dunn, P.J.; Galvin, S.; Hettenbach, K. The development of an environmentally benign synthesis of sildenafil citrate (Viagra™) and its assessment by Green Chemistry metrics. Green Chem. 2004, 6, 43–48. [Google Scholar] [CrossRef]
- Quallich, G.J. Development of the Commercial Process for ZoloftR/Sertraline. Chirality 2005, 17, S120–S126. [Google Scholar] [CrossRef] [PubMed]
- Demirci, U.B.; Miele, P. Overview of the relative greenness of the main hydrogen production processes. J. Clean. Prod. 2013, 52, 1–10. [Google Scholar] [CrossRef]
- Tony Phan, T.V.; Gallardo, C.; Mane, J. Green motion: A New and Easy to Use Green Chemistry Metric from Laboratories to Industry. Green Chem. 2015. [Google Scholar] [CrossRef]
- Jimenez-Gonzalez, C.; Ponder, C.S.; Broxterman, Q.B.; Manley, J.B. Using the Right Green Yardstick: Why Process Mass Intensity Is Used in the Pharmaceutical Industry to Drive More Sustainable Processes. Org. Process Res. Dev. 2011, 15, 912–917. [Google Scholar] [CrossRef]
- Heinzle, E.; Weirich, D.; Brogli, F.; Hoffmann, V.; Koller, G.; Verduyn, M.A.; Hungerbühler, K. Ecological and Economics Objective Functions for Screening in Integrated Development of Fine Chemical Processes. 1. Flexible and Expandable Framework Using Indicates. Ind. Eng. Chem. Res. 1998, 37, 3395–3407. [Google Scholar] [CrossRef]
- Schafer, H.J. Contributions of organic electrosynthesis to green chemistry. C. R. Chim. 2011, 14, 745–765. [Google Scholar] [CrossRef]
- Banitaba, S.H.; Safari, J.; Khalili, S.D. Ultrasound promoted one-pot synthesis of 2-amino-4,8-dihydropyrano [3,2-b]pyran-3-carbonitrile scaffolds in aqueous media: A complementary ‘green chemistry’ tool to organic synthesis. Ultrason. Sonochem. 2013, 20, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Loupy, A. Solvent-free microwave organic synthesis as an efficient procedure for green chemistry. C. R. Chim. 2004, 7, 103–112. [Google Scholar] [CrossRef]
- Curzons, A.D.; Constable, D.J.C.; Mortimer, D.N.; Cunningham, V.L. So you think your process is green, how do you know?—Using principles of sustainability to determine what is green—A corporate perspective. Green Chem. 2001, 3, 1–6. [Google Scholar] [CrossRef]
- Hudlicky, T.; Frey, D.A.; Koroniak, L.; Claebole, C.D.; Barammer, L.E., Jr. Toward a ‘reagent-free’ synthesis. Green Chem. 1999, 1, 57–59. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2007; pp. 1–47. [Google Scholar]
- Andraos, J.; Sayed, M. On the use of “green” metrics in the undergraduate organic chemistry lecture and lab to assess the mass efficiency of organic reactions. J. Chem. Ed. 2007, 84, 1004–1010. [Google Scholar] [CrossRef]
- Andraos, J. Global green chemistry metrics analysis algorithm and spreadsheets: evaluation of the material efficiency performances of synthesis plans for oseltamivir phosphate (tamiflu) as a test case. Org. Proc. Res. Dev. 2009, 13, 161–185. [Google Scholar] [CrossRef]
- Andraos, J. Unification of reaction metrics for green chemistry ii: Evaluation of named organic reactions and application to reaction discovery. Org. Process Res. Dev. 2005, 9, 404–431. [Google Scholar] [CrossRef]
- Ribeiro, M.G.T.C.; Machado, A.A.S.C. Greenness of chemical reactions—Limitations of mass metrics. Green Chem. Lett. Rev. 2013, 6, 1–18. [Google Scholar] [CrossRef]
- Niemczyk, H.J.; van Arnum, S.D. A green synthetic process for the preparation of water-soluble drugs: pegylation of menadiol and podophyllotoxin. Green Chem. Lett. Rev. 2008, 1, 165–171. [Google Scholar] [CrossRef]
- Sheldon, R.A. Atom utilisation, E factors and the catalytic solution. C. R. Acad. Sci. Ser. IIC Chem. 2000, 3, 541–551. [Google Scholar] [CrossRef]
