Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles
Abstract
:1. Introduction
2. Results
2.1. PECS Composition
2.2. Effect of PECS on Cell Viability
2.3. Apoptosis Increase in HepG2 Cells
2.4. Modulation of Cell Cycle in HepG2 Cells
2.5. Mitochondrial Membrane Depolarization in HepG2 Cells
2.6. Decrease of VEGF and TNF-α Levels in HepG2 Supernatants
2.7. Identification of Key Differential Metabolites
3. Discussion
4. Materials and Methods
4.1. Extraction and Concentration of Polyphenols from Chestnut Shell
4.2. Antioxidant Activity
4.3. Total Phenols Content
4.4. HPLC Analyses of Polyphenols
4.5. MALDI-TOF/MS
4.6. Cell Culture and Treatment
4.7. Sulforhodamine B Assay
4.8. Apoptosis Detection
4.9. Cell Cycle Assay
4.10. Mitochondrial Membrane Depolarization
4.11. Bio-Plex Assay
4.12. 1H-NMR Metabolomic Analysis
4.13. Statistical and Pathway Analysis
Author Contributions
Conflicts of Interest
References
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [PubMed]
- Pandey, K.B.; Rizvi, S.I. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Wahle, K.W.; Brown, I.; Rotondo, D.; Heys, S.D. Plant phenolics in the prevention and treatment of cancer. Adv. Exp. Med. Biol. 2010, 698, 36–51. [Google Scholar] [PubMed]
- Carocho, M.; Ferreira, I.C. The role of phenolic compounds in the fight against cancer—A review. Anticancer Agents Med. Chem. 2013, 13, 1236–1258. [Google Scholar] [CrossRef] [PubMed]
- Kuppusamya, S.; Thavamania, P.; Megharaja, M.; Naidua, R. Bioremediation potential of natural polyphenol rich green wastes: A review of current research and recommendations for future directions. Environ. Technol. Innov. 2015, 4, 17–28. [Google Scholar] [CrossRef]
- FAOSTAT, Food and Agriculture Organization of the United States. Available online: http://faostat.fao.org/ (accessed on 21 October 2016).
- Fernández-Agulló, A.; Freire, M.S.; Antorrena, G.; Pereira, J.A.; González-Alvarez, J. Effect of the Extraction Technique and Operational Conditions on the Recovery of Bioactive Compounds from Chestnut (Castanea sativa) Bur and Shell. Sep. Sci. Technol. 2014, 49, 267–277. [Google Scholar] [CrossRef]
- Vázquez, G.; Fontenla, E.; Santos, J.; Freire, M.S.; González-Alvarez, J.; Antorrena, G. Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind. Crops Prod. 2008, 28, 279–285. [Google Scholar] [CrossRef]
- Vázquez, G.; González-Alvarez, J.; Freire, M.S.; Fernández-Agullo, A.; Santos, J.; Antorrena, G. Chestnut burs as a source of natural antioxidants. Chem. Eng. Trans. 2009, 17, 855–860. [Google Scholar]
- Vázquez, G.; Fernández-Agullo, A.; Gomez-Castro, C.; Freire, M.S.; Antorrena, G.; González-Alvarez, J. Response surface optimization of antioxidants extraction from chestnut (Castanea sativa) bur. Ind. Crops Prod. 2012, 35, 126–134. [Google Scholar] [CrossRef]
- De Vasconcelos, M.C.; Bennett, R.N.; Rosa, E.A.; Ferreira-Cardoso, J.V. Composition of European chestnut (Castanea sativa Mill.) and association with health effects: Fresh and processed products. J. Sci. Food Agric. 2010, 90, 1578–1589. [Google Scholar] [CrossRef] [PubMed]
- Barreira, J.C.M.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P.; Pereira, J.A. Antioxidant activities of the extracts from chestnut flore, leaf, skins and fruit. Food Chem. 2008, 107, 1106–1113. [Google Scholar] [CrossRef]
- Galiñanes, C.; Freire, M.S.; González-Álvarez, J. Antioxidant activity of phenolic extracts from chestnut fruit and forest industries residues. Eur. J. Wood Wood Prod. 2015, 73, 651–659. [Google Scholar] [CrossRef]
- Laufenberg, G.; Kunz, B.; Nystroem, M. Transformation of vegetable waste into value added products: (A) the upgrading concept; practical implementations. Bioresour. Technol. 2003, 87, 167–198. [Google Scholar] [CrossRef]
- Chitwood, D.J. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 2002, 40, 221–249. [Google Scholar] [CrossRef] [PubMed]
- Daglia, M. Polyphenols as antimicrobial agents. Curr. Opin. Biotechnol. 2012, 23, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: Facts and fiction. Phytochemistry 2007, 68, 2986–3008. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signaling pathways. Mol. Nutr. Food Res. 2008, 52, 507–526. [Google Scholar] [CrossRef] [PubMed]
