Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils
Abstract
:1. Introduction
2. Chemical Variability of Eucalyptus EOs
2.1. Eucalyptus camaldulensis Dehnh
2.2. Eucalyptus cinerea F. Muell. ex Benth
2.3. Eucalyptus citriodora Hook
2.4. Eucalyptus globulus Labill
2.5. Eucalyptus grandis W. Hill ex Maiden
2.6. Eucalyptus saligna Smith
2.7. Eucalyptus tereticornis Smith
3. Biological Activities of Eucalyptus EOs
3.1. Antimicrobial Activity
3.1.1. Antibacterial Activity
3.1.2. Antifungal Activity
3.2. Acaricidal Activity
3.3. Insecticidal Activity
3.4. Herbicidal Activity
4. Concluding Remarks
Supplementary Materials
Acknowledgments
Conflicts of Interest
References
- Paterson, I.; Anderson, E.A. The renaissance of natural products as drug candidates. Science 2005, 310, 451–453. [Google Scholar] [CrossRef] [PubMed]
- Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural product as sources of new drugs over the last 25 years. J. Nat. Prod. 2007, 70, 461–477. [Google Scholar] [CrossRef] [PubMed]
- Harvey, A.L.; Edrada-Ebel, R.A.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov. 2015, 14, 111–129. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 2012, 75, 311–335. [Google Scholar] [CrossRef] [PubMed]
- Gbenou, J.D.; Ahounou, J.F.; Akakpo, H.B.; Laleye, A.; Yayi, E.; Gbaguidi, F.; Baba-Moussa, L.; Darboux, R.; Dansou, P.; Moudachirou, M.; et al. Phytochemical composition of Cymbopogon citratus and Eucalyptus citriodora EOs and their anti-inflammatory and analgesic properties on Wisstar rats. Mol. Biol. Rep. 2013, 40, 1127–1134. [Google Scholar] [CrossRef] [PubMed]
- Arantes, F.F.P.; Barbosa, L.C.A.; Maltha, C.R.A.; Demuner, A.J.; Costa, P.M.; Ferreira, J.R.O.; Costa-Lotufo, L.V.; Moraes, M.O.; Pessoa, C. Synthesis of novel α-santonin derivatives as potential cytotoxic agents. Eur. J. Med. Chem. 2010, 45, 6045–6051. [Google Scholar] [CrossRef] [PubMed]
- Paula, V.F.; Barbosa, L.C.A.; Demuner, A.J.; Veloso, D.P.; Picanço, M.C. Synthesis and insecticidal activity of new amide derivates of piperine. Pest Manag. Sci. 2000, 56, 168–174. [Google Scholar] [CrossRef]
- Barbosa, L.C.A.; Alvarenga, E.S.; Demuner, A.J.; Virtuoso, L.S.; Silva, A.A. Synthesis of new phytogrowth-inhibitory substituted aryl-p-benzoquinones. Chem. Biodivers. 2006, 3, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural Products as sources of new pesticides. J. Nat. Prod. 2012, 75, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Copping, L.G.; Duke, S.O. Natural products that have been used commercially as crop protection agents. Pest Manag. Sci. 2007, 63, 524–554. [Google Scholar] [CrossRef] [PubMed]
- Gerwick, B.C.; Sparks, T.C. Natural products for pest control: An analysis of their role, value and future. Pest Manag. Sci. 2014, 70, 1169–1185. [Google Scholar] [CrossRef] [PubMed]
- Lima, L.S.; Barbosa, L.C.A.; Alvarenga, E.S.; Demuner, A.J.; Silva, A.A. Synthesis and phytotoxicity evaluation of substituted para-benzoquinones. Aust. J. Chem. 2003, 36, 625–630. [Google Scholar] [CrossRef]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of EOs. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of EOs—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.J.; Barbosa, L.C.A.; Demuner, A.J.; Montanari, R.M.; Francino, D.; Meira, R.M.S.A.; Souza, A.O. Chemical composition and histochemistry of Sphagneticola trilobata essential oil. Rev. Bras. Farmacogn. 2012, 22, 482–489. [Google Scholar] [CrossRef]
- Gilles, M.; Zhao, J.; An, M.; Agboola, S. Chemical composition and antimicrobial properties of EOs of three Australian Eucalyptus species. Food Chem. 2010, 119, 731–737. [Google Scholar] [CrossRef]
- Ens, E.J.; Bermner, J.B.; French, K.; Korth, J. Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biol. Invasions 2009, 11, 275–287. [Google Scholar] [CrossRef]
- Passos, J.L.; Meira, R.M.S.A.; Barbosa, L.C.A.; Barreto, R.W. Foliar anatomy of the species Lantana camara and L. radula (Verbenaceae). Planta Daninha 2009, 27, 689–700. [Google Scholar] [CrossRef]
- Sefidkon, F.; Assareh, M.H.; Abravesh, Z.; Barazandeh, M.M. Chemical composition of the EOs of four cultivated Eucalyptus species in Iran as medicinal plants (E. microtheca, E. spathulata, E. largiflorens and E. torquata). Iran. J. Pharm. Res. 2007, 6, 135–140. [Google Scholar]
- Si, W.; Gong, J.; Tsao, R.; Zhou, T.; Yu, H.; Poppe, C.; Johnson, R.; Du, Z. Antimicrobial activity of EOs and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J. Appl. Microbiol. 2006, 100, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Langenheim, J.H. Higher plant terpenoids: Phytocentric overview of their ecological roles. J. Chem. Ecol. 1994, 20, 1223–1280. [Google Scholar] [CrossRef] [PubMed]
- Holopainen, J.L. Multiple functions of inducible plant volatiles. Trends Plant Sci. 2004, 9, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Penuelas, J.; Llusià, J. Plant VOC emissions: Making use of the unavoidable. Trends Ecol. Evol. 2004, 19, 402–404. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, L.C.A.; Demuner, A.J.; Dumont, A.C.; Paula, V.F.; Ismail, F.M.D. Seasonal variation in the composition of volatile oils from Schinus terebinthifolius Raddi. Quím. Nova 2007, 30, 1959–1965. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Setia, N.; Kaur, S.; Kohli, R.K. Chemical composition and inhibitory activity of essential oil from decaying leaves of Eucalyptus citriodora. Z. Naturforsch. 2006, 61, 52–56. [Google Scholar] [CrossRef]
- Angelini, L.G.; Carpanese, G.; Cioni, P.L.; Morelli, I.; Macchia, M.; Flamni, G. EOs from Mediterranean Lamiaceae as weed germination inhibitors. J. Agric. Food Chem. 2003, 51, 6158–6164. [Google Scholar] [CrossRef] [PubMed]
- Barney, J.N.; Hay, A.G.; Weston, L.A. Isolation and characterization of volatiles from mugwort. J. Chem. Ecol. 2005, 31, 247–265. [Google Scholar] [CrossRef] [PubMed]
- Dudai, N.; Mayer, A.M.; Putievsky, E.; Lerner, H.R. Essential oil as allelochemicals and their potential use as bioherbicides. J. Chem. Ecol. 1999, 25, 1079–1089. [Google Scholar] [CrossRef]
- Tworkoski, T. Herbicide effects of essential oil. Weed Sci. 2002, 50, 425–431. [Google Scholar] [CrossRef]
- Singh, H.P.; Batish, D.R.; Setia, N.; Kohli, R.K. Herbicidal activity of volatile oils from Eucalyptus citriodora against Parthenium hysterophorus. Ann. Appl. Biol. 2005, 146, 89–94. [Google Scholar] [CrossRef]
- Isman, M.B. Plant EOs for pest and disease management. Crop Prot. 2000, 19, 603–608. [Google Scholar] [CrossRef]
- Montanari, R.M.; Barbosa, L.C.A.; Demuner, A.J.; Silva, C.J.; Carvalho, L.S.; Andrade, N.J. Chemical composition and antibacterial activity of essential oils from Verbenaceae species: Alternative sources of (E)-caryophyllene and germacrene-D. Quím. Nova 2011, 34, 1550–1555. [Google Scholar] [CrossRef]
- Nascimento, J.C.; Barbosa, L.C.A.; Paula, V.F.; David, J.M.; Fontana, R.; Silva, L.A.M.; França, R.S. Chemical composition and antimicrobial activity of essential oils of Ocimum canum Sims. and Ocimum selloi Benth. Ann. Acad. Bras. Cienc. 2011, 83, 787–799. [Google Scholar] [CrossRef]
- Demuner, A.J.; Barbosa, L.C.A.; Magalhães, C.G.; Silva, C.J.; Maltha, C.R.A.; Pinheiro, A.L. Seasonal variation in the chemical composition and antimicrobial activity of volatile oils of three species of Leptospermum (Myrtaceae) grown in Brazil. Molecules 2011, 16, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.J.; Barbosa, L.C.A.; Demuner, A.J.; Montanari, R.M.; Pinheiro, A.L.; Dias, I.; Andrade, N.J. Chemical composition and antibacterial activities from the essential oils of Myrtaceae species planted in Brazil. Quím. Nova 2010, 33, 104–108. [Google Scholar] [CrossRef]
- Martins, F.T.; Doriguetto, A.C.; Souza, T.C.; Souza, K.R.D.; Santos, M.H.; Moreira, M.E.C.; Barbosa, L.C.A. Composition, and anti-inflammatory and antioxidant activities of the volatile oil from the fruit peel of Garcinia brasiliensis. Chem. Biodivers. 2008, 5, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Burt, S. EOs: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef] [PubMed]
- Stefanakis, M.K.; Touloupakis, E.; Anastasopoulos, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Makridis, P. Antibacterial activity of EOs from plants of the genus Origanum. Food Control 2013, 34, 539–546. [Google Scholar] [CrossRef]
- Hill, K.D.; Johnson, L.A.S. Systematic studies in the eucalypts. 7. A revision of the bloodwoods, genus Corymbia (Myrtaceae). Telopea 1995, 6, 185–504. [Google Scholar] [CrossRef]
- Pereira, V.; Dias, C.; Vasconcelos, M.C.; Rosa, E.; Saavedra, M.J. Antibacterial activity and synergistic effects between Eucalyptus globulus leaf residues (EOs and extracts) and antibiotics against several isolates of respiratory tract infections (Pseudomonas aeruginosa). Ind. Crops Prod. 2014, 52, 1–7. [Google Scholar] [CrossRef]
- Bello, M.O.; Olabanji, I.O.; Ibrahim, A.O.; Yekeen, T.A.; Oboh, L.M. Nutraceuticals in leaves of Eucalyptus citriodora and Eucalyptus camandulensis. Food Sci. 2013, 62, 17873–17876. [Google Scholar]
- Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011, 126, 228–235. [Google Scholar] [CrossRef]
- Araujo, F.O.L.; Rietzler, A.C.; Duarte, L.P.; Silva, G.D.F.; Carazza, F.; Filho, S.A.V. Constituents químicos e efeito ecotoxicológico do óleo volátil de folhas de Eucalyptus urograndis (Mirtaceae). Quím. Nova 2010, 33, 1510–1513. [Google Scholar] [CrossRef]
