Natural Deep Eutectic Solvents (NADES) as a Tool for Bioavailability Improvement: Pharmacokinetics of Rutin Dissolved in Proline/Glycine after Oral Administration in Rats: Possible Application in Nutraceuticals
Abstract
:1. Introduction
2. Results
2.1. Rutin Solubility in the Different Prepared NADES
2.2. HPLC-MS/MS Method Validation
2.2.1. Specificity, linearity, LOQ and LOD
2.2.2. Accuracy and Precision
2.3. Pharmacokinetics in Mice of Proline-Glutamic Acid Rutin Eutectic and Rutin Water Suspensions
3. Discussion
4. Experimental Section
4.1. Chemicals
4.2. NADES Preparation
4.3. Solubility Trials and Quantification of Solubilized Rutin in the NADES by HPLC-DAD
4.4. Animals Blood Collection and Extraction
4.5. HPLC-MS Plasma Analysis
4.6. Method Validation
4.7. Pharmacokinetic Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Joana Gil-Chávez, G.; Villa, J.A.; Fernando Ayala-Zavala, J.; Basilio Heredia, J.; Sepulveda, D.; Yahia, E.M.; González-Aguilar, G.A. Technologies for Extraction and Production of Bioactive Compounds to be used as Nutraceuticals and Food Ingredients: An Overview. Compr. Rev. Food Sci. Food Saf. 2013, 12, 5–23. [Google Scholar] [CrossRef]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Espín, J.C.; García-Conesa, M.T.; Tomás-Barberán, F.A. Nutraceuticals: Facts and Fiction. Phytochemistry 2007, 68, 2986–3008. [Google Scholar] [CrossRef] [PubMed]
- Sut, S.; Baldan, V.; Faggian, M.; Peron, G.; Dall’Acqua, S. Nutraceuticals, a New Challenge for Medicinal Chemistry. Curr. Med. Chem. 2016, 23, 1–26. [Google Scholar] [CrossRef]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Ionic Liquids and Deep Eutectic Solvents in Natural Products Research: Mixtures of Solids as Extraction Solvents. J. Nat. Prod. 2013, 76, 2162–2173. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as New Potential Media for Green Technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Tailoring Properties of Natural Deep Eutectic Solvents with Water to Facilitate their Applications. Food Chem. 2015, 187, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Espino, M.; de Los Ángeles Fernández, M.; Gomez, F.J.V.; Silva, M.F. Natural Designer Solvents for Greening Analytical Chemistry. TrAC Trends Anal. Chem. 2016, 76, 126–136. [Google Scholar] [CrossRef]
- Laparra, J.M.; Sanz, Y. Interactions of Gut Microbiota with Functional Food Components and Nutraceuticals. Pharmacol. Res. 2010, 61, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food Sources and Bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [PubMed]
- Marín, L.; Miguélez, E.M.; Villar, C.J.; Lombó, F. Bioavailability of Dietary Polyphenols and Gut Microbiota Metabolism: Antimicrobial Properties. BioMed Res. Int. 2015, 2015, 905215. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J. Enhancing Nutraceutical Bioavailability through Food Matrix Design. Curr. Opin. Food Sci. 2015, 4, 1–6. [Google Scholar] [CrossRef]
- Duan, L.; Dou, L.-L.; Guo, L.; Li, P.; Liu, E.-H. Comprehensive Evaluation of Deep Eutectic Solvents in Extraction of Bioactive Natural Products. ACS Sustain. Chem. Eng. 2016, 4, 2405–2411. [Google Scholar] [CrossRef]
- Bakirtzi, C.; Triantafyllidou, K.; Makris, D.P. Novel Lactic Acid-Based Natural Deep Eutectic Solvents: Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Common Native Greek Medicinal Plants. J. Appl. Res. Med. Aromat. Plants 2016, 3, 120–127. [Google Scholar] [CrossRef]
- Radošević, K.; Ćurko, N.; Gaurina Srček, V.; Cvjetko Bubalo, M.; Tomašević, M.; Kovačević Ganić, K.; Radojčić Redovniković, I. Natural Deep Eutectic Solvents as Beneficial Extractants for Enhancement of Plant Extracts Bioactivity. LWT Food Sci. Technol. 2016, 73, 45–51. [Google Scholar] [CrossRef]