- Brizi, C.; Santulli, C.; Micucci, M.; Budriesi, R.; Chiarini, A.; Aldinucci, C.; Frosini, M. Neuroprotective Effects of Castanea sativa Mill. Bark Extract in Human Neuroblastoma Cells Subjected to Oxidative Stress. J. Cell Biochem. 2016, 117, 510–520. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ke, J.; Shao, T.; Li, J.; Duan, Y.; He, Y.; Zhang, C.; Chen, G.; Sun, G.; Sun, X. Cytotoxic effects of procyanidins from Castanea mollissima Bl. Shell on human hepatoma G2 cells in vitro. Food Chem. Toxicol. 2014, 64, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Kim, E.J.; Kim, S.H. Chestnut extract induces apoptosis in AGS human gastric cancer cells. Nutr. Res. Pract. 2011, 5, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.; Ke, J.; Zhang, H.; He, Y.; Sun, G.; Sun, X. Autophagic cell death of human hepatoma G2 cells mediated by procyanidins from Castanea mollissima Bl. Shell-induced reactive oxygen species generation. Chem. Biol. Interact. 2014, 5, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, G.; Pizzi, A.; Freire, M.S.; Santos, J.; Antorrena, G.; González-Alvarez, J. MALDI-TOF, HPLC-ESI-TOF and 13C-NMR characterization of chestnut (Castanea sativa) shell tannins for wood adhesives. Wood Sci. Technol. 2013, 47, 523–535. [Google Scholar] [CrossRef]
- Jabari, S.; Meissnitzer, M.; Quint, K.; Gahr, S.; Wissniowski, T.; Hahn, E.G.; Neureiter, D.; Ocker, M. Cellular plasticity of trans- and dedifferentiation markers in human hepatoma cells in vitro and in vivo. Int. J. Oncol. 2009, 35, 69–80. [Google Scholar] [PubMed]
- Barreira, J.C.M.; Pereira, J.A.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Sugars Profiles of Different Chestnut (Castanea sativa Mill.) and Almond (Prunus dulcis) Cultivars by HPLC-RI. Plant Food Hum. Nutr. 2010, 65, 38–43. [Google Scholar] [CrossRef] [PubMed]
- Díaz-Reinoso, B.; Moure, A.; Domínguez, H.; Parajó, J.C. Membrane concentration of antioxidants from Castanea sativa leaves aqueous Extracts. Chem. Eng. J. 2011, 175, 95–102. [Google Scholar] [CrossRef]
- Díaz-Reinoso, B.; Couto, D.; Moure, A.; Fernandes, E.; Domínguez, H.; Parajó, J.C. Optimization of antioxidants—Extraction from Castanea sativa leaves. Chem. Eng. J. 2012, 203, 101–109. [Google Scholar] [CrossRef]
- Almeida, I.F.; Maleckova, J.; Saffi, R.; Monteiro, H.; Goios, F.; Amaral, M.H.; Costa, P.C.; Garrido, J.; Silva, P.; Pestana, N.; et al. Characterization of an antioxidant surfactant-free topical formulation containing Castanea sativa leaf extract. Drug Dev. Ind. Pharm. 2015, 41, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Vázquez, G.; González-Alvarez, J.; Santos, J.; Freire, M.S.; Antorrena, G. Evaluation of potential applications for chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark Extracts. Ind. Crops Prod. 2009, 29, 364–370. [Google Scholar] [CrossRef]
- Noh, J.R.; Gang, G.T.; Kim, Y.H.; Yang, K.J.; Hwang, J.H.; Lee, H.S.; Oh, W.K.; Song, K.S.; Lee, C.H. Antioxidant effects of the chestnut (Castanea crenata) inner shell extract in t-BHP-treated HepG2 cells, and CCl4- and high-fat diet-treated mice. Food Chem. Toxicol. 2010, 48, 3177–3183. [Google Scholar] [CrossRef] [PubMed]
- Basile, A.; Sorbo, S.; Giordano, S.; Ricciardi, L.; Ferrara, S.; Montesano, D.; Castaldo Cobianchi, R.; Vuotto, M.L.; Ferrara, L. Antibacterial and allelopathicactivity of extract from Castanea sativa leaves. Fitoterapia 2000, 71, 110–116. [Google Scholar] [CrossRef]
- Calliste, C.A.; Trouillas, P.; Allais, D.P.; Duroux, J.L. Castanea sativa mill Leaves as new sources of natural antioxidant: An electronic spin resonance study. J. Agric. Food Chem. 2005, 53, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Almeida, I.F.; Fernandes, E.; Lima, J.L.F.C.; Costa, P.C.; Bahia, M.F. Protective effect of Castanea sativa and Quercus robur leaf extracts against oxygen and nitrogen reactive species. J. Photochem. Photobiol. 2008, 91, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Gironi, F.; Piemonte, V. Temperature and solvent effects on polyphenol extraction process from chestnut tree wood. Chem. Eng. Res. Des. 2011, 89, 857–862. [Google Scholar] [CrossRef]
