Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics
Abstract
:1. Introduction
2. Results and Discussion
2.1. 1H-NMR Metabolic Profiling
2.1.1. Assignment of 1H-NMR Spectra
2.1.2. Multivariate Data Analysis
2.2. Content Determination of Heterophyllin A and Heterophyllin B
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Plant Materials
3.3. 1H-NMR Measurement
3.4. Data Analysis
3.5. Content Determination
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, X.H.; Han, L.; Wang, L.J.; Fu, X.S. Study on Quality Standards of Pseudostellaria heterophylla. Chin. Pharm. 2010, 21, 1769–1771. [Google Scholar]
- Pang, W.; Lin, S.; Dai, Q.; Zhang, H.; Hu, J. Antitussive activity of Pseudostellaria heterophylla (Miq.) Pax extracts and improvement in lung function via adjustment of multi-cytokine levels. Molecules 2011, 16, 3360–3370. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.C.; Tao, L.; Bo, S.; Gan, H.R.; Duan, J.A. A meliorated effects of Radix Pseudostellariaeon oxidative stress in rat chronic heart failure induced by acute cardiac infarction. West China J. Pharm. Sci. 2008, 23, 413–416. [Google Scholar]
- Fu, X.S.; Liu, X.H.; Xu, H.; Zhou, Y.Z.; Chen, F. Effect of pseudostellaria polysaccharides in diabetic mice by alloxan. Anhui Med. Pharm. J. 2010, 14, 521–522. [Google Scholar]
- Fu, X.S.; Liu, X.H.; Xu, H.; Zhou, Y.Z.; Chen, F. Research status and trends of pseudostellariae radix. Chin. J. New Grugs. 2012, 21, 757–760. [Google Scholar]
- Sheng, R.; Xu, X.; Tang, Q.; Bian, D.; Li, Y.; Qian, C.; He, X.; Gao, X.; Pan, R.; Wang, C.; et al. Polysaccharide of radix pseudostellariae improves chronic fatigue syndrome induced by poly I:C in mice. Evid. Based Complement. Altern. Med. 2011, 2011, 840516. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.S.; Fu, X.S.; Liu, X.H.; Chao, J.G.; Gu, W.; Ma, Y.; Hou, Y.; Li, Y.R. Study on the dynamic change of Heterophyllin A and B in Radix Pseudostellariae. J. Nanjing Univ. Tradit. Chin. Med. 2013, 29, 175–178. [Google Scholar]
- Song, J.P.; Zeng, Y.P.; Liu, X.H.; Zhang, Y.C. Determination of Polysaccharide in Radix Pseudostellariae from different habitats by HPLC-ELSD. Tsinghua J. Tradit. Chin. Med. 2008, 42, 77–79. [Google Scholar]
- Fu, X.S.; Zou, L.S.; Liu, X.H.; Ju, W.Z.; Ma, Y.; Hou, Y.; Li, Y.R. Analysis of cyclic peptides in Pseudostellariae Radix by UPLC-ESI-TOF MS/MS. J. Chin. Mass Spectrom. Soc. 2013, 34, 179–184. [Google Scholar]
- Ma, Y.; Hou, Y.; Zou, L.S.; Liu, X.H.; Xu, L.; Yuan, J.D. Dynamic changes of nucleosides and nucleobases in Pseudostellariae Radix from Fujian province analyzed by QTRAP LC-MS/MS. Chin. J. New Drugs 2014, 23, 2325–2330. [Google Scholar]
- An, K.; He, J.; Wan, Z.M.; Shao, H.W.; Yang, X.C.; Jiao, W. Determination and multivariate statistical analysis of amino acid in Pseudostellaria Heterophylla from different producing areas. Nat. Prod. Res. Dev. 2012, 594–598. [Google Scholar]
- Li, Z.Y.; Zhi, H.J.; Zhang, F.S.; Sun, H.F.; Zhang, L.Z.; Jia, J.P.; Xing, J.; Qin, X.M. Metabolomic profiling of the antitussive and expectorant plant Tussilago farfara L. by nuclear magnetic resonance spectroscopy and multivariate data analysis. J. Pharm. Biomed. Anal. 2013, 75, 158–164. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Zhang, F.; Li, Z.; Qin, X.; Zhang, L. Comparison of fruits of forsythia suspensa at two different maturation stages by NMR-based metabolomics. Molecules 2015, 20, 10065–10081. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.; Tao, L.H.; Yue, Q.H.; Kuang, T.T.; Tang, C.; Yang, Y.D.; Luo, W.Z.; Zhou, X.D.; Zhang, Y. Metabolic discrimination of rhizoma coptidis from different species using 1H-NMR spectroscopy and principal component analysis. Planta Med. 2012, 78, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.O.; Shin, Y.S.; Hyun, S.H.; Cho, S.; Bang, K.H.; Lee, D.; Choi, S.P.; Choi, H.K. NMR-based metabolic profiling and differentiation of ginseng roots according to cultivation ages. J. Pharm. Biomed. Anal. 2012, 58, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Srivastava, S.; Khalid, A.; Singh, N.; Sangwan, R.S.; Sidhu, O.P.; Roy, R.; Khetrapal, C.L.; Tuli, R. Comprehensive metabolic fingerprinting of Withania somnifera leaf and root extracts. Phytochemistry 2010, 71, 1085–1094. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.K.; Choi, Y.H.; Verpoorte, R. NMR-based metabolomic analysis of plants. Nat. Protoc. 2010, 5, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Ben-Izhak Monselise, E.; Parola, A.H.; Kost, D. Low-frequency electromagnetic fields induce a stress effect upon higher plants, as evident by the universal stress signal, alanine. Biochem. Biophys. Res. Commun. 2003, 302, 427–434. [Google Scholar] [CrossRef]
- Tauzin, A.S.; Giardina, T. Sucrose and invertases, a part of the plant defense response to the biotic stresses. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.F.; Tian, S.P. Peach fruit acquired tolerance to low temperature stress by accumulation of linolenic acid and N-acylphosphatidylethanolamine in plasma membrane. Food Chem. 2010, 120, 864–872. [Google Scholar] [CrossRef]
- Alisdair, R.F.; Asaph, A.; Lothar, W.; Mark, S.; Takayuki, T.; Joachim, K.; Adam, J.C.; Kazuki, S.; Paul, D.F.; Vincenzo, D. Recommendations for reporting metabolite data. Plant Cell 2011, 23, 2477–2482. [Google Scholar]
- Sample Availability: Samples of the compounds 1 and 2 are available from the authors.