- Bizzo, H.R.; Hovell, A.M.C.; Rezende, C.M. Óleos essenciais no Brazil: Aspectos gerais, desenvolvimento e perspectivas. Quím. Nova 2009, 32, 588–594. [Google Scholar] [CrossRef]
- Pino, J.A.; Marbot, R.; Quert, R.; Garcia, H. Study of EOs of Eucalyptus resinifera Smith, E. tereticornis Smith and Corymbia maculata (Hook.) K.D. Hill & L.A.S. Johnson, grown in Cuba. Flavour Frag. J. 2002, 17, 1–4. [Google Scholar]
- Vuong, Q.V.; Chalmers, A.C.; Bhuyan, D.J.; Bowyer, M.C.; Scarlett, C.J. Botanical, phytochemical, and anticancer properties of the Eucalyptus species. Chem. Biodivers. 2015, 12, 907–924. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; An, M.; Wu, H.; Stanton, R.; Lemerle, D. Chemistry and bioactivity of Eucalyptus essential oils. Allelopathy J. 2010, 25, 313–330. [Google Scholar]
- Elaissi, A.; Salah, K.H.; Mabrouk, S.; Larbi, K.M.; Chemli, R.; Harzallah-Skhiri, F. Antibacterial activity and chemical composition of 20 Eucalyptus species’ EOs. Food Chem. 2011, 129, 1427–1434. [Google Scholar] [CrossRef]
- Watanabe, K.; Shono, Y.; Kakimizu, A.; Okada, A.; Matsuo, N.; Satoh, A.; Nishimura, H. New mosquito repellent from Eucalyptus camaldulensis. J. Agric. Food Chem. 1993, 41, 2164–2166. [Google Scholar] [CrossRef]
- Li, H.; Madden, J.L.; Potts, B.M. Variation in volatile leaf oils of the Tasmanian Eucalyptus species I. Subgenus Monocalyptus. Biochem. Syst. Ecol. 1995, 23, 299–318. [Google Scholar] [CrossRef]
- Li, H.; Madden, J.L.; Potts, B.M. Variation in volatile leaf oils of the Tasmanian Eucalyptus species II. Subgenus Symphyomyrtus. Biochem. Syst. Ecol. 1996, 24, 547–569. [Google Scholar] [CrossRef]
- Cimanga, K.; Kambu, K.; Tona, L.; Apers, S.; de Bruyne, T.; Hermans, N.; Totté, J.; Pieters, L.; Vlietinck, A.J. Correlation between chemical composition and antibacterial activity of EOs of some aromatic medicinal plants growing in the Democratic Republic of the Congo. J. Ethnopharmacol. 2002, 79, 213–220. [Google Scholar] [CrossRef]
- Batish, D.R.; Singh, H.P.; Setia, N.; Kaur, S.; Kohli, R.K. Chemical composition and phytotoxicity of volatile essential oil from intact and fallen leaves of Eucalyptus citriodora. Z. Naturforsch. 2006, 61, 465–471. [Google Scholar] [CrossRef]
- Quereshi, S.; Upadhyay, A.; Singh, R.; Khan, N.A.; Mani, A.; Patel, J. GC Analysis of EOs, TLC Profiling of Pigments and DNA Extraction from Eucalyptus Species. Curr. Bot. 2011, 2, 23–26. [Google Scholar]
- Silva, F.; Santos, R.H.S.; Andrade, N.J.; Barbosa, L.C.A.; Casali, V.W.D.; Lima, R.R.; Passarinho, R.V.M. Basil conservation affected by cropping season, harvest time and storage period. Pesq. Agropec. Bras. 2005, 40, 323–328. [Google Scholar] [CrossRef]
- Barbosa, F.F.; Barbosa, L.C.A.; Melo, E.C.; Botelho, F.M.; Santos, R.H.S. Influência da temperatura do ar de secagem sobre o teor e a composição química do óleo essencial de Lippia alba (Mill) N. E. Brown. Quím. Nova 2006, 29, 1221–1225. [Google Scholar] [CrossRef]
- Lemos, D.R.H.; Melo, E.C.; Rocha, R.P.; Barbosa, L.C.A.; Pinheiro, A.L. Influence of drying air temperature on the chemical composition of the essential oil of melaleuca. Eng. Agric. 2012, 20, 5–11. [Google Scholar] [CrossRef]
- Pimentel, F.A.; Cardoso, M.G.; Guimarães, L.G.L.; Queiroz, F.; Barbosa, L.C.A.; Morais, A.R.; Nelson, D.L.; Andrade, M.A.; Zacaroni, L.M.; Pimentel, S.M.N.P. Extracts from the leaves of Piper piscatorum (Trel. Yunc.) obtained by supercritical extraction of with CO2, employing ethanol and methanol as co-solvents. Ind. Crops Prod. 2013, 43, 490–495. [Google Scholar] [CrossRef]
- Bignell, C.M.; Dunlop, P.J.; Brophy, J.J.; Fookes, C.J.R. Volatile leaf oils of some South-western and Southern Australian species of the genus Eucalyptus (Series I). Part XIV. Subgenus Monocalyptus. Flavour Frag. J. 1997, 12, 177–183. [Google Scholar] [CrossRef]
- Gonçalves, L.A.; Barbosa, L.C.A.; Azevedo, A.A.; Casali, V.W.D.; Nascimento, E.A. Produção e composição do óleo essencial de alfavaquinha (Ocimim selloi Benth.) em resposta a dois níveis de radiação solar. Rev. Bras. Plantas Med. 2003, 6, 8–14. [Google Scholar]
- Silva, A.F.; Barbosa, L.C.A.; Silva, E.A.M.; Casali, V.W.D.; Nascimento, E.A. Composição química do óleo essencial de Hyptis suaveolens (L.) Poit. (Lamiaceae). Rev. Bras. Plantas Med. 2003, 6, 1–7. [Google Scholar]
- Lucia, A.; Licastro, S.; Zerba, E.; Masuh, H. Yield, chemical composition, and bioactivity of EOs from 12 species of Eucalyptus on Aedes aegypti larvae. Entomol. Exp. Appl. 2008, 129, 107–114. [Google Scholar] [CrossRef]
- Lucia, A.; Licastro, S.; Zerba, E.; Gonzalez, A.P.; Masuh, H. Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus EOs. Bioresour. Technol. 2009, 100, 6083–6087. [Google Scholar] [CrossRef] [PubMed]
- Toloza, A.; Lucia, A.; Zerba, E.; Masuh, H.; Picollo, M.I. Interspecific hybridization of Eucalyptus as a potential tool to improve the bioactivity of EOs against permethrin-resistant head lice from Argentina. Bioresour. Technol. 2008, 99, 7341–7347. [Google Scholar] [CrossRef] [PubMed]
- Batista-Pereira, L.G.; Fernandes, J.B.; Silva, M.F.G.F.; Vieira, P.C.; Bueno, O.C.; Correêa, A.G. Electrophysiological responses of Atta sexdens rubropilosa workers to EOs of Eucalyptus and its chemical composition. Z. Naturforsch. 2006, 61, 749–755. [Google Scholar]
- Batista-Pereira, L.G.; Fernandes, J.B.; Correa, A.G.; da Silva, M.F.G.F.; Vieira, P.C. Electrophysiological responses of Eucalyptus brown looper Thyrinteina arnobia to EOs of seven Eucalyptus species. J. Braz. Chem. Soc. 2006, 17, 555–561. [Google Scholar] [CrossRef]
- Filomeno, C.A.; Barbosa, L.C.A.; Pereira, J.L.; Pinheiro, A.L.; Fidencio, P.H.; Montanari, R.M. The chemical diversity of Eucalyptus spp. essential oils from plants grown in Brazil. Chem. Biodivers. 2008. [Google Scholar] [CrossRef] [PubMed]
- Salem, M.Z.M.; Zidan, Y.E.; Mansour, M.M.A.; El Hadidi, N.M.N.; Abo Elgat, W.A.A. Antifungal activities of two essential oils used in the treatment of three commercial woods deteriorated by five common mold fungi. Int. Biodeterior. Biodegrad. 2016, 106, 88–96. [Google Scholar] [CrossRef]
- Debbarma, J.; Kishore, P.; Nayak, B.B.; Kannuchamy, N.; Gudipati, V. Antibacterial activity of ginger, Eucalyptus and sweet orange peel EOs on fish-borne bacteria. J. Food Process. Preserv. 2013, 37, 1022–1030. [Google Scholar]
- Ghasemi, V.; Moharramipour, S.; Tahmasbi, G. Biological activity of some plant EOs against Varroa destructor (Acari: Varroidae), an ectoparasitic mite of Apis mellifera (Hymenoptera: Apidae). Exp. Appl. Acarol. 2011, 55, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Karemu, C.K.; Ndung’u, M.W.; Githua, M. Repellent effects of EOs from selected Eucalyptus species and their major constituents against Sitophilus zeamais (Coleoptera: Curculionidae). Int. J. Trop. Insect Sci. 2013, 33, 188–194. [Google Scholar] [CrossRef]
- Oyedeji, A.O.; Ekundayo, O.; Olawore, O.N.; Adeniyi, B.A.; Koenig, W.A. Antimicrobial activity of the EOs of five Eucalyptus species growing in Nigeria. Fitoterapia 1999, 70, 526–528. [Google Scholar] [CrossRef]
- Akin, M.; Aktumsek, A.; Nostro, A. Antibacterial activity and composition of the EOs of Eucalyptus camaldulensis Dehn. and Myrtus communis L. growing in Northern Cyprus. Afr. J. Biotechnol. 2010, 9, 531–535. [Google Scholar]
- Ghaffar, A.; Yameen, M.; Kiran, S.; Kamal, S.; Jalal, F.; Munir, B.; Saleem, S.; Rafiq, N.; Ahmad, A.; Saba, I.; et al. Chemical composition and in-vitro evaluation of the antimicrobial and antioxidant activities of essential oils extracted from seven Eucalyptus species. Molecules 2015, 20, 20487–20498. [Google Scholar] [CrossRef] [PubMed]
- Verdeguer, M.; Blazquez, M.A.; Boira, H. Phytotoxic effects of Lantana camara, Eucalyptus camaldulensis and Eriocephalus africanus EOs in weeds of Mediterranean summer crops. Biochem. Syst. Ecol. 2009, 37, 362–369. [Google Scholar] [CrossRef]
- Su, Y.C.; Ho, C.L.; Wang, E.I.; Chang, S.T. Antifungal activities and chemical compositions of EOs from leaves of four Eucalyptus. Taiwan J. Sci. 2006, 21, 49–61. [Google Scholar]
- Cheng, S.S.; Huang, C.G.; Chen, Y.J.; Yu, J.J.; Chen, W.J.; Chang, S.T. Chemical compositions and larvicidal activities of leaf EOs from two Eucalyptus species. Bioresour. Technol. 2009, 100, 452–456. [Google Scholar] [CrossRef] [PubMed]
- Jemaa, J.M.B.; Haouel, S.; Bouaziz, M.; Khouja, M.L. Seasonal variations in chemical composition and fumigant activity of five Eucalyptus EOs against three moth pests of stored dates in Tunisia. J. Stored Prod. Res. 2012, 48, 61–67. [Google Scholar] [CrossRef]
- Jemaa, J.M.B.; Haouel, S.; Khouja, M.L. Efficacy of Eucalyptus EOs fumigant control against Ectomyelois ceratoniae (Lepidoptera: Pyralidae) under various space occupation conditions. J. Stored Prod. Res. 2013, 53, 67–71. [Google Scholar] [CrossRef]
- Rossi, Y.E.; Palacios, S.M. Insecticidal toxicity of Eucalyptus cinerea essential oil and 1,8-cineole against Musca domestica and possible uses according to the metabolic response of flies. Ind. Crops Prod. 2015, 63, 133–137. [Google Scholar] [CrossRef]
- Toloza, A.C.; Zygadlo, J.; Mougabure, C.G.; Biurrun, F.; Zerba, E.; Picollo, M.I. Fumigant and repellent properties of EOs and component compounds against permethrin-resistant Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. J. Med. Entomol. 2006, 43, 889–895. [Google Scholar] [CrossRef]
- Palacios, S.M.; Bertoni, A.; Rossi, T.; Santander, R.; Urzúa, A. Efficacy of EOs from edible plants as insecticides against the house fly, Musca Domestica L. Molecules 2009, 14, 1938–1947. [Google Scholar] [CrossRef] [PubMed]