- Mujic, A.; Grdovic, N.; Mujic, I.; Mihailovic, M.; Zivkovic, J.; Poznanovic, G.; Vidakovic, M. Antioxidative effects of phenolic extracts from chestnut leaves, catkins and spiny burs in streptozotocin-treated rat pancreatic β-cells. Food Chem. 2011, 125, 841–849. [Google Scholar] [CrossRef]
- Shi, J.; Nawaz, H.; Pohorly, J.; Mittal, G.; Kakuda, Y.; Jiang, Y. Extraction of polyphenolics from plant material for functional foods—Engineering and technology. Food Rev. Int. 2005, 21, 139–166. [Google Scholar] [CrossRef]
- Biesaga, M. Influence of extraction methods on stability of flavonoids. J. Chromatogr. 2011, 1218, 2505–2512. [Google Scholar] [CrossRef] [PubMed]
- Elmore, S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007, 35, 495–516. [Google Scholar] [CrossRef] [PubMed]
- Guerriero, E.; Sorice, A.; Capone, F.; Costantini, S.; Palladino, P.; D’Ischia, M.; Castello, G. Effects of Lipoic Acid, Caffeic Acid and a Synthesized Lipoyl-Caffeic Conjugate on Human Hepatoma Cell Lines. Molecules 2011, 16, 6365–6377. [Google Scholar] [CrossRef] [PubMed]
- Costantini, S.; Rusolo, F.; de Vito, V.; Moccia, S.; Picariello, L.; Capone, F.; Guerriero, E.; Castello, G.; Volpe, M.G. Potential anti-inflammatory effects of oil polyphenols from pomegranate (Punicagranatum L.) on breast cancer cell lines. Molecules 2014, 19, 8644–8660. [Google Scholar] [CrossRef] [PubMed]
- Costantini, S.; Romano, G.; Rusolo, F.; Capone, F.; Guerriero, E.; Colonna, G.; Ianora, A.; Ciliberto, G.; Costantini, M. Anti-inflammatory effects of a methanol extract from the marine sponge Geodiacydonium on the human breast cancer MCF-7 cell line. Mediat. Inflamm. 2015, 2015, 204975. [Google Scholar] [CrossRef] [PubMed]
- Costantini, S.; Castello, G.; Colonna, G. Human Cytokinome: A new challenge for systems biology. Bioinformation 2010, 5, 166–167. [Google Scholar] [CrossRef] [PubMed]
- Capone, F.; Costantini, S.; Guerriero, E.; Calemma, R.; Napolitano, M.; Scala, S.; Izzo, F.; Castello, G. Serumcytokinelevels in patients with hepatocellular carcinoma. Eur. Cytom. Netw. 2010, 21, 99–104. [Google Scholar]
- Zhan, P.; Qian, Q.; Yu, L.K. Serum VEGF level is associated with the outcome of patients with hepatocellular carcinoma: A meta-analysis. Hepatobiliary Surg. Nutr. 2013, 2, 209–215. [Google Scholar] [PubMed]
- Bertazza, L.; Mocellin, S. The dual role of tumor necrosis factor (TNF) in cancer biology. Curr. Med. Chem. 2010, 17, 3337–3352. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, J.E.; Choi, B.K.; Kim, H.S. Anti-Inflammatory Effects of Water Chestnut Extract on Cytokine Responses via Nuclear. Factor-κB-signaling Pathway. Biomol. Ther. (Seoul) 2015, 23, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Ananieva, E. Targeting amino acid metabolism in cancer growth and anti-tumor immune response. World Biol. Chem. 2015, 6, 281–289. [Google Scholar] [CrossRef] [PubMed]
- Halama, A.; Möller, G.; Adamski, J. Metabolic signatures in apoptotic human cancer cell lines. Omics 2011, 15, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol. 1927, 8, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Annibaldi, A.; Widmann, C. Glucose metabolism in cancer cells. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 466–470. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Pinedo, C.; El Mjiyad, N.; Ricci, J.E. Cancer metabolism: Current perspectives and future directions. Cell Death Dis. 2012, 3, 2489. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colourimetry of total phenolics with phosphomolybdic–phospholungistic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Li, L.; Tsao, R.; Yang, R.; Liu, C.; Zhu, H.; Young, J.C. Polyphenolic profiles and antioxidant activities of heartnut (Juglan sailanthifolia Var. cordiformis) and Persian walnut (Juglans regia L.). J. Agric. Food Chem. 2006, 54, 8033–8040. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Sinelnikov, I.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0—Making metabolomics more meaningful. Nucl. Acids Res. 2015, 43, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Mandal, R.; Sinelnikov, I.; Broadhurst, D.; Wishart, D.S. MetaboAnalyst 2.0—A comprehensive server for metabolomic data analysis. Nucleic Acids Res. 2012, 40, W127–W133. [Google Scholar] [PubMed]
- Sample Availability: Samples of the compounds are not available from the authors.