- Choi, Y.H.; van Spronsen, J.; Dai, Y.; Verberne, M.; Hollmann, F.; Arends, I.W.C.E.; Witkamp, G.-J.; Verpoorte, R. Are Natural Deep Eutectic Solvents the Missing Link in Understanding Cellular Metabolism and Physiology? Plant Physiol. 2011, 156, 1701–1705. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural Deep Eutectic Solvents as a New Extraction Media for Phenolic Metabolites in Carthamus tinctorius L. Anal. Chem. 2013, 85, 6272–6278. [Google Scholar] [CrossRef] [PubMed]
- Erlund, I.; Kosonen, T.; Alfthan, G.; Mäenpää, J.; Perttunen, K.; Kenraali, J.; Parantainen, J.; Aro, A. Pharmacokinetics of Quercetin from Quercetin Aglycone and Rutin in Healthy Volunteers. Eur. J. Clin. Pharmacol. 2000, 56, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Morrison, H.G.; Sun, C.C.; Neervannan, S. Characterization of Thermal Behavior of Deep Eutectic Solvents and their Potential as Drug Solubilization Vehicles. Int. J. Pharm. 2009, 378, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Lee, P.I. Investigation on Drug Solubility Enhancement using Deep Eutectic Solvents and their Derivatives. Int. J. Pharm. 2016, 505, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Gou, Y.; Gao, X.; Bai, R.; Chen, W.; Sun, B.; Hu, F.; Zhao, W. The Pharmacokinetic Study of Rutin in Rat Plasma Based on an Electrochemically Reduced Graphene Oxide Modified Sensor. J. Pharm. Anal. 2016, 6, 80–86. [Google Scholar] [CrossRef]
- Umar, S.; Mishra, N.K.; Pal, K.; Sajad, M.; Neha; Ansari, M.M.; Ahmad, S.; Katiyar, C.K.; Khan, H.A. Protective Effect of Rutin in Attenuation of Collagen-Induced Arthritis in Wistar Rat by Inhibiting Inflammation and Oxidative Stress. Indian J. Rheumatol. 2012, 7, 191–198. [Google Scholar] [CrossRef]
- Cushnie, T.P.T.; Lamb, A.J. Antimicrobial Activity of Flavonoids. Int. J. Antimicrob. Agents 2005, 26, 343–356. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.R.; Gonçalves, P.; Martel, F. Chemopreventive Effect of Dietary Polyphenols in Colorectal Cancer Cell Lines. Nutr. Res. 2011, 31, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Machado, D.G.; Bettio, L.E.B.; Cunha, M.P.; Santos, A.R.S.; Pizzolatti, M.G.; Brighente, I.M.C.; Rodrigues, A.L.S. Antidepressant-Like Effect of Rutin Isolated from the Ethanolic Extract from Schinus molle L. in Mice: Evidence for the Involvement of the Serotonergic and Noradrenergic Systems. Eur. J. Pharmacol. 2008, 587, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Morling, J.R.; Yeoh, S.E.; Kolbach, D.N. Rutosides for Treatment of Post-Thrombotic Syndrome. Cochrane Database Syst. Rev. 2015, 9, CD005625. [Google Scholar]
- Chen, M.; Zhang, X.; Wang, H.; Lin, B.; Wang, S.; Hu, G. Determination of Rutin in Rat Plasma by Ultra Performance Liquid Chromatography Tandem Mass Spectrometry and Application to Pharmacokinetic Study. J. Chromatogr. Sci. 2015, 53, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Kammalla, A.K.; Ramasamy, M.K.; Chintala, J.; Dubey, G.P.; Agrawal, A.; Kaliappan, I. Comparative Pharmacokinetic Interactions of Quercetin and Rutin in Rats After Oral Administration of European Patented Formulation Containing Hipphophae Rhamnoides and Co-Administration of Quercetin and Rutin. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 277–284. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Feng, Y.; Ouyang, H.-Z.; Yu, B.; Chang, Y.-X.; Pan, G.-X.; Dong, G.-Y.; Wang, T.; Gao, X.-M. A Sensitive LC-MS/MS Method for Simultaneous Determination of Six Flavonoids in Rat Plasma: Application to a Pharmacokinetic Study of Total Flavonoids from Mulberry Leaves. J. Pharm. Biomed. Anal. 2013, 84, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Aroso, I.M.; Silva, J.C.; Mano, F.; Ferreira, A.S.D.; Dionísio, M.; Sá-Nogueira, I.; Barreiros, S.; Reis, R.L.; Paiva, A.; Duarte, A.R.C. Dissolution Enhancement of Active Pharmaceutical Ingredients by Therapeutic Deep Eutectic Systems. Eur. J. Pharm. Biopharm. 2016, 98, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds are available from the authors.