- Silva, S.M.; Abe, S.Y.; Murakami, F.S.; Frensch, G.; Marques, F.A.; Nakashima, T. EOs from different plant parts of Eucalyptus cinerea F. Muell. ex Benth. (Myrtaceae) as a source of 1,8-cineole and their bioactivities. Pharmaceuticals 2011, 4, 1535–1550. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.; Nakashima, T.; Franco, L.; Boller, C. Composição química e atividade antimicrobiana in vitro do óleo essencial de Eucalyptus cinerea F. Mull. Ex Benth., Myrtaceae, extraído em diferentes intervalos de tempo. Rev. Bras. Farmacogn. 2005, 15, 191–194. [Google Scholar] [CrossRef]
- Sebei, K.; Sakouhi, F.; Herchi, W.; Khouja, M.L.; Boukhchina, S. Chemical composition and antibacterial activities of seven Eucalyptus species EOs leaves. Biol. Res. 2015, 48, 7. [Google Scholar] [CrossRef] [PubMed]
- Elaissi, A.; Marzouki, H.; Medini, H.; Khouja, M.L.; Farhat, F.; Lynene, F.; Harzallah-Skhiri, F.; Chemli, R. Variation in volatile leaf oils of 13 Eucalyptus species harvested from Souinet Arboreta (Tunisia). Chem. Biodivers. 2010, 7, 909–921. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Kim, J.; Shin, S.-C.; Lee, S.-G.; Park, I.-K. Antifungal activity of Myrtaceae EOs and their components against three phytopathogenic fungi. Flavour Fragr. J. 2008, 23, 23–28. [Google Scholar] [CrossRef]
- Bossou, A.D.; Mangelinckx, S.; Yedomonhan, H.; Boko, P.M.; Akogbeto, M.C.; Kimpe, N.; Avlessi, F.; Sohounhloue, D.C.K. Chemical composition and insecticidal activity of plant EOs from Benin against Anopheles gambiae (Giles). Parasit. Vectors 2013, 6, 337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bossou, A.D.; Ahoussi, E.; Ruysbergh, E.; Adams, A.; Smagghe, G.; De Kimpe, N.; Avlessi, F.; Sohounhloue, D.C.K.; Mangelinckx, S. Characterization of volatile compounds from three Cymbopogon species and Eucalyptus citriodora from Benin and their insecticidal activities against Tribolium castaneum. Ind. Crops Prod. 2015, 76, 306–317. [Google Scholar] [CrossRef]
- Chagas, A.C.S.; Passos, W.M.; Prates, H.T.; Leitem, R.C.; Furlong, J.; Fortes, I.C.P. Acaricide effect of Eucalyptus spp. EOs and concentrated emulsion on Boophilus microplus. Braz. J. Vet. Res. Anim. Sci. 2002, 39, 247–253. [Google Scholar]
- Gusmao, N.M.S.; Oliveira, J.V.; Navarro, D.M.A.F.; Dutra, K.A.; Silva, W.A.; Wanderley, M.J.A. Contact and fumigant toxicity and repellency of Eucalyptus citriodora Hook., Eucalyptus staigeriana F., Cymbopogon winterianus Jowitt and Foeniculum vulgare Mill. EOs in the management of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae, Bruchinae). J. Stored Prod. Res. 2013, 54, 41–47. [Google Scholar]
- Estanislau, A.A.; Barros, F.A.S.; Peña, A.P.; Santos, S.C.; Ferri, P.H.; Paula, J.R. Composição química e atividade antibacteriana dos óleos essenciais de cinco espécies de Eucalyptus cultivadas em Goiás. Rev. Bras. Farmacogn. 2001, 11, 95–100. [Google Scholar]
- Macedo, I.T.F.; Bevilaqua, C.M.L.; Oliveira, L.M.B.; Camurça-Vasconcelos, A.L.F.; Vieira, L.S.; Amóra, S.S.A. Evaluation of Eucalyptus citriodora essential oil on goat gastrointestinal nematodes. Rev. Bras. Parasitol. Vet. 2011, 20, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Maciel, M.V.; Morais, S.M.; Bevilaqua, C.M.L.; Silva, R.A.; Barros, R.S.; Sousa, R.N.; Sousa, L.C.; Brito, E.S.; Souza-Neto, M.A. Chemical composition of Eucalyptus spp. EOs and their insecticidal effects on Lutzomyria longipalpis. Vet. Parasitol. 2010, 167, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.K.A.; Albuquerque, E.L.D.; Santos, A.C.C.; Oliveira, A.P.; Araujo, A.P.A.; Blank, A.F.; Arrigoni-Blank, M.F.; Alves, P.B.; Santos, D.A.; Bacci, L. Biotoxicity of some plant EOs against the termite Nasutitermes corniger (Isoptera: Termitidae). Ind. Crops Prod. 2013, 47, 246–251. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Ribeiro, W.L.C.; Camurça-Vasconcelos, A.L.F.; Macedo, I.T.F.; Santos, J.M.L.; Paula, H.C.B.; Araujo Filho, J.V.; Magalhães, R.D.; Bevilaqua, C.M.L. Efficacy of free and nanoencapsulated Eucalyptus citriodora EOs on sheep gastrointestinal nematodes andtoxicity for mice. Vet. Parasitol. 2014, 204, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, R.W.S.; Ootani, M.A.; Ascencio, S.D.; Ferreira, T.P.S.; Santos, M.M.; Santos, G.R. Fumigant antifungal activity of Corymbia citriodora and Cymbopogon nardus EOs and citronellal against three fungal species. Sci. World J. 2014, 2014, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Tomaz, M.A.; Costa, A.V.; Rodrigues, W.N.; Pinheiro, P.F.; Parreira, L.A.; Rinaldo, D.; Queiroz, V.T. Chemical composition and allelopathic activity of the Eucalyptus essential oil. Biosci. J. 2014, 30, 475–483. [Google Scholar]
- Han, J.; Choi, B.R.; Lee, S.G.; Kim, S.I.; Ahn, Y.J. Toxicity of plant EOs to acaricide-susceptible and -resistant Tetranychus urticae (Acari: Tetranychidae) and Neoseiulus californicus (Acari: Phytoseiidae). J. Econ. Entomol. 2010, 103, 1293–1298. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Kim, S.I.; Choi, B.R.; Lee, S.G.; Ahn, Y.J. Fumigant toxicity of lemon Eucalyptus oil constituents to acaricide-susceptible and acaricide-resistant Tetranychus urticae. Pest Manag. Sci. 2011, 67, 1583–1588. [Google Scholar] [CrossRef] [PubMed]
- George, D.R.; Masic, D.; Sparagano, O.A.E.; Guy, J.H. Variation in chemical composition and acaricidal activity against Dermanyssus gallinae of four Eucalyptus EOs. Exp. Appl. Acarol. 2009, 48, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Vera, S.S.; Zambrano, D.F.; Méndez-Sanchez, S.C.; Rodríguez-Sanabria, F.; Stashenko, E.E.; Luna, J.E.D. EOs with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2014, 113, 2647–2654. [Google Scholar] [CrossRef] [PubMed]
- Olivero-Verbel, J.; Nerio, L.S.; Stashenko, E.E. Bioactivity against Tribolium castaneum Herbst (Coleoptera: Tenebrionidae) of Cymbopogon citratus and Eucalyptus citriodora EOs grown in Colombia. Pest Manag. Sci. 2010, 66, 664–668. [Google Scholar] [PubMed]
- Olivero-Verbel, J.; Tirado-Ballestas, I.; Caballero-Gallardo, K.; Stashenko, E.E. EOs applied to the food act as repellents toward Tribolium castaneum. J. Stored Prod. Res. 2013, 55, 145–147. [Google Scholar] [CrossRef]
- Mulyaningsih, S.; Sporer, F.; Reichling, J.; Wink, M. Antibacterial activity of EOs from Eucalyptus and of selected components against multidrug-resistant bacterial pathogens. Pharm. Biol. 2011, 49, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.O.; Choi, G.J.; Jang, K.S.; Lim, H.K.; Cho, K.Y.; Kim, J. Antifungal activity of five plant EOs as fumigant against postharvest and soilborne plant pathogenic fungi. Plant Pathol. J. 2007, 23, 97–102. [Google Scholar] [CrossRef]
- Elaissi, A.; Medini, H.; Simmonds, M.; Lynen, F.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F.; Khouja, M.L. Variation in volatile leaf oils of seven Eucalyptus species harvested from Zerniza Arboreta (Tunisia). Chem. Biodivers. 2011, 8, 362–372. [Google Scholar] [CrossRef] [PubMed]
- Harkat-Madouri, L.; Asma, B.; Madani, K.; Said, Z.B.S.; Rigou, P.; Grenier, D.; Allalou, H.; Remini, H.; Adjaoud, A.; Boulekbache-Makhlouf, L. Chemical composition, antibacterial and antioxidant activities ofessential oil of Eucalyptus globulus from Algeria. Ind. Crops Prod. 2015, 78, 148–153. [Google Scholar] [CrossRef]
- Toloza, A.C.; Lucia, A.; Zerba, E.; Masuh, H.; Picollo, M.I. Eucalyptus essential oil toxicity against permethrin-resistant Pediculus humanus capitis (Phthiraptera: Pediculidae). Parasitol. Res. 2010, 106, 409–414. [Google Scholar] [CrossRef] [PubMed]
- Russo, S.; Cabrera, N.; Chludil, H.; Yaber-Grass, M.; Leicach, S. Insecticidal activity of young and mature leaves essential oil from Eucalyptus globulus Labill. against Tribolium confusum Jacquelin du Val (Coleoptera: Tenebrionidae). Chil. J. Agric. Res. 2015, 75, 375–379. [Google Scholar] [CrossRef]
- Yang, Y.; Choi, H.; Choi, W.; Clark, J.M.; Ahn, Y. Ovicidal and adulticidal activity of Eucalyptus globulus leaf oil terpenoids against Pediculus humanus capitis (Anoplura: Pediculidae). J. Agric. Food Chem. 2004, 52, 2507–2511. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.; Choi, W.; Lee, S.; Park, B. Fumigant toxicity of EOs and their constituent compounds towards the rice weevil, Sitophilus oryzae (L.). Crop Prot. 2001, 20, 317–320. [Google Scholar] [CrossRef]
- Vilela, G.R.; Almeida, G.S.; D’Arce, M.A.B.R.; Moraes, M.H.D.; Brito, J.O.; Silva, M.F.G.F.; Silva, S.C.; Piedade, S.M.S.; Calori-Domingues, M.A.; Gloria, E.M. Activity of essential oil and its major compound, 1,8-cineole, from Eucalyptus globulus Labill., against the storage fungi Aspergillus flavus Link and Aspergillus parasiticus Speare. J. Stored Prod. Res. 2009, 45, 108–111. [Google Scholar] [CrossRef]
- Macedo, I.T.F.; Bevilaqua, C.M.L.; Oliveira, L.M.B.; Camurça-Vasconcelos, A.L.F.; Vieira, L.S.; Oliveira, F.R.; Queiroz-Junior, E.M.; Portela, B.G.; Barros, R.S.; Chagas, A.C.S. Ovicidal and larvicidal activity in vitro of Eucalyptus globulus EOs on Haemonchus contortus. Rev. Bras. Parasitol. Vet. 2009, 18, 62–66. [Google Scholar] [CrossRef] [PubMed]
