Synthesis and Evaluation of Selected Benzimidazole Derivatives as Potential Antimicrobial Agents
Abstract
:1. Introduction
Compound | R | R1 | R2 |
---|---|---|---|
1 | H | H | H |
2 | H | H | CH3 |
3 | H | H | OCH3 |
4 | H | H | Cl |
5 | H | H | Br |
6 | H | H | F |
7 | H | H | NO2 |
8 | H | H | CN |
9 | H | CH2NH2 | H |
10 | H | CH2NH2 | CH3 |
11 | H | CH2NH2 | Cl |
12 | H | CH2NH2 | Br |
13 | H | CH2NH2 | F |
14 | H | CH2NH2 | NO2 |
15 | H | CH(CH3)NH2 | H |
16 | H | CH(CH3)NH2 | CH3 |
17 | H | CH(CH3)NH2 | Cl |
18 | H | CH(CH3)NH2 | Br |
19 | H | CH(CH3)NH2 | F |
20 | H | CH2CH3 | H |
21 | H | CH2CH3 | NO2 |
22 | H | CH2SH | H |
23 | H | CH2SH | NO2 |
24 | H | CH2OH | H |
25 | H | CH2OH | CH3 |
26 | H | CH2OH | OCH3 |
27 | H | CH2OH | Cl |
28 | H | CH2OH | Br |
29 | H | CH2OH | F |
30 | H | CH2OH | NO2 |
31 | H | CH2OH | CN |
32 | H | CH2Cl | H |
33 | H | CH2Cl | CH3 |
34 | H | CH2Cl | OCH3 |
35 | H | CH2Cl | Cl |
36 | H | CH2Cl | Br |
37 | H | CH2Cl | F |
38 | H | CH2Cl | NO2 |
39 | H | CH2Cl | CN |
40 | H | COOH | H |
41 | H | COOH | CH3 |
42 | H | COOH | OCH3 |
43 | H | COOH | Cl |
44 | H | COOH | Br |
45 | H | COOH | F |
46 | H | COOH | NO2 |
47 | CH3 | CH2OH | H |
48 | CH3 | CH2OH | CH3 |
49 | CH3 | CH2OH | Cl |
50 | CH3 | CH2OH | Br |
51 | CH3 | CH2OH | F |
52 | CH3 | CH2OH | OCH3 |
53 | CH3 | CH2OH | NO2 |
2. Results and Discussion
2.1. Chemistry
2.2. Biological Evaluation
2.2.1. Antibacterial Activity
Bacterial Species Compound | Diameter of the Inhibition Zone (mm) around Each Compound in the Agar Diffusion Test | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
9 | 17 | 18 | 22 | 32 | 33 | 35 | 36 | 52 | Ciprofloxacin | |
Gram-Positive | ||||||||||
Staphylococcus aureus NCTC 6571 | 0 | 10 | 11 | 11 | 13 | 9 | 9 | 9 | 14 | 27 |
Staphylococcus aureus NCTC 10399 | 0 | 12 | 12 | 16 | 7 | 7 | 0 | 0 | 17 | 33 |
MRSA HG-1 | 0 | 10 | 11 | 12 | 0 | 0 | 0 | 13 | 13 | 0 |
MRSA-15 NCTC 13142 | 0 | 11 | 10 | 12 | 0 | 0 | 9 | 14 | 15 | 28 |
MRSA-16 NCTC 13143 | 0 | 10 | 13 | 15 | 0 | 0 | 10 | 15 | 13 | 0 |
MRSA BIG 0043 | 0 | 11 | 10 | 11 | 9 | 10 | 9 | 11 | 12 | 0 |
MRSA BIG 0044 | 0 | 9 | 12 | 12 | 10 | 10 | 9 | 15 | 12 | 0 |
MRSA BIG 0045 | 0 | 11 | 11 | 14 | 0 | 12 | 9 | 11 | 13 | 0 |
MRSA BIG 0047 | 0 | 12 | 13 | 12 | 0 | 11 | 9 | 11 | 13 | 0 |
MRSA BIG 0050 | 0 | 0 | 12 | 11 | 0 | 9 | 9 | 15 | 13 | 0 |
MRSA BIG 0052 | 0 | 0 | 13 | 11 | 0 | 9 | 9 | 14 | 12 | 0 |
MRSA BIG 0053 | 0 | 0 | 11 | 13 | 0 | 10 | 9 | 14 | 13 | 0 |
Staphylococcus epidermidis NCTC 11047 | 0 | 0 | 11 | 0 | 10 | 12 | 0 | 0 | 12 | 32 |