- Andraos, J. Unification of reaction metrics for green chemistry: Applications to reaction analysis. Org. Process Res. Dev. 2005, 9, 149–163. [Google Scholar] [CrossRef]
- Patel, K.R.; Sen, D.J.; Jatakiya, V.P. Atom Economy in Drug Synthesis is a Playground of Functional Groups. Am. J. Adv. Drug Deliv. 2013, 1, 73–83. [Google Scholar]
- Andraos, J. On using tree analysis to quantify the material, input energy, and cost throughput efficiencies of simple and complex synthesis plans and networks: Towards a blueprint for quantitative total synthesis and green chemistry. Org. Process Res. Dev. 2006, 10, 212–240. [Google Scholar] [CrossRef]
- Eissen, M.; Metzger, J.O. Environmental Performance Metrics for Daily Use in Synthetic Chemistry. Chem. Eur. J. 2002, 8, 3580–3585. [Google Scholar] [CrossRef]
- Simbera, J.; Sevcik, R.; Pazdera, P. New One-Pot Methods for Preparation of Cyclohexanecarbonitrile—Green Chemistry Metrics Evaluation for One-Pot and Similar Multi-Step Syntheses. Green Sustain. Chem. 2014, 4, 70–79. [Google Scholar] [CrossRef]
- Ravelli, D.; Protti, S.; Neri, P.; Fagnoni, M.; Albini, A. Photochemical technologies assessed: The case of rose oxide. Green Chem. 2011, 13, 1876–1884. [Google Scholar] [CrossRef]
- Pini, M.; Rosa, R.; Neri, P.; Bondioli, F.; Ferrari, A.M. Environmental assessment of a bottom-up hydrolytic synthesis of TiO2 nanoparticles. Green Chem. 2015, 17, 518–531. [Google Scholar] [CrossRef]
- EATOS. Available online: http://www.metzger.chemie.uni-oldenburg.de/eatos/english.htm (accessed on 22 April 2015).
- Protti, S.; Dondi, D.; Fagnoni, M.; Albini, A. Photochemistry in synthesis: Where, when, and why. Pure Appl. Chem. 2007, 79, 1929–1938. [Google Scholar] [CrossRef]
- Van Aken, K.; Strekowski, L.; Patiny, L. EcoScale, a semiquantitative tool to select an organic preparation based on economical and ecological parameters. Beilstein J. Org. Chem. 2006, 2. [Google Scholar] [CrossRef] [PubMed]
- Keith, L.H.; Gron, L.U.; Young, J.L. Green Analytical Methodologies. Chem. Rev. 2007, 107, 2695–2708. [Google Scholar] [CrossRef] [PubMed]
- De la Guardia, M.; Armenta, S. Green Analytical Chemistry: Theory and Practise; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Gałuszka, A.; Migaszewski, Z.M.; Konieczka, P.; Namieśnik, J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TRAC Trend. Anal. Chem. 2012, 37, 61–72. [Google Scholar] [CrossRef]
- Gaber, Y.; Tornvall, U.; Kumar, M.A.; Amin, M.A.; Hatti-Kaul, R. HPLC-EAT (Environmental Assessment Tool): A tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chem. 2011, 13, 2021–2025. [Google Scholar] [CrossRef]
- Ruiz-de-Cenzano, M.; Cervera, M.L.; de la Guardia, M. Evaluation of Greenness of Methods for the Determination of Mercury in Mushrooms. Curr. Green Chem. 2014, 1, 232–238. [Google Scholar] [CrossRef]
- Mostert, M.M.R.; Ayoko, G.A.; Kokot, S. Application of chemometrics to analysis of soil pollutants. TRAC Trend. Anal. Chem. 2010, 29, 430–445. [Google Scholar] [CrossRef] [Green Version]
- Kohonen, T. Self-organizing Maps, 3rd ed.; Springer: Berlin, Germany, 2001. [Google Scholar]
- Astel, A.; Tsakovski, S.; Barbieri, P.; Simeonov, V. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res. 2007, 41, 4566–4578. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namieśnik, J. Multivariate statistical comparison of analytical procedures for benzene and phenol determination with respect to their environmental impact. Talanta 2014, 130, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Tobiszewski, M.; Tsakovski, S.; Simeonov, V.; Namieśnik, J. Application of multivariate statistics in assessment of green analytical chemistry parameters of analytical methodologies. Green Chem. 2013, 15, 1615–1623. [Google Scholar] [CrossRef]