- Mossi, A.J.; Astolfi, V.; Kubiak, G.; Lerin, L.; Zanella, C.; Toniazzo, G.; Oliveira, D.; Treichel, H.; Devilla, I.A.; Cansiana, R.; Restello, R. Insecticidal and repellency activity of essential oil of Eucalyptus sp. against Sitophilus zeamais Motschulsky (Coleoptera, Curculionidae). J. Sci. Food Agric. 2011, 91, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Yones, D.A.; Bakir, H.Y.; Bayoumi, S.A.L. Chemical composition and efficacy of some selected plant oils against Pediculus humanus capitis in vitro. Parasitol. Res. 2016, 115, 3209–3218. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, A.; Yitayew, B.; Tesema, A.; Taddese, S. In Vitro Antimicrobial activity of essential oil of Thymus schimperi, Matricaria chamomilla, Eucalyptus globulus, and Rosmarinus officinalis. Int. J. Microbiol. 2016, 2016, 9545693. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Sharma, S.; Naik, S.N. Biopesticidal value of selected EOs against pathogenic fungus, termites, and nematodes. Int. Biodeterior. Biodegard. 2011, 65, 703–707. [Google Scholar] [CrossRef]
- Pandey, A.; Chattopadhyay, P.; Banerjee, S.; Pakshirajan, K.; Singh, L. Antitermitic activity of plant EOs and their major constituents against termite Odontotermes assamensis Holmgren (Isoptera: Termitidae) of North East India. Int. Biodeterior. Biodegrad. 2012, 75, 63–67. [Google Scholar] [CrossRef]
- Pant, M.; Dubey, S.; Patanjali, P.K.; Naik, S.N.; Sharma, S. Insecticidal activity of Eucalyptus oil nanoemulsion with karanja and jatropha aqueous filtrates. Int. Biodeterior. Biodegard. 2014, 91, 119–127. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, S.; Malik, A.; Satya, S. Compositional analysis and insecticidal activity of Eucalyptus globulus (family: Myrtaceae) essential oil against housefly (Musca domestica). Acta Trop. 2012, 122, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Golestani, M.R.; Rad, M.; Bassami, M.; Afkhami-Goli, A. Analysis and evaluation of antibacterial effects of new herbal formulas, AP-001 and AP-002, against Escherichia coli O157:H7. Life Sci. 2015, 135, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Tohidpour, A.; Sattari, M.; Omidbaigi, R.; Yadegar, A.; Nazemi, J. Antibacterial effect of EOs from two medicinal plants against Methicillin-resistant Staphylococcus aureus (MRSA). Phytomedicine 2010, 17, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Casella, S.; Leonardi, M.; Pisseri, F.; Ebani, V.V.; Pistelli, L.; Pistelli, L. Antibacterial activity of EOs, their blends and mixtures of their main constituents against some strains supporting livestock mastitis. Fitoterapia 2014, 96, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Vratnica, B.D.; Đakov, T.; Šuković, D.; Damjanović, J. Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech J. Food Sci. 2011, 29, 277–284. [Google Scholar]
- Derwich, E.; Benziane, Z.; Boukir, A. GC/MS analysis of volatile constituents and antibacterial activity of the essential oil of the leaves of Eucalyptus globulus in Atlas Median from Morocco. Adv. Nat. Appl. Sci. 2009, 3, 305–313. [Google Scholar]
- Luis, A.; Duarte, A.; Gominho, J.; Domingues, F.; Duarte, A.P. Chemical composition, antioxidant, antibacterial and anti-quorumsensing activities of Eucalyptus globulus and Eucalyptus radiata essential oils. Ind. Crops Prod. 2016, 79, 274–282. [Google Scholar] [CrossRef]
- Alzogaray, R.A.; Lucia, A.; Zerba, E.N.; Masuh, H.M. Insecticidal activity of EOs from eleven Eucalyptus spp. and two hybrids: Lethal and sublethal effects of their major components on Blattella germânica. J. Econ. Entomol. 2011, 104, 595–600. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Gonzalez, A.P.; Seccacini, E.; Licastro, S.; Zerba, E.; Masuh, H.M. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J. Am. Mosq. Control Assoc. 2007, 23, 299–303. [Google Scholar] [CrossRef]
- Gillij, Y.G.; Gleiser, R.M.; Zygadlo, J.A. Mosquito repellent activity of EOs of aromatic plants growing in Argentina. Bioresour. Technol. 2008, 99, 2507–2515. [Google Scholar] [CrossRef] [PubMed]
- Sartorelli, P.; Marquioreto, A.D.; Amaral-Baroli, A.; Lima, M.E.L.; Moreno, P.R.H. Chemical composition and antimicrobial activity of the EOs from two species of Eucalyptus. Phytotherapy 2007, 21, 231–233. [Google Scholar] [CrossRef] [PubMed]
- Bett, P.K.; Deng, A.L.; Ogendob, J.O.; Kariuki, S.T.; Kamatenesi-Mugisha, M.; Mihale, J.M.; Torto, B. Chemical composition of Cupressus lusitanica and Eucalyptus saligna leaf essential oils and bioactivity against major insect pests of stored food grains. Ind. Crops Prod. 2016, 82, 51–62. [Google Scholar] [CrossRef]
- Alitonou, G.; Avlessi, F.; Wotto, V.D.; Ahoussi, E.; Dangou, J.; Sohounhloué, D.C.K. Composition chimique, propriétés antimicrobiennes et activités sur les tiques de l’huile essentielle d’Eucalyptus tereticornis Sm. C. R. Chim. 2004, 7, 1051–1055. [Google Scholar] [CrossRef]
- Silva, S.M.; Abe, S.Y.; Bueno, F.G.; Lopes, N.P.; Mello, J.C.P.; Nakashima, T. Direct proof by 13C-nuclear magnetic resonance of semi-purified extract and isolation of ent-Catechin from leaves of Eucalyptus cinerea. Pharmacogn. Mag. 2014, 10, 191–194. [Google Scholar] [PubMed]
- Batish, D.R.; Singh, H.P.; Kohli, R.K.; Kaur, S. Eucalyptus essential oil as a natural pesticide. For. Ecol. Manag. 2008, 256, 2166–2174. [Google Scholar] [CrossRef]
- Castro, N.E.A.; Carvalho, G.J.; Cardoso, M.G.; Pimentel, F.A.; Correa, R.M.; Guimarães, L.G.L. Avaliação de rendimento e dos constituintes químicos do óleo essencial de folhas de Eucalyptus citriodora Hook. colhidas em diferentes épocas do ano em municípios de Minas Gerais. Rev. Bras. Med. 2008, 10, 70–75. [Google Scholar]
- Martins, F.T.; Santos, M.H.; Polo, M.; Barbosa, L.C.A. Chemical variation in the essential oil of Hyptis suaveolens (L.) Poit., under cultivation condition. Quím. Nova 2006, 29, 1203–1209. [Google Scholar] [CrossRef]
- Martins, F.T.; Santos, M.H.; Polo, M.; Barbosa, L.C.A. Effects of the interactions among macronutrients, plant age and photoperiod in the composition of Hyptis suaveolens (L.) Poit essential oil from Alfenas (MG), Brazil. Flavour Fragr. J. 2007, 22, 123–129. [Google Scholar] [CrossRef]
- Castro, H.G.; Oliveira, L.O.; Barbosa, L.C.A.; Ferreira, F.A.; Silva, D.J.H.; Mosquim, P.R.; Nascimento, E.A. Teor e composição do óleo essencial de cinco acessos de mentrasto. Quím. Nova 2004, 27, 55–57. [Google Scholar] [CrossRef]
- Silva, C.J.; Barbosa, L.C.A.; Maltha, C.R.A.; Pinheiro, A.L.; Ismail, F.M.D. Comparative study of the essential oils of seven Melaleuca (Myrtaceae) species grown in Brazil. Flavour Fragr. J. 2007, 22, 474–478. [Google Scholar] [CrossRef]
- Bayala, B.; Bassole, I.H.N.; Gnoula, C.; Nebie, R.; Yonli, A.; Morel, L.; Figueredo, G.; Nikiema, J.; Lobaccaro, J.A.; Simpore, J. Chemical composition, antioxidant, anti-inflammatory and anti-proliferative activities of EOs of plants from Burkina Faso. PLoS ONE 2014, 9, e92122. [Google Scholar] [CrossRef] [PubMed]
- Deba, F.; Xuan, T.D.; Yasuda, M.; Tawata, S. Chemical composition and antioxidant, antibacterial and antifungal activities of the EOs from Bidens pilosa Linn. var. Radiata. Food Control 2008, 19, 346–352. [Google Scholar] [CrossRef]
- Pauli, A. Anticandidal low molecular compounds from higher plants with special reference to compounds from EOs. Med. Res. Rev. 2006, 26, 223–268. [Google Scholar] [CrossRef] [PubMed]
- Sacchetti, G.; Maietti, S.; Muzzoli, M.; Scaglianti, M.; Manfredini, S.; Radice, M.; Bruni, R. Comparative evaluation of 11 EOs of different origin as functional antioxidants, antiradicals and antimicrobials in foods. Food Chem. 2005, 91, 621–632. [Google Scholar] [CrossRef]
- Thuille, N.; Fille, M.; Nagl, M. Bactericidal activity of herbal extracts. Int. J. Hyg. Envir. Health 2003, 206, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Valero, M.; Salmeron, M.C. Antibacterial activity of 11 EOs against Bacillus cereus in tyndallized carrot broth. Int. J. Food Microbiol. 2003, 85, 73–81. [Google Scholar] [CrossRef]
- Bugarin, D.; Grbovic, S.; Orcic, D.; Mitic-Culafic, D.; Knezevic-Vukcevic, J.; Mimica-Dukic, N. Essential oil of Eucalyptus gunnii Hook. as a novel source of antioxidant, antimutagenic and antibacterial agents. Molecules 2014, 19, 19007–19020. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Vitali, C.; Laurentis, N.; Armenise, D.; Milillo, M.A. Antibacterial effect of some EOs administered alone or in combination with Norfloxacin. Phytomedicine 2007, 14, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Sonboli, A.; Babakhani, B.; Mehrabian, A.R. Antimicrobial activity of six constituents of essential oil from Salvia. Z. Naturforsch. C 2006, 61, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Ghalem, B.R.; Mohamed, B. Antibacterial activity of leaf EOs of Eucalyptus globulus and Eucalyptus camaldulensis. Afr. J. Pharm. Pharmacol. 2008, 2, 211–215. [Google Scholar]
- Elaissi, A.; Rouis, Z.; Salem, N.A.B.; Mabrouk, S.; Salem, Y.B.; Salah, K.B.H.; Aouni, M.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F.; et al. Chemical composition of 8 Eucalyptus species’ EOs and the evaluation of their antibacterial, antifungal and antiviral activities. Complement. Altern. Med. 2012, 12, 81. [Google Scholar] [CrossRef] [PubMed]
- Elaissi, A.; Rouis, Z.; Mabrouk, S.; Salah, K.B.H.; Aouni, M.; Khouja, M.L.; Farhat, F.; Chemli, R.; Harzallah-Skhiri, F. Correlation between chemical composition and antibacterial activity of EOs from fifteen Eucalyptus species. Growing in the Korbous and Jbel Abderrahman Arboreta (North East Tunisia). Molecules 2012, 17, 3044–3057. [Google Scholar] [CrossRef] [PubMed]