Staphylococcus epidermidis NCTC 2749 | 17 | 9 | 13 | 13 | 9 | 10 | 14 | 9 | 13 | 35 |
Staphylococcus haemolyticus NCTC 11042 | 0 | 12 | 10 | 18 | 11 | 11 | 0 | 0 | 15 | 34 |
Gram-Negative | ||||||||||
Burkholderia cepacia NCTC 10744 | 12 | 11 | 10 | 15 | 0 | 12 | 15 | 17 | 12 | 27 |
Escherichia coli NCTC 10418 | 0 | 0 | 0 | 0 | 13 | 9 | 9 | 9 | 14 | 33 |
Escherichia coli BIG 0046 | 0 | 0 | 0 | 0 | 9 | 9 | 8 | 0 | 9 | 0 |
Escherichia coli BIG 0048 | 0 | 0 | 0 | 0 | 15 | 9 | 8 | 8 | 11 | 0 |
Escherichia coli BIG 0049 | 0 | 0 | 0 | 0 | 11 | 0 | 7 | 8 | 8 | 0 |
Escherichia coli 0051 | 0 | 0 | 0 | 0 | 12 | 9 | 7 | 0 | 10 | 0 |
Pseudomonas aeruginosa NCTC 6749 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 10 | 33 |
Pseudomonas aeruginosa BIG 0039 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8 | 34 |
Pseudomonas aeruginosa NCTC 10662 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 8 | 32 |
Pseudomonas aeruginosa BIG 0063 | 0 | 0 | 0 | 0 | 10 | 0 | 0 | 0 | 9 | 30 |
Serratia marcescens NCTC 1377 | 0 | 0 | 0 | 0 | 15 | 8 | 9 | 8 | 13 | 32 |
Bacterial Strain | MIC (µg/mL) per Compound | |||||
---|---|---|---|---|---|---|
17 | 18 | 22 | 35 | 36 | Ciprofloxacin | |
Gram-Positive | ||||||
Staphylococcus aureus NCTC 6571 | 32 | 32 | 64 | 128 | 64 | ≤0.5 |
Staphylococcus aureus NCTC 10399 | 256 | 256 | 64 | 128 | 64 | >32 |
MRSA HG-1 | 32 | 32 | 64 | 265 | 64 | 32 |
MRSA-15 NCTC 13142 | 256 | 256 | 64 | 128 | 64 | ≤0.5 |
MRSA-16 NCTC 13143 | 256 | 256 | 64 | 256 | 64 | 32 |
MRSA BIG 0043 | 256 | 256 | 64 | 256 | 64 | >32 |
MRSA BIG 0044 | >512 | >512 | 64 | 256 | 64 | >32 |
MRSA BIG 0045 | 256 | 256 | 64 | 256 | >512 | 8 |
MRSA BIG 0047 | 256 | 256 | 64 | 256 | 64 | 8 |
MRSA BIG 0050 | 32 | 32 | 64 | 256 | 64 | 32 |
MRSA BIG 0052 | 256 | 256 | 64 | 256 | 64 | ≤0.5 |
MRSA BIG 0053 | 256 | 256 | 64 | 256 | 64 | >32 |
Staphylococcus epidermidis NCTC 11047 | 256 | 256 | 32 | 256 | 32 | ≤0.5 |
Staphylococcus epidermidis NCTC 2749 | 256 | 256 | 64 | 256 | 64 | ≤0.5 |
Staphylococcus haemolyticus NCTC 11042 | 256 | 265 | 32 | 256 | 32 | 8 |
Gram-Negative | ||||||
Burkholderia cepacia NCTC 10744 | 32 | 32 | 64 | 256 | 64 | ≤0.5 |
Escherichia coli NCTC 10418 | >512 | >512 | 512 | >512 | >512 | ≤0.5 |
Escherichia coli BIG 0046 | >512 | >512 | >512 | >512 | >512 | 32 |
Escherichia coli BIG 0048 | >512 | >512 | 512 | >512 | >512 | 8 |
Escherichia coli BIG 0049 | >512 | >512 | >512 | >512 | >512 | 8 |
Escherichia coli BIG 0051 | >512 | >512 | >512 | >512 | >512 | 32 |
Pseudomonas aeruginosa NCTC 6749 | >512 | >512 | >512 | 512 | 265 | ≤0.5 |
Pseudomonas aeruginosa BIG 0039 | >512 | >512 | >512 | 512 | 512 | ≤0.5 |