No. | Metabolites | Chemical Shift for Standards (δ, ppm), Coupling Constants (J, Hz) | Chemical Shift (δ, ppm), Coupling Constants (J, Hz) | VIP |
---|---|---|---|---|
1 | Leucine | 0.95 (t, 5.9), 1.72 (m) | 0.97 (d, 7.1), 1.72 (m), 3.71 (s) | 0.32 |
2 | Isoleucine | 0.926 (t, 7.414), 0.997 (d, 7.001), 1.248 (m), 1.457 (m), 1.968 (m), 3.66 (d, 3.969) | 1.02 (t, 7.6), 1.97 (m) | 1.09 |
3 | Valine | 0.976 (d, 7.01), 1.029 (d, 7.05), 2.261 (m), 3.601 (d, 4.33) | 1.05 (d, 6.8) | 1.17 |
4 | 2-Ketoisovaleric acid | 1.15 (m), 3.02 (m) | 1.13 (d, 7.2), 3.03 (m) | 1.02 |
5 | Alanine | 1.47 (d, 7.2), 3.8 (m) | 1.43 (d, 7.3) | 1.38 |
6 | Lactate | 4.1 (s), 1.3 (s) | 1.26 (s), 4.10 (s) | 1.01 |
7 | Lysine | 1.46 (m), 1.7 (m), 1.89 (m), 3.02 (t, 6.09) | 1.44 (m), 1.72 (m), 1.87 (m), 3.04 (t, 6.6) | 1.31 |
8 | Glutamine | 2.12 (m), 2.45 (m), 3.76 (t, 6.18) | 2.12 (m), 2.37 (m), 3.76 (m) | 1.61 |
9 | Glutamate | 2.04 (m), 3.75 (dd, 7.186, 4.72), 2.34 (m) | 2.07 (m), 2.34 (m), 3.74 (m) | 0.11 |
10 | Acetoacetate | 2.27 (s), 3.43 (s) | 2.22 (m) | 1.51 |
11 | Arginine | 1.68 (m), 1.90 (m), 3.22 (t, 6.93), 3.76 (t, 6.11) | 1.72 (m), 1.92 (m), 3.75 (t, 6.1) | 1.39 |
12 | Glycine | 3.54 (s) | 3.61 (s) | 1.47 |
13 | Taurine | 3.25 (t, 6.57), 3.42 (t, 6.62) | 3.40 (t, 12.0), 3.27 (t, 10.2) | 1.06 |
14 | α-Glucose | 5.2 (d, 3.7) | 3.40 (m), 5.19 (d, 3.7) | 0.36 |
15 | Sucrose | 5.42 (d, 3.6), 4.19 (d, 8.4) | 5.40 (d, 3.9), 4.18 (d, 3.9) | 1.53 |
16 | Raffinose | 4.97 (d, 3.6), 5.43 (d, 4.2) | 5.49 (d, 3.8) | 1.33 |
17 | Xylose | 4.55 (d, 9) | 5.19 (m) | 0.36 |
18 | Salvianolic acid B | 7.15 (d, 8.8), 6.80 (d, 7.2), 6.50 (d, 2.8), 2.95 (m) | 7.14 (d, 8.2), 6.85 (d, 8.6), 6.47 (d, 1.8), 5.13 (m), 4.29 (d, 4.8), 2.94 (m) | 1.05 |
19 | Tyrosine | 6.83 (d, 8.0), 7.15 (m), 6.87 (m), 7.17 (m) | 7.12 (t, 8.4), 6.83 (t, 6.6) | 1.35 |
20 | Histidine | 7.09 (d, 0.58), 7.9 (d, 1.13) | 7.10 (d, 8.4), 7.90 (m) | 0.89 |
21 | Phenylalanine | 3.19 (m), 3.98 (dd, 7.88, 5.31), 7.32 (d, 6.96), 7.36 (m), 7.42 (m) | 3.28 (m), 3.99 (m), 7.14 (d, 8.2) | 1.53 |
22 | Asparagine | 2.94 (m), 2.84 (m), 4.00 (dd, 7.69, 4.2) | 2.88 (dd, 16.1, 7.6), 2.96 (dd, 16.1, 7.6), 4.00 (m) | 0.52 |
23 | Linolenic acid | 0.98 (t, 9.8) | 0.96 (t, 6.0), 1.30 (brs) | 1.07 |
24 | γ-aminobutyrate | 1.94 (m), 2.48 (t, 7.36), 3.03 (t, 7.58) | 1.92 (m), 2.32 (t, 9.6), 3.04 (t, 6.6) | 1.35 |
25 | Unsaturated fatty acid | 2.85 (m), 5.30 (m) | 2.75 (m), 5.34 (m) | 1.06 |
26 | Succinate | 2.39 (s) | 2.32 (s) | 0.81 |