- Delaquis, P.J.; Stanich, K.; Girard, B.; Mazza, G. Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and Eucalyptus EOs. Int. J. Food Microbiol. 2002, 74, 101–109. [Google Scholar] [CrossRef]
- Marzoug, H.N.B.; Bouajila, J.; Ennajar, M.; Lebrihi, A.; Mathieu, F.; Couderc, F.; Abderraba, M.; Romdhane, M. Eucalyptus (gracilis, oleosa, salubris, and salmonophloia) EOs: Their chemical composition and antioxidant and antimicrobial activities. J. Med. Food 2010, 13, 1005–1012. [Google Scholar] [CrossRef] [PubMed]
- Proenza, Y.G.; Álvarez, R.Q.; Tamayo, Y.V.; Saavedra, M.A.; García, Y.S.; Espinosa, R.H. Chemical composition and antibacterial activity of the essential oil from Eucalyptus pellita F. Muell. J. Med. Plants Res. 2013, 7, 1979–1983. [Google Scholar]
- Safaei-Ghomi, J.; Batooli, H. Chemical composition and antimicrobial activity of the volatile oil of Eucalyptus sargentii Maiden cultivated in central Iran. Int. J. Green Pharm. 2010, 4, 174–177. [Google Scholar] [CrossRef]
- Ghnaya, A.B.; Hanana, M.; Amri, I.; Balti, H.; Gargouri, S.; Jamoussi, B.; Hamrouni, L. Chemical composition of Eucalyptus erythrocorys EOs and evaluation of their herbicidal and antifungal activities. J. Pest Sci. 2013, 86, 571–577. [Google Scholar] [CrossRef]
- Camara, B.; Dick, E.; Sako, A.; Kone, D.; Kanko, C.; Boye, M.A.D.; Ake, S.; Anno, A. Lutte biologique contre Deightoniella torulosa (Syd.) Ellis, par l’application des huiles essentielles d’Eucalyptus platyphylla F. Muell. et de Melaleuca quinquenervia L. Phytothérapie 2010, 8, 240–244. [Google Scholar] [CrossRef]
- Baptista, E.B.; Zimmermann-Franco, D.C.; Lataliza, A.A.B.; Raposo, N.R.B. Chemical composition and antifungal activity of essential oil from Eucalyptus smithii against dermatophytes. Rev. Soc. Bras. Med. Trop. 2015, 48, 746–752. [Google Scholar]
- Ye, C.L.; Dai, D.H.; Hu, W.L. Antimicrobial and antioxidant activities of the essential oil from onion (Allium cepa L.). Food Control 2013, 30, 48–53. [Google Scholar] [CrossRef]
- Singh, N.; Rajini, P.S. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 2004, 85, 611–616. [Google Scholar] [CrossRef]
- Puupponen-Pimiä, R.; Nohynek, L.; Meier, C.; Kähkönen, M.; Heinonen, M.; Hopia, A. Antimicrobial properties of phenolic compounds from berries. J. Appl. Microbiol. 2001, 90, 494–507. [Google Scholar] [CrossRef] [PubMed]
- Cermelli, C.; Fabio, A.; Fabio, G.; Quaglio, P. Effect of Eucalyptus essential oil on respiratory bacteria and viruses. Curr. Microbiol. 2008, 56, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, B.; Singh, P.; Shukla, R.; Dubey, N.K. A novel combination of the EOs of Cinnamomum camphora and Alpinia galanga in checking aflatoxin B1 production by a toxigenic strain of Aspergillus flavus. World J. Microbiol. Biotechnol. 2008, 24, 693–697. [Google Scholar] [CrossRef]
- Roh, H.S.; Lee, B.H.; Park, C.G. Acaricidal and repellent effects of myrtacean EOs and their major constituents against Tetranychus urticae (Tetranychidae). J. Asia-Pac. Entomol. 2013, 16, 245–249. [Google Scholar] [CrossRef]
- Clemente, M.A.; Monteiro, C.M.O.; Scoralik, M.G.; Gomes, F.T.; Prata, M.C.A.; Daemon, E. Acaricidal activity of the EOs from Eucalyptus citriodora and Cymbopogon nardus on larvae of Amblyomma cajennense (Acari: Ixodidae) and Anocentor nitens (Acari: Ixodidae). Parasitol. Res. 2010, 107, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Ware, G.W. The Pesticide Book, 5th ed.; Thomson Publicaions: Fresno, CA, USA, 1999. [Google Scholar]
- Moreira, M.D.; Picanço, M.C.; Barbosa, L.C.A.; Guedes, R.N.C.; Silva, E.M. Toxicity of leaf extracts of Ageratum conyzoides to lepidoptera pests of horticultural crops. Biol. Agric. Hortic. 2004, 22, 251–260. [Google Scholar] [CrossRef]
- Moreira, M.D.; Picanço, M.C.; Barbosa, L.C.A.; Guedes, R.N.C.; Barros, E.C.; Campos, M.R. Compounds from Ageratum conyzoides: Isolation, structural elucidation and insectide activity. Pest Manag. Sci. 2007, 63, 615–621. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.D.; Picanço, M.C.; Barbosa, L.C.A.; Guedes, R.N.C.; Campos, M.R.; Silva, G.A.; Martins, J.C. Plant Compounds insecticide activity against Coleoptera pests of stored products. Pesq. Agropec. Bras. 2007, 42, 909–915. [Google Scholar] [CrossRef]
- Tjahjani, S. Efficacy of several EOs as Culex and Aedes repellents. Proc. ASEAN Congress Trop. Med. Parasitol. 2008, 3, 33–37. [Google Scholar]
- Sophia, N.; Pandian, R.S. Screening of the efficacy of phytochemical repellents against the filarial vector mosquito, Culex quinquefasciatus Say. Curr. Biot. 2009, 3, 14–31. [Google Scholar]
- Govindarajan, M. Larvicidal and repellent properties of some EOs against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asian Pac. J. Trop. Med. 2011, 4, 106–111. [Google Scholar] [CrossRef]
- Mandal, S. Repellent activity of Eucalyptus and Azadirachta indica seed oil against the filarial mosquito Culex quinquefasciatus Say. (Diptera: Culicidae) in India. Asian Pac. J. Trop. Biomed. 2011, 1, S109–S112. [Google Scholar] [CrossRef]
- Tennyson, S.; Ravindran, J.; Eapen, A.; Willian, J. Repellent activity of Ageratum houstonianum Mill. (Asteraceae) leaf extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2012, 6, 478–480. [Google Scholar] [CrossRef]
- Gokulakrishnan, J.; Kuppusamy, E.; Shanmugam, D.; Appavu, A.; Kaliyamoorthi, K. Pupicidal and repellent activities of Pogostemon cablin essential oil chemical compounds against medically important human vector mosquitoes. Asian Pac. J. Trop. Dis. 2013, 3, 26–31. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent activity of EOs: A review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Murugan, K.; Murugan, P.; Noortheen, A. Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae). Bioresour. Technol. 2007, 98, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Choochote, W.; Chaithong, U.; Kamsuk, K.; Jitpakdi, A.; Tippawangkosol, P.; Tueton, B.; Champakaew, D.; Pitasawat, B. Repellent activity of selected EOs against Aedes aegypti. Fitoterapia 2007, 78, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Phasomkusolsil, S.; Soonwera, M. Efficacy of herbal EOs as insecticide against Aedes aegypti (Linn.), Culex quinquefasciatus (Say.) and Anopheles dirus (Peyton and Harrison). Southeast Asian J. Trop. Med. Public Health 2011, 42, 1083–1092. [Google Scholar] [PubMed]
- Krishnappa, K.; Elumalai, K. Toxicity of Aristolochia bracteata methanol leaf extract against selected medically important vector mosquitoes (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 2012, 2, S553–S557. [Google Scholar] [CrossRef]
- Govindarajan, M. Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (Willd.) Hook. f. ex Benth (Rutaceae) against three mosquito species. Asian Pac. J. Trop. Med. 2010, 3, 874–877. [Google Scholar] [CrossRef]
- Govindarajan, M.; Sivakumar, R. Repellent properties of Cardiospermum halicacabum Linn. (Family: Sapindaceae) plant leaf extracts against three important vector mosquitoes. Asian Pac. J. Trop. Biomed. 2012, 8, 602–607. [Google Scholar] [CrossRef]
- Aarthi, N.; Murugan, K. Larvicidal and repellent activity of Vetiveria zizanioides L, Ocimum basilicum Linn and the microbial pesticide spinosad against malarial vector, Anopheles stephensi Liston (Insecta: Diptera: Culicidae). J. Biopestic. 2010, 3, 199–204. [Google Scholar]
- Ali, A.; Murphy, C.C.; Demirci, B.; Wedge, D.W.; Sampson, B.J.; Khan, I.A.; Baser, K.H.C.; Tabanca, N. Insecticidal and biting deterrent activity of rose-scented geranium (Pelargonium spp.) EOs and individual compounds against Stephanitis pyrioides and Aedes aegypti. Pest Manag. Sci. 2013, 69, 1385–1392. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Tabanca, N.; Demirci, B.; Baser, K.H.C.; Ellis, J.; Gray, S.; Lackey, B.R.; Murphy, C.; Khan, I.A.; Wedge, D.E. Composition, mosquito larvicidal, biting deterrent and antifungal activity of EOs of different plant parts of Cupressus arizonica var. glabra (‘Carolina Sapphire’). Nat. Prod. Commun. 2013, 8, 257–260. [Google Scholar] [PubMed]
- Hoel, D.; Pridgeon, J.W.; Bernier, U.R.; Chauhan, K.; Meepagala, K.; Cantrell, C. Departments of Defense and Agriculture team up to develop new insecticides for mosquito control. Wing Beats 2010, 21, 19–34. [Google Scholar]
- Nascimento, J.C.; David, J.M.; Barbosa, L.C.A.; Paula, V.F.; Demuner, A.J.; David, J.P.; Conserva, L.M.; Ferreira, J.C.; Guimarães, E.F. Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C. DC. (Piperaceae). Pest Manag. Sci. 2013, 69, 1267–1271. [Google Scholar] [PubMed]
- Pavela, R. Larvicidal property of EOs against Culex quinquefasciatus Say. (Diptera: Culicidae). Ind. Crops Prod. 2009, 30, 311–315. [Google Scholar] [CrossRef]
- Pavela, R. Larvicidal effects of some Euro-Asiatic plants against Culex quinquefasciatus Say larvae (Diptera: Culicidae). Parasitol. Res. 2009, 105, 887–892. [Google Scholar] [CrossRef] [PubMed]
- Tabanca, N.; Bernier, U.R.; Ali, A.; Wang, M.; Demirci, B.; Blythe, E.K.; Khan, S.I.; Baser, K.H.C.; Khan, I.A. Bioassay-guided investigation of two Monarda EOs as repellents of yellow fever mosquito Aedes aegypti. J. Agric. Food Chem. 2013, 61, 8573–8580. [Google Scholar] [CrossRef] [PubMed]
- Wedge, D.E.; Klun, J.A.; Tabanca, N.; Demirci, B.; Ozek, T.; Baser, K.H.C.; Liu, Z.; Zhang, S.; Cantrell, C.L.; Zhan, J. Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J. Agric. Food Chem. 2009, 57, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Hamdi, S.H.; Hedjal-Chebheb, M.; Kellouche, A.; Khouja, M.L.; Boudabous, A.; Jemaa, J.M.B. Management of three pests’ population strains from Tunisia and Algeria using Eucalyptus essential oils. Ind. Crops Prod. 2015, 74, 551–556. [Google Scholar] [CrossRef]