Pseudomonas aeruginosa NCTC 10662 | >512 | >512 | >512 | 512 | 512 | ≤0.5 |
Pseudomonas aeruginosa BIG 0063 | >512 | >512 | >512 | 512 | 512 | ≤0.5 |
Serratia marcescens NCTC 1377 | >512 | >512 | >512 | >512 | >512 | ≤0.5 |
2.2.2. Antifungal Activity
Fungal Strain | Diameter of Zone of Inhibition (mm) around Each Compound | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 11 | 13 | 14 | 15 | 20 | 22 | 27 | 28 | 33 | 37 | 38 | 42 | 43 | 44 | 51 | 52 | 53 | Am. B | |
Unicellular | ||||||||||||||||||||||||
Candida albicans RCMB 05035 | 21 | 21 | 24 | 26 | 23 | 21 | 21 | 20 | 22 | 19 | 23 | 17 | 20 | 18 | 19 | 17 | 22 | 17 | 19 | 20 | 19 | 21 | 22 | 22 |
Candida krusei RCMB 05051 | 17 | 16 | 19 | 19 | 18 | 14 | 14 | 12 | 17 | 14 | 20 | 17 | 19 | 0 | 0 | 0 | 18 | 0 | 0 | 0 | 0 | 21 | 22 | 19 |
Candida parapsilosis RCMB 05065 | 21 | 21 | 25 | 29 | 23 | 19 | 19 | 22 | 24 | 19 | 20 | 15 | 21 | 19 | 21 | 18 | 22 | 18 | 16 | 20 | 16 | 18 | 18 | 18 |
Candida tropicalis RCMB 05049 | 22 | 22 | 25 | 26 | 25 | 21 | 20 | 22 | 22 | 19 | 21 | 15 | 21 | 19 | 20 | 18 | 22 | 18 | 20 | 19 | 20 | 22 | 24 | 25 |
Filamentous | ||||||||||||||||||||||||
Absidia corymbifera RCMB 09635 | 21 | 21 | 22 | 25 | 23 | 15 | 14 | 19 | 21 | 14 | 0 | 0 | 19 | 19 | 19 | 17 | 20 | 16 | 18 | 18 | 20 | 0 | 0 | 20 |
Aspergillus clavatus RCMB 02593 | 20 | 21 | 23 | 23 | 23 | 17 | 19 | 19 | 21 | 17 | 23 | 19 | 18 | 14 | 15 | 15 | 20 | 14 | 16 | 15 | 18 | 22 | 23 | 22 |
Aspergillus fumigatus RCMB 02564 | 22 | 21 | 24 | 26 | 23 | 19 | 19 | 20 | 23 | 19 | 23 | 18 | 17 | 16 | 17 | 14 | 20 | 16 | 17 | 17 | 18 | 20 | 21 | 24 |
Mucor circinelloides RCMB 07328 | 20 | 21 | 21 | 23 | 21 | 17 | 18 | 17 | 21 | 17 | 24 | 19 | 15 | 17 | 18 | 14 | 18 | 12 | 14 | 14 | 20 | 23 | 25 | 18 |
Penicillium marneffei RCMB 01267 | 19 | 19 | 22 | 25 | 23 | 17 | 16 | 13 | 19 | 15 | 21 | 16 | 17 | 18 | 17 | 18 | 20 | 15 | 16 | 17 | 19 | 21 | 22 | 21 |
Syncephalastrum racemosum RCMB 05922 | 19 | 19 | 20 | 20 | 19 | 13 | 18 | 18 | 19 | 17 | 24 | 21 | 20 | 0 | 0 | 0 | 19 | 0 | 0 | 0 | 0 | 23 | 24 | 20 |
Fungal Strain | MIC (µg/mL) per Compound | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2 | 3 | 4 | 5 | 6 | 7 | 11 | 13 | 14 | 15 | 20 | 22 | 27 | 28 | 33 | 37 | 38 | 42 | 43 | 44 | 51 | 52 | 53 | Am. B | |
Unicellular | ||||||||||||||||||||||||
Candida albicans RCMB 05035 | 0.49 | 0.98 | 0.03 | 0.007 | 0.03 | 0.49 | 0.49 | 0.49 | 0.24 | 1.95 | 0.24 | 31.3 | 0.98 | 3.9 | 1.95 | 7.8 | 0.24 | 7.8 | 0.98 | 0.98 | 0.98 | 0.98 | 0.98 | 0.12 |