Solvent Class | Mixture Number | Solvent | Rutin Solubility at 22 °C (μg/mL) |
---|---|---|---|
Reference solvent | Water | 120.0 ± 4.9 | |
Ethanol | 2369.7 ± 93.2 | ||
Methanol | 2053.7 ± 89.7 | ||
Urea based | 1 | Urea–Glucose–Citric Acid 1:1:1 | 378.7 ± 8.5 |
2 | Urea–Glucose–Fructose 1:1:1 | 961.3 ± 30.6 | |
3 | Urea–Tartaric Acid 1:1 | 679.8 ± 19.0 | |
4 | Urea–Choline chloride 1:1 | 1883.3 ± 48.1 | |
Sugar based | 5 | Glucose–Fructose–Water 1:1:1 | 81.9 ± 2.5 |
6 | Glucose–Fructose–Sorbitol 1:1:1 | 90.8 ± 1.9 | |
Sugar and organic acid based | 7 | Citric Acid–Fructose 1:1 | 205.1 ± 5.1 |
8 | Tartaric Acid–Fructose 1:1 | 504 ± 16.4 | |
9 | Glucose–Citric Acid–Water 1:1:1 | 175.2 ± 3.7 | |
Organic acid and amino acids based | 10 | Proline–Glutamic Acid 1:1 | 2255.9 ± 63.4 |
11 | Proline–Glutamic Acid 2:1 | 2938.4 ± 117.9 | |
12 | Proline–Oxalic Acid 1:1 | 749.3 ± 22.5 | |
13 | Proline–Tartaric Acid 1.1 | 546.9 ± 19,9 | |
14 | Ornitine–Tartaric Acid 1:1 | 209.7 ± 5.7 | |
15 | Arginine–Tartaric Acid 1:1 | 362.7 ± 11.2 | |
16 | Citrulline–Tartaric Acid 1.1 | 370.4 ± 13.1 | |
17 | Arginine–Oxalic Acid 1:1 | 414.3 ± 13.6 | |
18 | Proline–Malic Acid 1:1 | 900.3 ± 31.1 | |
19 | Arginin–Malic Acid 1:1 | 457.4 ± 17.8 | |
20 | Ornitine–Malic Acid 1:1 | 408.0 ± 14.8 | |
21 | Citrulline–Malic Acid 1:1 | 454.5 ± 18.5 | |
22 | Proline–Citric Acid 1:1 | 672.5 ± 26.2 | |
23 | Arginine–Citric Acid 1:1 | 414.3 ± 13.3 | |
24 | Ornitine–Citric Acid1:1 | 424.7 ± 17.2 | |
25 | Citrulline–Citric Acid 1:1 | 459.7 ± 14.4 | |
26 | Proline–Glucose1:1 | 878.7 ± 31.3 | |
27 | Proline–Fructose 1:1 | 1563.9 ± 43.8 | |
Choline chloride based | 28 | Proline–Choline Chloride 1:2 | 2642.8 ± 101.3 |
29 | Proline–Choline Chloride 1:3 | 2799.2 ± 103.3 | |
30 | Choline Chloride–Malic Acid 1:1 | 702.0 ± 22.3 |
Nominal Concentration (ng/mL) | Measured (ng/mL) | RSD (%) * | Accuracy (%) | |
---|---|---|---|---|
Intra day (n = 5) | 10 | 10.76 ± 0.30 | 3.2 | 107.5 |
20 | 19.64 ± 0.79 | 4.9 | 98.2 | |
40 | 38.87 ± 1.10 | 2.8 | 97.1 | |
80 | 80.46 ± 1.88 | 2.4 | 100.5 | |
Inter day (n = 5) | 10 | 10.22 ± 0.40 | 3.9 | 102.2 |
20 | 19.44 ± 0.61 | 3.2 | 97.2 | |
40 | 39.11 ± 1.86 | 4.7 | 97.8 | |
80 | 78.79 ± 1.80 | 2.9 | 98.4 |
Pharmakokinetic Parameter | Suspension | NADES |
---|---|---|
tmax (min) | 15 | 60 |
Cmax (ng/mL) | 28.6 | 58.3 |
t1/2 λz (min) | 106 | 86 |
AUClast (ng min/mL) | 2225 | 4862 |
AUC (ng min/mL) | 2888 | 5806 |
AUC (%Extrapolated) | 23 | 16 |
MRT (min) | 158 | 131 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faggian, M.; Sut, S.; Perissutti, B.; Baldan, V.; Grabnar, I.; Dall’Acqua, S. Natural Deep Eutectic Solvents (NADES) as a Tool for Bioavailability Improvement: Pharmacokinetics of Rutin Dissolved in Proline/Glycine after Oral Administration in Rats: Possible Application in Nutraceuticals. Molecules 2016, 21, 1531. https://doi.org/10.3390/molecules21111531
Faggian M, Sut S, Perissutti B, Baldan V, Grabnar I, Dall’Acqua S. Natural Deep Eutectic Solvents (NADES) as a Tool for Bioavailability Improvement: Pharmacokinetics of Rutin Dissolved in Proline/Glycine after Oral Administration in Rats: Possible Application in Nutraceuticals. Molecules. 2016; 21(11):1531. https://doi.org/10.3390/molecules21111531
Chicago/Turabian StyleFaggian, Marta, Stefania Sut, Beatrice Perissutti, Valeria Baldan, Iztok Grabnar, and Stefano Dall’Acqua. 2016. "Natural Deep Eutectic Solvents (NADES) as a Tool for Bioavailability Improvement: Pharmacokinetics of Rutin Dissolved in Proline/Glycine after Oral Administration in Rats: Possible Application in Nutraceuticals" Molecules 21, no. 11: 1531. https://doi.org/10.3390/molecules21111531