- Juan, L.; Lucia, A.; Zerba, E.; Harrand, L.; Marco, M.; Masuh, H. Chemical composition and fumigant toxicity of the EOs from 16 species of Eucalyptus against Haematobia irritans (L.) (Diptera: Muscidae) adults. J. Econ. Entomol. 2011, 104, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Lucia, A.; Juan, L.W.; Zerba, E.N.; Harrand, L.; Marcó, M.; Masuh, H.M. Validation of models to estimate the fumigant and larvicidal activity of Eucalyptus EOs against Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 2012, 110, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Aref, S.P.; Valizadegan, O.; Farashiani, M.E. Eucalyptus dundasii Maiden essential oil, chemical composition and insecticidal values against Rhyzopertha dominica (F.) and Oryzaephilus surinamensis (L.). J. Plant Prot. Res. 2015, 55, 35–41. [Google Scholar] [CrossRef]
- Aref, S.P.; Valizadegan, O.; Farashiani, M.E. The insecticidal effect of essential oil of Eucalyptus floribundi against two major stored product insect pests; Rhyzoperth dominica (F.) and Oryzaephilus surinamensis (L.). J. Essent. Oil Bear. Plants 2016, 19, 820–831. [Google Scholar] [CrossRef]
- Rajendran, S.; Sriranjini, V. Plant products as fumigants for stored-product insect control. J. Stored Prod. Res. 2008, 44, 126–135. [Google Scholar] [CrossRef]
- Houghton, P.J.; Ren, Y.; Howes, M.J. Acetylcholinesterase inhibitors from plants and fungi. Nat. Prod. Rep. 2006, 23, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Seyoum, A.; Killeen, G.F.; Kabiru, E.W.; Knols, B.G.J.; Hassanali, A. Field efficacy of thermally expelled or live potted repellent plants against African malaria vectors in western Kenya. Trop. Med. Int. Health 2003, 8, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Nathan, S.S. The use of Eucalyptus tereticornis Sm: (Myrtaceae) oil (leaf extract) as a natural larvicidal agent against the malaria vector Anopheles stephensi Liston (Diptera: Culicidae). Bioresour. Technol. 2007, 98, 1856–1860. [Google Scholar]
- Coob, A.H.; Reade, J.P.H. Herbicides and Plant Physiology, 2nd ed.; Wiley-Blackwell: Chichester, UK, 2010; p. 286. [Google Scholar]
- Dayan, F.E.; Cantrell, C.L.; Duke, S.O. Natural products in crop protection. Bioorg. Med. Chem. 2009, 17, 4022–4034. [Google Scholar] [CrossRef] [PubMed]
- Zanic, K.; Goreta, S.; Perica, S.; Sutik, J. Effects of alternative pesticides on greenhouse whitefly in protected cultivation. J. Pest Sci. 2008, 81, 161–166. [Google Scholar] [CrossRef]
- Seyran, M.; Brenneman, T.B.; Stevenson, K.L. In vitro toxicity of alternative oxidase inhibitors salicylhydroxamic acid and propyl gallate on Fusicladium effusum. J. Pest Sci. 2010, 83, 421–427. [Google Scholar] [CrossRef]
- Yangui, T.; Sayadi, S.; Rhouma, A.; Dhouib, A. Potential use of hydroxytyrosol-rich extract from olive mill wastewater as a biological fungicide against Botrytis cinerea in tomato. J. Pest Sci. 2010, 83, 437–445. [Google Scholar] [CrossRef]
- Varejao, E.V.V.; Demuner, A.J.; Barbosa, L.C.A.; Barreto, R.W. The search for new natural herbicides—Strategic approaches for discovering fungal phytotoxins. Crop Prot. 2013, 48, 41–50. [Google Scholar] [CrossRef]
- Douda, O.; Zouhar, M.; Mazáková, J.; Novácová, E.; Pavela, R. Using plant essence as alternatives mean for northern root-knot nematode (Meloidogyne hapla) management. J. Pest Sci. 2010, 83, 217–221. [Google Scholar] [CrossRef]
- Batish, D.R.; Setia, N.; Singh, H.P.; Kohli, R.K. Phytotoxicity of lemon-scented eucalypt oil and its potential use as a bioherbicide. Crop Prot. 2004, 23, 1209–1214. [Google Scholar] [CrossRef]
- Setia, N.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Phytotoxicity of volatile oil from Eucalyptus citriodora against some weedy species. J. Environ. Biol. 2007, 28, 63–66. [Google Scholar] [PubMed]
- Zhang, J.; An, M.; Wu, H. Chemical composition of EOs of four Eucalyptus species and their phytotoxicity on silver leaf nightshade (Solanum elaeagnifolium Cav.) in Australia. Plant Growth Regul. 2012, 68, 231–237. [Google Scholar] [CrossRef]
- Zhang, J.; An, M.; Wu, H.; Liu, D.L.; Stanton, R. Phytotoxic activity and chemical composition of aqueous volatile fractions from Eucalyptus species. PLoS ONE 2014, 9, e93189. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Yu, S.; Wang, Y.; Fang, B.; Cai, C.; Liu, S. Identification and allelopathic effects of 1,8-cineole from Eucalyptus urophylla on lettuce. Allelopathy J. 2010, 26, 255–264. [Google Scholar]
- Vivan, G.A.; Barboza, F.S.; Luz, M.L.G.S.; Luz, C.A.S.; Pereira-Ramirez, O.; Gomes, M.C.; Soares, F.C. Estudo técnico e econômico de um sistema móvel de extração de óleo essencial de eucalipto. Cerne 2011, 17, 23–31. [Google Scholar] [CrossRef]
- Coppen, J.J.W.; Hone, G.A. Eucalyptus Oils—A Review of Production and Markts—Bulletin 56; Natural Resources Institute, University of Greenwich: London, England, 1992. [Google Scholar]
- Lassak, E.V. The Australian Eucalyptus oil industry, past and present. Chem. Aust. 1998, 55, 396–398. [Google Scholar]
- Doran, J.C. Commercial sources, uses, formation, and biologyc. In Eucalyptus Leaf Oils: Use, Chemistry, Distillation and Marketing; Boland, D., Brophy, J., House, J.J., Eds.; Inkata: Melbourne, Australia, 1991; pp. 11–28. [Google Scholar]
- Silva, J.C. Eucalipto: Pesquisa amplia usos: Perspectivas do setor florestal Brazileiro. Rev. Madeira 2003, 13, 4–6. [Google Scholar]
- Coppen, J.J.W. Productions, trade and markets for Eucalyptus oil. In Eucalyptus—The Genus Eucalyptus; Coppen, J.J.W., Ed.; Taylor and Francis: London, UK, 2005; Chapter 17; pp. 365–383. [Google Scholar]
Eucalyptus spp. | Origin | Components of Eucalyptus EOs | EOs Yields (%) | Reference |
---|---|---|---|---|
E. camaldulensis | Argentina | 1,8-cineole (19.1%), p-cymene (17.9%), β-phellandrene (16.3%) | 0.38 | [63,64,65] |
Brazil | 1,8-cineole (52.8%), limonene (14.2%), γ-terpinene (6.8%), α-pinene (6.1%) | 0.63 | [66,67] | |
Brazil | 1,8-cineole (44.8%), α-phellandrene (22.9%), p-cymene (9.8%) | 3.00 | [68] | |
Democratic Republic of the Congo | 1,8-cineole (58.9%), myrtenol (4.3%), myrtenal (3.5%) | 0.30 b | [53] | |
Egypt | 1,8-cineole (60.3%), α-pinene (13.6%), γ-terpinene (8.8%) | - | [69] | |
India | α-phellandrene (27.5%), β-pinene (23.5%), m-cymene (9.5%), 1,8-cineole (8.7%) | 1.97 b | [70] | |
Iran | 1,8-cineole (74.7%) | - | [71] | |
Kenya | 1,8-cineole (18.9%), α-cadinol (6.4%), β-phellandrene (2.6%) | - | [72] | |
Nigeria | 1,8-cineole (70.4%), β-pinene (9.0%), α-pinene (8.8%) | 0.26 | [73] | |
Northern Cyprus | 1,8-cineole (19.0%), β-caryophyllene (11.6%), carvacrol (9.1%) | - | [74] | |
Pakistan | linalool (17.0%), 1,8-cineole (16.1%), p-cymene (12.2%) | 1.90 | [75] | |
Spain | spathulenol (41.5%), p-cymene (21.9%) | 0.71 | [76] | |
Taiwan | 1,8-cineole (29.6%), limonene (15.2%), β-pinene (9.9%), α-pinene (9.7%) | 3.48 | [77] | |
Taiwan | α-pinene (22.5%), p-cymene (21.7%), α-phellandrene (20.1%), 1,8-cineole (9.5%) | 0.57 | [78] | |
Tunisia | 1,8-cineole (20.6%), α-pinene (16.5%) | 0.76–1.42 | [79,80] | |
E. cinerea | Argentina | 1,8-cineole (88.5%), α-terpineol (9.0%), α-pinene (2.0%) | - | [81] |
Argentina | 1,8-cineole (79.8%), α-terpinyl acetate (8.2%) | 2.48 | [63,64] | |
Argentina | 1,8-cineole (62.1%), p-cymene (11.2%) | - | [82] | |
Argentina | 1,8-cineole (56.9%), α-pinene (6.4%) | - | [83] | |
Brazil | 1,8-cineole (83.6%), α-terpinyl acetate (5.4%), α-pinene (5.0%) | 3.56–5.02 | [84] | |
Brazil | 1,8-cineole (75.7%), α-terpineol (9.7%), α-pinene (6.2%) | 6.07 | [85] | |
Tunisia | 1,8-cineole (79.2%), α-terpinyl acetate (5.4%), α-pinene (4.1%) | 3.00 | [86] | |
Tunisia | 1,8-cineole (70.4%), α-terpineol (10.3%) | 3.90 | [87] | |
E. citriodora | Argentina | citronellal (76.0%), iso-isopulegol (9.0%), citronellyl acetate (7.3%) | [82] | |
Australia | citronellal (68.9%), citronellol (7.6%), isopulegol (7.4%) | - | [88] | |
Benin | citronellal (52.8%), citronellol (20.0%), citronellyl acetate (9.0%) | 4.60 | [89,90] | |
Brazil | citronellal (94.9%), citronellyl acetate (2.6%), trans caryophyllene (2.5%) | - | [91] | |
Brazil | citronellal (89.6%), citronellyl acetate (3.3%), 1,8-cineole (2.9%) | - | [92] | |
Brazil | citronellal (82.3%), citronellyl acetate (7.8%), neothujan-3-ol (6.8%) | 4.00 | [93] | |
Brazil | citronellal (76.0%), neo-iso-3-thujanol (11.8%) | 0.66 | [66,67] | |
Brazil | β-citronellal (71.8%), (−)-isopulegol (7.3%), isopulegol (4.3%) | - | [94] | |
Brazil | citronellal (71.8%), isopulegol (4.3%) | - | [95] | |
Brazil | citronellal (71.1%), citronellol (8.8%) | - | [96] | |
Brazil | citronellal (67.5%), citronellol (6.9%), menthol (6.1%) | - | [97] | |
Brazil | citronellal (61.8%), isopulegol (15.5%), β-citronellol (7.9%) | - | [98] | |
Brazil | citronellal (64.9%), iso-isopulegol (10.2%), citronellol (8.3%) | 2.10 | [99] | |
China | citronellal (65.9%), citronellol (10.5%), 1,8-cineole (3.0%) | - | [100,101] | |
China | citronellal (55.3%), citronellol (8.3%) | - | [102] | |
E. citriodora | Colombia | citronellal (49.3%), citronellol (13.0%), isopulegol (12.9%) | 0.70 | [103] |
Colombia | citronellal (40.0%), isopulegol (14.6%), citronellol (13.0%) | - | [104,105] | |
Democratic Republic of the Congo | citronellal (72.7%), citronellol (6.3%), eugenol (3.5%) | 1.63 b | [53] | |