Candida krusei RCMB 05051 | 7.8 | 15.6 | 1.95 | 0.98 | 0.98 | 31.25 | 62.5 | 31.3 | 7.8 | 62.5 | 1.95 | 15.6 | 0.98 | >500 | >500 | >500 | 1.95 | >500 | >500 | >500 | >500 | 0.98 | 0.94 | 0.98 |
Candida parapsilosis RCMB 05065 | 0.24 | 0.12 | 0.03 | 0.003 | 0.06 | 0.98 | 1.95 | 0.24 | 0.06 | 1.95 | 1.95 | 125 | 0.49 | 1.95 | 0.24 | 1.95 | 0.12 | 1.95 | 0.98 | 0.98 | 15.6 | 7.8 | 7.8 | 1.95 |
Candida tropicalis RCMB 05049 | 0.24 | 0.24 | 0.02 | 0.007 | 0.06 | 0.49 | 0.98 | 0.24 | 0.12 | 0.98 | 1.95 | 62.5 | 0.49 | 1.95 | 0.49 | 3.9 | 0.12 | 3.9 | 1.95 | 1.95 | 0.49 | 0.49 | 0.12 | 0.02 |
Filamentous | ||||||||||||||||||||||||
Absidia corymbifera RCMB 09635 | 0.24 | 0.24 | 0.12 | 0.03 | 0.06 | 15.63 | 31.3 | 1.95 | 0.49 | 62.5 | >500 | >500 | 0.98 | 3.9 | 1.95 | 7.8 | 0.98 | 7.8 | 7.8 | 3.9 | 0.98 | >500 | >500 | 0.98 |
Aspergillus clavatus RCMB 02593 | 0.49 | 0.98 | 0.12 | 0.06 | 0.12 | 3.9 | 1.95 | 1.95 | 0.24 | 3.9 | 0.24 | 3.9 | 1.95 | 62.5 | 31.3 | 31.3 | 0.98 | 62.5 | 15.6 | 31.3 | 3.9 | 0.49 | 0.24 | 0.12 |
Aspergillus fumigatus RCMB 02564 | 0.24 | 0.24 | 0.06 | 0.02 | 0.06 | 1.95 | 1.95 | 0.98 | 0.12 | 1.95 | 0.49 | 7.8 | 3.9 | 15.6 | 7.8 | 62.5 | 0.49 | 15.6 | 7.8 | 7.8 | 1.95 | 1.95 | 0.98 | 0.06 |
Mucor circinelloides RCMB 07328 | 0.49 | 0.49 | 0.24 | 0.12 | 0.12 | 7.8 | 3.9 | 7.8 | 0.49 | 15.6 | 0.12 | 1.95 | 31.3 | 7.8 | 1.95 | 62.5 | 1.95 | 125 | 62.5 | 62.5 | 0.98 | 0.24 | 0.12 | 3.9 |
Penicillium marneffei RCMB 01267 | 1.95 | 0.98 | 0.12 | 0.03 | 0.03 | 7.8 | 15.6 | 62.5 | 0.98 | 15.6 | 1.95 | 31.3 | 3.9 | 1.95 | 3.9 | 1.95 | 0.98 | 15.6 | 15.6 | 7.8 | 1.95 | 0.98 | 0.49 | 0.49 |
Syncephalastrum racemosum RCMB 05922 | 1.95 | 1.95 | 0.98 | 0.98 | 0.98 | 125 | 3.9 | 3.9 | 0.98 | 3.9 | 0.24 | 0.98 | 0.98 | >500 | >500 | >500 | 1.95 | >500 | >500 | >500 | >500 | 0.24 | 0.12 | 0.98 |
3. Experimental Section
3.1. Chemistry: General Methods
3.2. Screening for Antibacterial Activity
3.2.1. Bacterial Strains Used in This Project
3.2.2. Screening for Antibacterial Activity by the Disc Diffusion Method
3.2.3. Determination of Minimum Inhibitory Concentration of Compounds against Bacterial Strains
3.3. Screening for Antifungal Activity
3.3.1. Fungal Strains Used in This Project
3.3.2. Screening for Antifungal Activity by the Well Diffusion Method
3.3.3. Determination of Minimum Inhibitory Concentration of Compounds against Fungal Strains
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Franco, B.E.; Martínez, M.A.; Rodríguez, M.S.; Wertheimer, A.I. The determinants of the antibiotic resistance process. Infect. Drug Resist. 2009, 2, 1–11. [Google Scholar] [PubMed]