- Behzadian, M.; Khanmohammadi Otaghsara, S.; Yazdani, M.; Ignatius, J. A state-of the-art survey of TOPSIS applications. Expert Sys. Appl. 2012, 39, 13051–13069. [Google Scholar] [CrossRef]
- Georgievski, I.; Aiello, M. HTN planning: Overview, comparison, and beyond. Artif. Intell. 2015, 222, 124–156. [Google Scholar] [CrossRef]
- Jun, D.; Tian-tian, F.; Yi-sheng, Y.; Yu, M. Macro-site selection of wind/solar hybrid power station based on ELECTRE-II. Renew. Sustain. Ener. Rev. 2014, 35, 194–204. [Google Scholar] [CrossRef]
- Troldborg, M.; Heslop, S.; Hough, R.L. Assessing the sustainability of renewable energy technologies using multi-criteria analysis: Suitability of approach for national-scale assessments and associated uncertainties. Renew. Sustain. Energy Rev. 2014, 39, 1173–1184. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Orłowski, A. Multicriteria decision analysis in ranking of analytical procedures for aldrin determination in water. J. Chromatogr. A 2015, 1387, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Braun, B.; Charney, R.; Clarens, A.; Farrugia, J.; Kitchens, C.; Lisowski, C.; Naistat, D.; O’Neil, A. Completing Our Education Green Chemistry in the Curriculum. J. Chem. Edu. 2006, 83, 1126–1129. [Google Scholar]
- Song, Y.; Wang, Y.; Geng, Z. Some Exercises Reflecting Green Chemistry Concepts. J. Chem. Educ. 2004, 81, 691–692. [Google Scholar] [CrossRef]
- McKenzie, L.C.; Huffman, L.M.; Hutchison, J.E. The evolution of a green chemistry laboratory experiment: greener brominations of stilbene. J. Chem. Educ. 2005, 82, 306–310. [Google Scholar] [CrossRef]
- Esteb, J.J.; Hohman, J.N.; Schlamadinger, D.E.; Wilson, A.M. A solvent-free Baeyer-villiger lactonization for the undergraduate organic laboratory: synthesis of γ-t-butyl-ε-caprolactone. J. Chem. Educ. 2005, 82, 1837–1838. [Google Scholar] [CrossRef]
- Cave, G.W.V.; Raston, C.L. Green chemistry laboratory: benign synthesis of 4,6-diphenyl[2,2′]bipyridine via sequential solventless aldol and michael addition reactions. J. Chem. Educ. 2005, 82, 468–469. [Google Scholar]
- Mercer, S.M.; Andraos, J.; Jessop, P.G. Choosing the greenest synthesis: A multivariate metric green chemistry exercise. J. Chem. Educ. 2012, 89, 215–220. [Google Scholar] [CrossRef]
- Dicks, A.P.; Hent, A. An Introduction to Life Cycle Assessment; Springer International Publishing: New York, NY, USA, 2015; pp. 81–90. [Google Scholar]
- Ribeiro, M.G.T.C.; Costa, D.A.; Machado, A.A.S.C. “Green Star”: A holistic Green Chemistry metric for evaluation of teaching laboratory experiments. Green Chem. Lett. Rev. 2010, 3, 149–159. [Google Scholar] [CrossRef]
- Andraos, J.; Dicks, A.P. Green chemistry teaching in higher education: A review of effective practices. Chem. Educ. Res. Pract. 2012, 13, 69–79. [Google Scholar] [CrossRef]
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobiszewski, M.; Marć, M.; Gałuszka, A.; Namieśnik, J. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules 2015, 20, 10928-10946. https://doi.org/10.3390/molecules200610928
Tobiszewski M, Marć M, Gałuszka A, Namieśnik J. Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules. 2015; 20(6):10928-10946. https://doi.org/10.3390/molecules200610928
Chicago/Turabian StyleTobiszewski, Marek, Mariusz Marć, Agnieszka Gałuszka, and Jacek Namieśnik. 2015. "Green Chemistry Metrics with Special Reference to Green Analytical Chemistry" Molecules 20, no. 6: 10928-10946. https://doi.org/10.3390/molecules200610928
APA StyleTobiszewski, M., Marć, M., Gałuszka, A., & Namieśnik, J. (2015). Green Chemistry Metrics with Special Reference to Green Analytical Chemistry. Molecules, 20(6), 10928-10946. https://doi.org/10.3390/molecules200610928