India | citronellal (52.2%), citronellol (12.3%), isopulegol (11.9%) | 0.60 | [26] | |
India | citronellal (48.3%), citronellol (21.9%), iso-isopulegol (12.7%) | 2.36–4.80 | [54] | |
Indonesia | citronellal (90.1%), citronellol (4.3%) | - | [106] | |
Kenya | 1,8-cineole (11.2%), β-pinene (3.2%), terpinen-4-ol (3.1%) | - | [72] | |
Pakistan | citronellal (22.3%), citronellol (20.0%) | 1.82 | [75] | |
South Korea | citronellal (73.0%), isopulegol (6.7%) | - | [107] | |
Taiwan | citronellal (49.5%), citronellol (11.9%), iso-isopulegol (10.4%) | 1.89 | [77] | |
Tunisia | 1,8-cineole (54.1%), α-pinene (23.6%) | 3.30 | [49,108] | |
E. globulus | Algeria | 1,8-cineole (55.3%), spathulenol (7.4%), α-terpineol (5.5%) | 2.53 | [109] |
Argentina | 1,8-cineole (77.9%), α-terpineol (6.0%) | 2.25 | [63,64] | |
Argentina | 1,8-cineole (76.7%), α-pinene (11.1%) | 1.66 | [63,110] | |
Argentina | 1,8-cineole (52.3%–62.1%) | 1.31–1.49 | [111] | |
Australia | 1,8-cineole (90.0%), α-pinene (2.2%) | - | [112] | |
Australia | 1,8-cineole (81.1%), limonene (7.6%), α-pinene (4.0%) | - | [113] | |
Brazil | 1,8-cineole (90.0%), tricyclene (3.0%) | - | [114] | |
Brazil | 1,8-cineole (85.8%), α-pinene (9.9%) | - | [91] | |
Brazil | 1,8-cineole (83.9%), limonene (8.2%), α-pinene (4.2%) | - | [95,115] | |
Brazil | 1,8-cineole (77.5%), α-pinene (14.2%) | 3.10 | [116] | |
Democratic Republic of the Congo | 1,8-cineole (44.3%), camphene (23.1%), α-pinene (9.3%), globulol (7.3%) | 1.87 b | [53] | |
Egypt | 1,8-cineole (21.4%), o-cimene (21.4%), α-pinene (6.7%), spathulenol (6.3%) | - | [117] | |
Ethiopia | 1,8-cineole (63.0%), α-pinene (16.1%) | - | [118] | |
India | 1,8-cineole (81.9%), limonene (6.6%) | - | [119] | |
India | 1,8-cineole (68.8%), α-pinene (2.8%) | - | [120] | |
India | 1,8-cineole (66.3%), cis-ocymene (21.3%), α-terpinyl acetate (3.4%) | - | [121] | |
India | 1,8-cineole (44.4%), limonene (17.8%), p-cymene (9.5%) | - | [43] | |
India | 1,8-cineole (33.6%), α-pinene (14.2%), limonene (10.1%) | - | [122] | |
Indonesia | 1,8-cineole (86.5%), α-pinene (4.7%) | - | [106] | |
Iran | 1,8-cineole (84.5%), limonene (8.50%) | - | [123] | |
Iran | 1,8-cineole (47.2%), spathulenol (18.1%), α-pinene (9.6%) | - | [124] | |
Italy | 1,8-cineole (84.9%), α-pinene (5.6%), p-cymene (5.3%) | - | [125] | |
Kenya | 1,8-cineole (17.2%), α-pinene (7.1%), spathulenol (6.5%) | - | [72] | |
Montenegro | 1,8-cineole (85.8%), α-pinene (7.2%), β-myrcene (1.5%) | 1.80 b | [126] | |
Morocco | 1,8-cineole (22.4%), limonene (7.0%), solanone (6.1%), β-pinene (5.2%) | 1.21 | [127] | |
Pakistan | 1,8-cineole (56.5%), limonene (28.0%) | 1.89 | [75] | |
Spain | 1,8-cineole (63.8%), α-pinene (16.1%) | - | [128] | |
E. grandis | Argentina | α-pinene (52.7%), 1,8-cineole (18.4%), p-cymene (8.7%) | 0.36 | [65,129,130] |
Brazil | p-cymene (59.6%), γ-terpinene (29.2%) | 0.26 | [68] | |
Brazil | α-pinene (40.6%), γ-terpinene (16.3%), p-cymene (13.1%) | 0.31 | [66,67] | |
Brazil | γ-terpinene (16.8%), o-cymene (16.7%), β-pinene (11.5%) | 2.00 | [93] | |
Taiwan | 1,8-cineole (19.8%), α-terpinyl acetate (12.8%), α-pinene (11.4%) | 3.01 | [77] | |
E. saligna | Argentina | 1,8-cineole (93.2%) | - | [131] |
Argentina | 1,8-cineole (93.2%), limonene (3.3%) | - | [82] | |
Argentina | 1,8-cineole (34.0%), p-cymene (21.3%), γ-terpinene (20.10%), α-pinene (13.0%) | 0.36 | [63,64] | |
Brazil | 1,8-cineole (45.2%), p-cymene (34.4%), α-pinene (12.8%) | 0.50 | [116] | |
Brazil | p-cymene (25.6%), α-terpineol (9.3%), α-camphonellal (8.0%), 1,8-cineole (6.2%) | 0.50 | [93] | |
Brazil | α-pinene (92.3%) | 1.42 | [68] | |
Brazil | α-pinene (45.1%), p-cymene (22.5%), α-pinene oxide (11.3%) | 0.40 | [132] | |
Brazil | α-pinene (25.9%), p-cymene (24.4%), γ-terpinene (24.6%) | 0.19 | [66,67] | |
Democratic Republic of the Congo | 1,8-cineole (61.3%), limonene (10.1%), p-cymene (7.2%) | 0.78 b | [53] | |
Kenya | α-pinene (24.4%), 1,8-cineole (24.3%), o-cimene (9.9%), α-terpineol (8.8%) | 0.38 | [133] | |
Nigeria | α-thujene (63.8%), 1,8-cineole (12.3%) | 0.30 | [73] | |
E. tereticornis | Argentina | 1,8-cineole (37.5%), p-cymene (22.0%), γ-terpinene (10.8%) | - | [82] |
Argentina | β-phellandrene (22.6%), 1,8-cineole (18.6%), p-cymene (14.5%), α-phellandrene (9.4%) | 0.60 | [63,64,65] | |
Benin | p-cymene (31.1%), β-phellandrene (9.7%) | - | [134] | |
Benin | p-cymene (16.7%), caryophyllene oxide (14.2%), spathulenol (13.5%), cryptone (11.4%) | 1.00 | [89] | |
Brazil | β-pinene (22.4), 1,8-cineole (19.3%), α-pinene (13.6%), α-phellandrene (10.3%) | 2.30 | [68] | |
Democratic Republic of the Congo | p-cymene (28.6%), cryptone (17.8%), α-pinene (8.3%) | 0.45 b | [53] |
Eucalyptus spp. | Target Species | Reference |
---|---|---|
E. alba | Bacillus subtilis, Citrobacter diversus, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella typhimurium, Staphylococcus aureus | [53,73] |
E. astringens | Bacillus cereus, Escherichia coli, Listeria ivanovii | [86] |
E. bicostata | Bacillus cereus, Listeria ivanovii, Staphylococcus aureus, Streptococcus pneumoniae | [86,152] |
E. botryoides | Escherichia coli, Staphylococcus aureus | [49] |
E. camaldulensis | Bacillus cereus, Bacillus subtilis, Citrobacter diversus, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Listeria monocytogenes, Proteus vulgaris, Pseudomonas aeruginosa, Shigella flexneri, Staphylococcus aureus | [53,70,73,74,75] |
E. cinerea | Bacillus cereus, Escherichia coli, Listeria ivanovii, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pyogenes | [84,85,86,87] |
E. citriodora | Bacillus subtilis, Citrobacter diversus, Enterococcus faecalis, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Salmonella choleraesuis, Salmonella typhimurium, Shigella flexneri, Staphylococcus aureus | [49,53,75,93,106] |
E. cloeziana | Escherichia coli, Staphylococcus aureus | [93] |
E. crebra | Bacillus subtilis, Escherichia coli, Staphylococcus aureus | [75] |
E. deglupta | Bacillus cereus, Bacillus subtilis, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri, Staphylococcus aureus | [53,73] |
E. diversifolia | Enterococcus faecalis, Escherichia coli, Staphylococcus aureus | [153] |
E. dives | Escherichia coli, Listeria monocytogenes, Pseudomonas fragi, Salmonella typhimurium, Staphylococcus aureus | [17,154] |
E. globulus | Acinetobacter baumannii, Bacillus cereus, Bacillus subtilis, Citrobacter diversus, Enterococcus faecalis, Escherichia coli, Fusobacterium nucleatum, Klebsiella oxytoca, Klebsiella pneumoniae, Porphyromonas gingivalis, Pseudomonas aeruginosa, Pseudomonas fluorescens, Salmonella paratyphi, Salmonella typhi, Salmonella typhimurium, Shigella, Staphylococcus aureus, Staphylococcus intermedius, Staphylococcus sciuri, Staphylococcus warneri, Streptococcus pyogenes | [43,53,75,106,109,118,123,124,125,126,127,128] |
E. gracilis | Klebsiella pneumoniae, Listeria monocytogenes | [155] |
E. grandis | Escherichia coli, Salmonella choleraesuis, Staphylococcus aureus | [93] |
E. lehmannii | Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus | [86,152] |
E. leucoxylon | Bacillus cereus, Escherichia coli | [86] |
E. maidenii | Bacillus cereus, Enterococcus faecalis, Escherichia coli, Listeria ivanovii, Staphylococcus aureus | [86,152] |
E. melanophloia | Bacillus subtilis, Escherichia coli, Staphylococcus aureus | [75] |
E. microcorys | Staphylococcus aureus | [93] |
E. microtheca | Bacillus subtilis, Escherichia coli, Staphylococcus aureus | [75] |
E. odorata | Enterococcus faecalis, Escherichia coli, Haemophilus influenzae, Streptococcus agalactiae, Staphylococcus aureus, Streptococcus pneumoniae, Streptococcus pyogenes | [152] |
E. oleosa | Klebsiella pneumoniae, Listeria monocytogenes | [155] |
E. radiata | Acinetobacter baumannii, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium | [128] |
E. robusta | Bacillus subtilis, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhimurium, Shigella flexneri, Staphylococcus aureus | [53,132] |
E. saligna | Bacillus cereus, Bacillus subtilis, Citrobacter diversus, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella choleraesuis, Staphylococcus aureus | [53,73,93,132] |
E. olida | Staphylococcus aureus | [17] |
E. ovata | Escherichia coli | [49] |
E. pellita | Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus | [156] |
E. platypus | Enterococcus faecalis | [152] |
E. propinqua | Bacillus subtilis, Citrobacter diversus, Klebsiella oxytoca, Klebsiella pneumoniae, Salmonella typhimurium, Shigella flexneri, Staphylococcus aureus | [53] |
E. radiata | Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus | [106] |
E. salmonophloia | Klebsiella pneumoniae, Listeria monocytogenes | [155] |
E. salubris | Klebsiella pneumoniae, Listeria monocytogenes | [155] |
E. sargentii | Bacillus subtilis, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Shigella dysenteriae, Staphylococcus aureus, Staphylococcus epidermidis | [157] |
E. sideroxylon | Bacillus cereus, Listeria ivanovii | [86] |
E. staigeriana | Enterococcus faecalis, Staphylococcus aureus | [17] |
E. tereticornis | Bacillus subtilis, Citrobacter diversus, Corynebacteriaceae spp., Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Shigella flexneri | [53,134] |
E. urophylla | Bacillus subtilis, Escherichia coli, Klebsiella oxytoca, Klebsiella pneumoniae | [53] |
Eucalyptus spp. | Target Species | Reference |
---|---|---|
E. astringens | Candida albicans, Microsporum canis | [152] |
E. bicostata | Candida albicans | [152] |