- Barrett, C.T.; Barrett, J.F. Antibacterials: Are the new entries enough to deal with the emerging resistance problems? Curr. Opin. Biotechnol. 2003, 14, 621–626. [Google Scholar] [CrossRef] [PubMed]
- Cole, S.T. Who will develop new antibacterial agents? Philos. Trans. R. Soc. B Biol. Sci. 2014, 369. [Google Scholar] [CrossRef] [PubMed]
- Imperi, F.; Massai, F.; Facchini, M.; Frangipani, E.; Visaggio, D.; Leoni, L.; Bragonzi, A.; Visca, P. Repurposing the antimycotic drug flucytosine for suppression of Pseudomonas aeruginosa pathogenicity. Proc. Natl. Acad. Sci. USA 2013, 110, 7458–7463. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Han, X.; Zhou, Z. New substituted benzimidazole derivatives: A patent review (2013–2014). Expert Opin. Ther. Pat. 2015, 25, 595–612. [Google Scholar] [CrossRef] [PubMed]
- Soderlind, K.J.; Gorodetsky, B.; Singh, A.K.; Bachur, N.R.; Miller, G.G.; Lown, J.W. Bis-benzimidazole anticancer agents: Targeting human tumour helicases. Anticancer Drug Des. 1999, 14, 19–36. [Google Scholar] [PubMed]
- Kumar, K.; Awasthi, D.; Lee, S.Y.; Cummings, J.E.; Knudson, S.E.; Slayden, R.A.; Ojima, I. Benzimidazole-based antibacterial agents against Francisella tularensis. Bioorg. Med. Chem. 2013, 21, 3318–3326. [Google Scholar] [CrossRef] [PubMed]
- Mentese, E.; Bektas, H.; Ulker, S.; Bekircan, O.; Kahveci, B. Microwave-assisted synthesis of new benzimidazole derivatives with lipase inhibition activity. J. Enzyme Inhib. Med. Chem. 2014, 29, 64–68. [Google Scholar] [CrossRef] [PubMed]
- Velı́k, J.; Baliharová, V.; Fink-Gremmels, J.; Bull, S.; Lamka, J.; Skálová, L. Benzimidazole drugs and modulation of biotransformation enzymes. Res. Vet. Sci. 2004, 76, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Janupally, R.; Jeankumar, V.U.; Bobesh, K.A.; Soni, V.; Devi, P.B.; Pulla, V.K.; Suryadevara, P.; Chennubhotla, K.S.; Kulkarni, P.; Yogeeswari, P.; et al. Structure-guided design and development of novel benzimidazole class of compounds targeting DNA gyraseB enzyme of Staphylococcus aureus. Bioorg. Med. Chem. 2014, 22, 5970–5987. [Google Scholar] [CrossRef] [PubMed]
- Ke, Y.; Zhi, X.; Yu, X.; Ding, G.; Yang, C.; Xu, H. Combinatorial synthesis of benzimidazole-azo-phenol derivatives as antifungal agents. Comb. Chem. High Throughput Screen 2014, 17, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Paglietti, G.; Boido, V.; Sparatore, F.; Marongiu, F.; Marongiu, E.; La Colla, P.; Loddo, R. Antiviral activity of benzimidazole derivatives. I. Antiviral activity of 1-substituted-2-[(benzotriazol-1/2-yl)methyl]benzimidazoles. Chem. Biodivers. 2008, 5, 2386–2401. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Corona, P.; Loriga, M.; Carta, A.; Paglietti, G.; Ibba, C.; Giliberti, G.; Loddo, R.; Marongiu, E.; la Colla, P. Styrylbenzimidazoles. Synthesis and biological activity—Part 3. Med Chem. 2010, 6, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Simone, M.; Tasso, B.; Novelli, F.; Boido, V.; Sparatore, F.; Paglietti, G.; Pricl, S.; Giliberti, G.; Blois, S.; et al. Antiviral activity of benzimidazole derivatives. II. Antiviral activity of 2-phenylbenzimidazole derivatives. Bioorg. Med. Chem. 2010, 18, 2937–2953. [Google Scholar] [CrossRef] [PubMed]
- Vitale, G.; Corona, P.; Loriga, M.; Carta, A.; Paglietti, G.; Giliberti, G.; Sanna, G.; Farci, P.; Marongiu, M.E.; la Colla, P. 5-Acetyl-2-arylbenzimidazoles as antiviral agents. Part 4. Eur. J. Med. Chem. 2012, 53, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Tonelli, M.; Novelli, F.; Tasso, B.; Vazzana, I.; Sparatore, A.; Boido, V.; Sparatore, F.; la Colla, P.; Sanna, G.; Giliberti, G.; et al. Antiviral activity of benzimidazole derivatives. III. Novel anti-CVB-5, anti-RSV and anti-Sb-1 agents. Bioorg. Med. Chem. 2014, 22, 4893–4909. [Google Scholar] [CrossRef] [PubMed]
- Shingalapur, R.V.; Hosamani, K.M.; Keri, R.S.; Hugar, M.H. Derivatives of benzimidazole pharmacophore: Synthesis, anticonvulsant, antidiabetic and DNA cleavage studies. Eur. J. Med. Chem. 2010, 45, 1753–1759. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, N.; Andalip; Bawa, S.; Ali, R.; Afzal, O.; Akhtar, M.J.; Azad, B.; Kumar, R. Antidepressant potential of nitrogen-containing heterocyclic moieties: An updated review. J. Pharm. Bioallied Sci. 2011, 3, 194–212. [Google Scholar] [PubMed]
- Datar, P.A.; Limaye, S.A. Design and Synthesis of Mannich bases as Benzimidazole Derivatives as Analgesic Agents. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2015, 14, 35–46. [Google Scholar] [CrossRef]
- Achar, K.C.S.; Hosamani, K.M.; Seetharamareddy, H.R. In vivo analgesic and anti-inflammatory activities of newly synthesized benzimidazole derivatives. Eur. J. Med. Chem. 2010, 45, 2048–2054. [Google Scholar] [CrossRef] [PubMed]
- Bansal, Y.; Silakari, O. The therapeutic journey of benzimidazoles: A review. Bioorg. Med. Chem. 2012, 20, 6208–6236. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.S.; Lopes, P.F. Injectable Formulation of a Macrocyclic Lactone and Levamisole. (2011): United States Patent NO. 20130090296. Available online: http://patentscope.wipo.int/search/en/detail.jsf?docId=WO2011161209&recNum=34&maxRec=497&office=&prevFilter=&sortOption=&queryString=DORAMECTIN&tab=PCTDescription (accessed on 10 June 2015).