HepG2 Cells | Live Cells | Early Apoptosis | Late Apoptosis | Dead |
---|---|---|---|---|
Untreated | 93.80% ± 0.05% | 2.33% ± 0.04% | 2.48% ± 0.08% | 1.39% ± 0.05% |
Treated | 34.51% ± 0.04% | 1.30% ± 0.06% | 50.91% ± 0.05% | 13.28% ± 0.06% |
HepG2 Cells | G0/G1 | S | G2/M |
---|---|---|---|
Untreated | 46.6% ± 0.9% | 8.8% ± 1.0% | 44.6% ± 1.2% |
Treated | 61.8% ± 1.2% | 3.9% ± 0.7% | 33.0% ± 1.0% |
HepG2 Cells | Live Cells | Depolarized Cells | Dead |
---|---|---|---|
Untreated | 97.6% ± 0.8% | 0.5% ± 0.07% | 1.8% ± 0.05% |
Treated | 24.3% ± 0.9% | 53.3% ± 1.0% | 22.4% ± 0.8% |
Cytokines | Fold Change | p-Value |
---|---|---|
PDGF-ββ | 0.92 | 0.18 |
IL-1β | 0.96 | 0.20 |
IL-1ra | 0.80 | 0.091 |
IL-2 | 1.27 | 0.26 |
IL-4 | 1.03 | 0.44 |
IL-5 | 0.86 | 0.15 |
IL-6 | 1.13 | 0.23 |
IL-7 | 0.89 | 0.11 |
IL-8 | 0.89 | 0.13 |
IL-9 | 0.94 | 0.26 |
IL-10 | 1.10 | 0.34 |
IL-12 | 1.07 | 0.48 |
IL-13 | 1.05 | 0.45 |
IL-15 | 1.15 | 0.19 |
IL-17 | 1.11 | 0.17 |
Eotaxin | 0.81 | 0.090 |
FGF basic | 1.47 | 0.088 |
G-CSF | 1.00 | 0.52 |
GM-CSF | 1.20 | 0.25 |
IFN-γ | 0.93 | 0.29 |
IP-10 | 0.96 | 0.31 |
MCP-1 | 1.03 | 0.51 |
MIP-1α | 0.84 | 0.088 |
MIP-1β | 1.09 | 0.48 |
RANTES | 1.19 | 0.37 |
TNF-α | 0.46 | 0.047 |
VEGF | 0.32 | 0.019 |
Metabolites | Group | Chemical Shift | Metabolites | Group | Chemical Shift |
---|---|---|---|---|---|
Leucine | δCH3 | 0.96 | Phosphocholine | NCH2 | 3.6 |
Valine | γCH3 | 0.97 | Valine | αCH | 3.63 |
Valine | βCH3 | 1.04 | Glycogen | C2H | 3.65 |
Threonine | γCH3 | 1.20 | Glycero-phosphocholine | NCH2 | 3.68 |
Isoleucine | γCH2u | 1.24 | Glycerol | C1H | 3.68 |
Threonine | γCH3 | 1.32 | α-Glucose | C3H | 3.72 |
Lactate | βCH3 | 1.34 | Alanine | αCH | 3.75 |
Isoleucine | γCH2u | 1.46 | Glutamine | αCH | 3.76 |
Alanine | βCH3 | 1.48 | Glutathione | αCH | 3.76 |
Leucine | βCH2 | 1.72 | Glutamate | αCH | 3.77 |
Lysine | δCH2 | 1.72 | α-Glucose | C6H | 3.78 |
Lysine | βCH2 | 1.90 | Glycerol | C2H | 3.82 |
Acetate | CH3 | 1.91 | α-Glucose | C5H | 3.84 |
Arginine | βCH2 | 1.91 | Glycogen | C6H | 3.86 |
Glutamate | βCH | 2.06 | Glycogen | C5H | 3.88 |
Glutathione | βCH2 | 2.14 | β-Glucose | C6H | 3.90 |
Glutamine | βCH2 | 2.15 | Creatine | CH2 | 3.92 |
Valine | βCH | 2.28 | Glycogen | C3H | 3.92 |
Glutamate | γCH2 | 2.35 | Phosphorylethanolamine | CH2 | 4.00 |
Malate | αCH | 2.36 | Phenylalanine | αCH | 4.02 |
Glutamine | γCH2 | 2.43 | Choline | αCH2 | 4.07 |