27 | Ferulic acid | 7.15 (d, 8.4), 6.32 (m) | 7.14 (d, 8.2), 6.34 (m) | 1.53 |
28 | Fumaric acid | 6.55 (s) | 6.47 (s) | 1.69 |
29 | Formic acid | 8.32 (s) | 8.40 (s) | 1.43 |
30 | Dimethylglycine | 2.95 (s), 3.75 (s) | 2.94 (s), 3.71 (s) | 1.12 |
31 | Quercetin | 6.18 (d, 2), 6.39 (d, 2), 6.88 (d, 8.5), 7.52 (dd, 2.2, 8.5), 7.66 (d, 2.2), 12.4 (s) | 6.85 (d, 8.6), 6.34 (d, 4.9), 6.13 (d, 1.8) | 1.14 |
32 | Hyperoside | 6.90 (d, 7.2), 5.40 (d, 4.2) | 6.85 (d, 8.6), 6.13 (d, 1.6), 5.36 (d, 3.9) | 1.14 |
33 | Luteolin | 6.4 (d, 2), 6.68 (s), 6.76 (d, 2), 6.89 (d, 9), 7.39 (d, 2), 7.41 (dd, 2.2, 9.0) | 6.89 (d, 8.6) | 1.32 |
34 | Kaempferol | 8.05 (m), 6.5 (d, 2.0), 6.98 (m), 6.25 (d, 2.0) | 6.90 (d, 9.0), 6.47 (d, 1.2) | 1.69 |
No. | Metabolites | Correlation Coefficient |
---|---|---|
5 | Alanine | −0.893 |
6 | Lactate | −0.865 |
7 | Lysine | −0.648 |
8 | Glutamine | +0.924 |
13 | Taurine | −0.805 |
15 | Sucrose | −0.645 |
16 | Raffinose | +0.950 |
17 | Xylose | +0.858 |
19 | Tyrosine | −0.690 |
23 | Linolenic acid | −0.589 |
24 | γ-Aminobutyrate | −0.631 |
25 | Unsaturated fatty acid | +0.707 |
29 | Formic acid | +0.674 |
32 | Hyperoside | −0.677 |
No. | Heterophyllin A | Heterophyllin B |
---|---|---|
JSJR-jr | 9.32 | 138.42 |
JSJR-zs1 | 36.32 | 2.54 |
JSJR-zs2 | 16.22 | 3.16 |
JSJR-sb | 6.88 | 65.47 |
JSJR-xc | 6.20 | 130.69 |
FJZR-jr | 14.99 | 175.58 |
FJZR-zs1 | 43.73 | 2.75 |
FJZR-zs2 | 28.09 | 5.02 |
FJZR-sb | 12.18 | 96.01 |
FJZR-xc | 11.55 | 149.27 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hua, Y.; Hou, Y.; Wang, S.; Ma, Y.; Liu, Z.; Zou, L.; Liu, X.; Luo, Y.; Liu, J. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics. Molecules 2016, 21, 1538. https://doi.org/10.3390/molecules21111538
Hua Y, Hou Y, Wang S, Ma Y, Liu Z, Zou L, Liu X, Luo Y, Liu J. Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics. Molecules. 2016; 21(11):1538. https://doi.org/10.3390/molecules21111538
Chicago/Turabian StyleHua, Yujiao, Ya Hou, Shengnan Wang, Yang Ma, Zixiu Liu, Lisi Zou, Xunhong Liu, Yiyuan Luo, and Juanxiu Liu. 2016. "Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics" Molecules 21, no. 11: 1538. https://doi.org/10.3390/molecules21111538
APA StyleHua, Y., Hou, Y., Wang, S., Ma, Y., Liu, Z., Zou, L., Liu, X., Luo, Y., & Liu, J. (2016). Comparison of Chemical Compositions in Pseudostellariae Radix from Different Cultivated Fields and Germplasms by NMR-Based Metabolomics. Molecules, 21(11), 1538. https://doi.org/10.3390/molecules21111538