- Stefanska, J.Z.; Gralewska, R.; Starosciak, B.J.; Kazimierczuk, Z. Antimicrobial activity of substituted azoles and their nucleosides. Pharmazie 1999, 54, 879–884. [Google Scholar] [PubMed]
- Valdez, J.; Cedillo, R.; Hernández-Campos, A.; Yépez, L.; Hernández-Luis, F.; Navarrete-Vázquez, G.; Tapia, A.; Cortés, R.; Hernández, M.; Castillo, R. Synthesis and antiparasitic activity of 1H-benzimidazole derivatives. Bioorg. Med. Chem. Lett. 2002, 12, 2221–2224. [Google Scholar] [CrossRef]
- Desai, N.C.; Kotadiya, G.M. Microwave-assisted synthesis of benzimidazole bearing 1,3,4-oxadiazole derivatives: Screening for their in vitro antimicrobial activity. Med. Chem. Res. 2014, 23, 4021–4033. [Google Scholar] [CrossRef]
- Kishore Babu, P.N.; Ramadevi, B.; Poornachandra, Y.; Ganesh Kumar, C. Synthesis, antimicrobial, and anticancer evaluation of novel 2-(3-methylindolyl)benzimidazole derivatives. Med. Chem. Res. 2014, 23, 3970–3978. [Google Scholar] [CrossRef]
- Phillips, M.A. CCCXVII.-The formation of 2-substituted benziminazoles. J. Chem. Soc. (Resumed) 1928. [Google Scholar] [CrossRef]
- Dirk, S.; Thorsten, L.L.; Philipp, L.; Martin, L.; Ralf, R.H.L.; Kirsten, A.; Klaus, R.; Gerald Juergen, R.; Stephan Georg, M. Alkyne compounds with MCH antagonistic activity and medicaments comprising these compounds. (2009), Boehringer Ingelheim Pharma GmbH and Co. KG: United States Patent Patent no. US 7592358 B2. Available online: http://www.lens.org/lens/patent/US_7592358_B2/fulltext (accessed on 10 May 2015).
- Tavman, A.; Ikiz, S.; Bagcigil, A.F.; Ozgur, N.Y.; Ak, S. Preparation, characterization and antibacterial effect of 2-methoxy-6-(5-H/Me/Cl/NO2-1H-benzimidazol-2-yl)phenols and some transition metal complexes. J. Serbian Chem. Soc. 2009, 74, 537–548. [Google Scholar] [CrossRef]
- Podunavac-Kuzmanovic, S.O.; Cvetkovic, D.M. Antibacterial evaluation of some benzimidazole derivatives and their zinc(II) complexes. J. Serbian Chem. Soc. 2007, 72, 459–466. [Google Scholar] [CrossRef]
- Karuvalam, R.P.; Haridas, K.R.; Shetty, S.N. Trimethylsilyl chloride-catalyzed synthesis of substituted benzimidazoles using two phase system under microwave conditions, and their antimicrobial studies. J. Chil. Chem. Soc. 2012, 57, 1122–1125. [Google Scholar] [CrossRef]
- González-Chávez, M.M.; Méndez, F.; Martínez, R.; Pérez-González, C.; Martínez-Gutiérrez, F. Design and Synthesis of Anti-MRSA Benzimidazolylbenzene-sulfonamides. QSAR Studies for Prediction of Antibacterial Activity. Molecules 2011, 16, 175–189. [Google Scholar] [CrossRef] [PubMed]
- Bauer, R.W.; Kirby, M.D.K.; Sherris, J.C.; Turek, M. Antibiotic susceptibility testing by standard single disc diffusion method. Am. J. Clin. Pathol. 1966, 45, 493–496. [Google Scholar] [PubMed]
- Sample Availability: Samples of the compounds are not available from the authors.
© 2015 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alasmary, F.A.S.; Snelling, A.M.; Zain, M.E.; Alafeefy, A.M.; Awaad, A.S.; Karodia, N. Synthesis and Evaluation of Selected Benzimidazole Derivatives as Potential Antimicrobial Agents. Molecules 2015, 20, 15206-15223. https://doi.org/10.3390/molecules200815206
Alasmary FAS, Snelling AM, Zain ME, Alafeefy AM, Awaad AS, Karodia N. Synthesis and Evaluation of Selected Benzimidazole Derivatives as Potential Antimicrobial Agents. Molecules. 2015; 20(8):15206-15223. https://doi.org/10.3390/molecules200815206
Chicago/Turabian StyleAlasmary, Fatmah A. S., Anna M. Snelling, Mohammed E. Zain, Ahmed M. Alafeefy, Amani S. Awaad, and Nazira Karodia. 2015. "Synthesis and Evaluation of Selected Benzimidazole Derivatives as Potential Antimicrobial Agents" Molecules 20, no. 8: 15206-15223. https://doi.org/10.3390/molecules200815206
APA StyleAlasmary, F. A. S., Snelling, A. M., Zain, M. E., Alafeefy, A. M., Awaad, A. S., & Karodia, N. (2015). Synthesis and Evaluation of Selected Benzimidazole Derivatives as Potential Antimicrobial Agents. Molecules, 20(8), 15206-15223. https://doi.org/10.3390/molecules200815206