Glutathione | γCH2 | 2.62 | Lactate | αCH | 4.11 |
Aspartate | βCH2 | 2.66 | Glycerol | 1-CH2 | 4.11 |
Aspartate | β′CH2 | 2.79 | Phosphocholine | OCH2 | 4.16 |
Glutathione | β″CH2 | 2.94 | Threonine | βCH | 4.26 |
Lysine | εCH2 | 3.03 | Glycero-phosphocholine | OCH2 | 4.32 |
Creatine | NCH3 | 3.04 | β-Glucose | C1H | 4.64 |
Phosphorylethanolamine | CH2 | 3.2 | β-Glucose | C1H | 5.2 |
Phosphocholine | N(CH3)3 | 3.18 | α-Glucose | C1H | 5.24 |
Choline | N(CH3)3 | 3.19 | α-Glucose | C1H | 5.4 |
Arginine | δCH2 | 3.22 | Uracil | CH | 5.9 |
Glycero-phosphocholine | N(CH3)3 | 3.22 | Fumarate | CH | 6.52 |
β-Glucose | C2H | 3.26 | Histidine | C4H | 6.91 |
Myo-Inositol | CH | 3.28 | Histidine | C4H′ | 6.99 |
β-Glucose | C4H | 3.40 | Tyrosine | C2,6H | 7.15–7.2 |
α-Glucose | C4H | 3.42 | Tyrosine | C2,6H′ | 7.18 |
β-Glucose | C5H | 3.47 | Phenylalanine | C4H | 7.33 |
β-Glucose | C3H | 3.48 | Phenylalanine | C2,6H | 7.39 |
Myo-Inositol | CH | 3.53 | Phenylalanine | C3,5H | 7.43 |
α-Glucose | C2H | 3.54 | Uracil | CH | 7.53 |
Glycine | CH2 | 3.56 | Histidine | C2H | 7.78 |
Glycerol | 1,3CH2OH | 3.57 | Formate | HCOO− | 8.46 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorice, A.; Siano, F.; Capone, F.; Guerriero, E.; Picariello, G.; Budillon, A.; Ciliberto, G.; Paolucci, M.; Costantini, S.; Volpe, M.G. Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles. Molecules 2016, 21, 1411. https://doi.org/10.3390/molecules21101411
Sorice A, Siano F, Capone F, Guerriero E, Picariello G, Budillon A, Ciliberto G, Paolucci M, Costantini S, Volpe MG. Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles. Molecules. 2016; 21(10):1411. https://doi.org/10.3390/molecules21101411
Chicago/Turabian StyleSorice, Angela, Francesco Siano, Francesca Capone, Eliana Guerriero, Gianluca Picariello, Alfredo Budillon, Gennaro Ciliberto, Marina Paolucci, Susan Costantini, and Maria Grazia Volpe. 2016. "Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles" Molecules 21, no. 10: 1411. https://doi.org/10.3390/molecules21101411
APA StyleSorice, A., Siano, F., Capone, F., Guerriero, E., Picariello, G., Budillon, A., Ciliberto, G., Paolucci, M., Costantini, S., & Volpe, M. G. (2016). Potential Anticancer Effects of Polyphenols from Chestnut Shell Extracts: Modulation of Cell Growth, and Cytokinomic and Metabolomic Profiles. Molecules, 21(10), 1411. https://doi.org/10.3390/molecules21101411