E. camaldulensis | Alternaria alternata, Aspergillus clavatus, Aspergillus niger, Candida albicans, Chaetomium globosum, Cladosporium cladosporioides, Lenzites sulphureus, Myrothecium verrucaria, Penicillium citrinum, Phanerochaete chrysosporium, Phaeolus schweintizii, Rhizopus solani, Trametes versicolor, Trichoderma viride | [69,73,75,77] |
E. cinerea | Candida albicans | [84,85] |
E. citriodora | Aspergillus clavatus, Aspergillus niger, Aspergillus spp., Botrytis cinerea, Chaetomium globosum, Cladosporium cladosporioides, Colletotrichum gloeosporioides, Colletotrichum musae, Cryphonectria parasitica, Fusarium oxysporum, Lenzites sulphureus, Myrothecium verrucaria, Penicillium citrinum, Phaeolus schweintizii, Phanerochaete chrysosporium, Phytophthora cactorum, Pyricularia grisea, Pythium ultimum, Rhizoctonia solani, Rhizopus solani, Trametes versicolor, Trichoderma viride | [75,77,88,98,107] |
E. crebra | Aspergillus niger, Rhizopus solani | [75] |
E. deglupta | Candida albicans | [73] |
E. dives | Candida albicans, Saccharomyces cerevisiae | [17] |
E. erythrocorys | Bipolaris sorokiniana, Botrytis cinerea | [158] |
E. globulus | Aspergillus flavus, Aspergillus niger, Aspergillus parasiticus, Aspergillus spp., Candida albicans, Fusarium oxysporum, Mucor spp., Penicillium digitatum, Rhizopus nigricans, Rhizopus solani, Saccharomyces cerevisiae, Trichophyton spp. | [43,75,114,118,126] |
E. gracilis | Aspergillus ochraceus, Candida albicans, Mucor ramamnianus, Saccharomyces cerevisiae | [155] |
E. grandis | Aspergillus clavatus, Aspergillus niger, Chaetomium globosum, Cladosporium cladosporioides, Lenzites sulphureus, Myrothecium verrucaria, Penicillium citrinum, Phaeolus schweintizii, Phanerochaete chrysosporium, Trametes versicolor, Trichoderma viride | [77] |
E. maidenii | Candida albicans, Trichophyton soudanense | [152] |
E. melanophloia | Aspergillus niger, Rhizopus solani | [75] |
E. microtheca | Aspergillus niger, Rhizopus solani | [75] |
E. odorata | Candida albicans, Microsporum canis, Scopulariopsis brevicaulis, Trichophyton rubrum, Trichophyton soudanense | [152] |
E. oleosa | Aspergillus ochraceus, Candida albicans, Mucor ramamnianus, Saccharomyces cerevisiae | [155] |
E. robusta | Candida albicans | [132] |
E. saligna | Candida albicans | [73,132] |
E. olida | Candida albicans | [17] |
E. platyphylla | Deightoniella torulosa | [159] |
E. salmonophloia | Aspergillus ochraceus, Candida albicans, Mucor ramamnianus, Saccharomyces cerevisiae | [155] |
E. salubris | Aspergillus ochraceus, Candida albicans, Mucor ramamnianus, Saccharomyces cerevisiae | [155] |
E. sargentii | Aspergillus niger, Candida albicans | [157] |
E. sideroxylon | Microsporum canis | [152] |
E. smithii | Microsporum canis, Microsporum gypseum, Trichophyton mentagnophytes, Trichophyton rubrum | [160] |
E. staigeriana | Candida albicans | [17] |
E. tereticornis | Hansenula spp., Saccharomyces spp., Sporobolomyces, Torulopsis candida | [134] |
E. urophylla | Aspergillus clavatus, Aspergillus niger, Chaetomium globosum, Cladosporium cladosporioides, Lenzites sulphureus, Myrothecium verrucaria, Penicillium citrinum, Phanerochaete chrysosporium, Phaeolus schweintizii, Trametes versicolor, Trichoderma viride | [77] |
Eucalyptus spp. | Target Species | Reference |
---|---|---|
E. approximans | Tetranychus urticae | [166] |
E. bicostata | Tetranychus urticae | [166] |
E. camaldulensis | Varroa destructor | [71] |
E. citriodora | Boophilus microplus, Dermanyssus gallinae, Neoseiulus californicus, Tetranychus urticae | [91,100,101,102] |
E. globulus | Boophilus microplus | [91] |
E. maidenii | Tetranychus urticae | [166] |
E. sideroxylon | Tetranychus urticae | [166] |
E. staigeriana | Boophilus microplus, Dermanyssus gallinae | [91,102] |
E. tereticornis | Amblyoma variegatum | [134] |
Eucalyptus spp. | Target Species | Reference |
---|---|---|
E. astringens | Callosobruchus maculatus, Ephestia cautela, Ephestia kuehniella, Rhyzopertha dominica, Tribolium castaneum | [79,194] |
E. badjensis | Aedes aegypti, Haematobia irritans | [195,196] |
E. badjensis x E. nitens | Aedes aegypti, Haematobia irritans | [195,196] |
E. benthamii | Sitophilus zeamais | [116] |
E. botryoides | Aedes aegypti, Haematobia irritans | [195,196] |
E. camaldulensis | Aedes aegypti, Aedes albopictus, Atta sexdens rubropilosa, Ectomyelois ceratoniae, Ephestia cautela, Ephestia kuehniella, Pediculus humanus capitis, Sitophilus zeamais, Thyrinteina arnobia | [63,64,65,66,67,72,78,79,80] |
E. cinerea | Aedes aegypti, Musca domestica, Pediculus humanus capitis | [63,64,81,82,83] |
E. citriodora | Aedes aegypti, Anopheles gambia, Atta sexdens rubropilosa, Callosobruchus maculatus, Lutzomyia longipalpis, Nasutitermes corniger, Pediculus humanus capitis, Sitophilus zeamais, Thyrinteina arnobia, Tribolium castaneum | [66,67,72,82,89,90,92,95,96,103,104,105] |
E. cloeziana | Atta sexdens rubropilosa, Thyrinteina arnobia | [66,67] |
E. darlympleana | Aedes aegypti, Haematobia irritans | [195,196] |
E. dorrigoensis | Aedes aegypti, Haematobia irritans | [195,196] |
E. dundasii | Oryzaephilus surinamemsis, Rhyzopertha dominica | [197] |
E. dunnii | Aedes aegypti, Blattella germanica, Pediculus humanus capitis, Sitophilus zeamais | [63,64,110,116,129] |
E. elata | Haematobia irritans | [195] |
E. fastigata | Aedes aegypti, Haematobia irritans | [195,196] |
E. fraxinoides | Haematobia irritans | [195] |
E. floribundi | Oryzaephilus surinamemsis, Rhyzopertha dominica | [198] |
E. globulus | Aedes aegypti, Lutzomyia longipalpis, Musca domestica, Odontotermes assamensis, Pediculus humanus capitis, Sitophilus oryzae, Sitophilus zeamais, Tribolium castaneum, Tribolium confusum | [63,64,72,95,110,111,112,113,116,117,120,121,122] |
E. grandis | Aedes aegypti, Atta sexdens rubropilosa, Blattella germanica, Pediculus humanus capitis, Thyrinteina arnobia | [65,66,67,129,130] |
E. grandis x E. camaldulensis | Aedes aegypti, Blattella germanica, Pediculus humanus capitis | [63,64,65,129] |
E. grandis x E. tereticornis | Aedes aegypti, Blattella germanica, Pediculus humanus capitis | [63,64,65,129] |
E. gunnii | Aedes aegypti, Pediculus humanus capitis | [63,64,110] |
E. lehmannii | Callosobruchus maculatus, Ephestia cautela, Ephestia kuehniella, Rhyzopertha dominica, Tribolium castaneum | [79,194] |
E. leucoxylon | Ectomyelois ceratoniae, Ephestia cautela, Ephestia kuehniella | [79,80] |
E. maculata | Atta sexdens rubropilosa, Thyrinteina arnobia | [66,67] |
E. nobilis | Aedes aegypti, Haematobia irritans | [195,196] |
E. oblicua | Haematobia irritans | [195] |
E. polybractea | Aedes aegypti, Haematobia irritans | [195,196] |
E. radiata | Aedes aegypti, Haematobia irritans | [195,196] |
E. resinífera | Aedes aegypti, Haematobia irritans | [195,196] |
E. robertsonii | Aedes aegypti, Haematobia irritans | [195,196] |
E. rubida | Aedes aegypti, Haematobia irritans | [195,196] |
E. rudis | Ectomyelois ceratoniae, Ephestia cautela, Ephestia kuehniella | [79] |
E. saligna | Acanthoscelides obtectus, Aedes aegypti, Atta sexdens rubropilosa, Pediculus humanus capitis, Sitophilus zeamais, Sitotroga cerealella, Tribolium castaneum, Thyrinteina arnobia | [63,64,66,67,82,116,131,133] |
E. sideroxylon | Aedes aegypti, Blattella germanica, Pediculus humanus capitis | [63,64,110,129] |
E. smithii | Aedes aegypti, Haematobia irritans | [195,196] |
E. staigeriana | Callosobruchus maculatus, Lutzomyia longipalpis | [92,95] |
E. tereticornis | Aedes aegypti, Anopheles gambia, Pediculus humanus capitis | [63,64,65,82,89] |
E. urophylla | Atta sexdens rubropilosa, Thyrinteina arnobia | [66,67] |
E. viminalis | Aedes aegypti, Blattella germanica, Pediculus humanus capitis, Sitophilus zeamais | [63,64,82,116,129] |
Eucalyptus spp. | Target Species | Reference |
---|---|---|
E. brockwayii | Solanum elaeagnifolium | [212,213] |
E. camaldulensis | Amaranthus hybridus, Portulaca oleracea | [76] |
E. citriodora | Amaranthus viridis, Cassia occidentalis, Cucumis sativus, Echinochloa crus-galli, Oryza sativa, Sorghum bicolor, Triticum aestivum | [26,54,99] |
E. dundasii | Solanum elaeagnifolium | [212,213] |
E. erythrocorys | Phalaris canariensis, Sinapis arvensis | [158] |
E. melliodora | Solanum elaeagnifolium | [213] |
E. salubris | Solanum elaeagnifolium | [212,213] |
E. spathulata | Solanum elaeagnifolium | [212,213] |
E. urophylla | Lactuca sativa | [214] |
Eucalyptus spp. | 1,8-Cineole (%) | Reference |
---|---|---|
E. camaldulensis | 80–90 | [217,218] |
E. cineorifolia | 40–90 | [217,218] |
E. dumosa | 33–70 | [217,218] |
E. elaeophora | 60–80 | [217,218] |
E. globulus | 60–85 | [217,218] |
E. leucoxylon | 65–75 | [217,218] |
E. oleosa | 45–52 | [217,218] |
E. polybractea | 60–93 | [217,218] |
E. radiata subsp. radiata var. cineole | 65–75 | [217,218] |
E. sideroxylon | 60–75 | [217,218] |
E. smithii | 70–80 | [217,218] |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbosa, L.C.A.; Filomeno, C.A.; Teixeira, R.R. Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils. Molecules 2016, 21, 1671. https://doi.org/10.3390/molecules21121671
Barbosa LCA, Filomeno CA, Teixeira RR. Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils. Molecules. 2016; 21(12):1671. https://doi.org/10.3390/molecules21121671
Chicago/Turabian StyleBarbosa, Luiz Claudio Almeida, Claudinei Andrade Filomeno, and Robson Ricardo Teixeira. 2016. "Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils" Molecules 21, no. 12: 1671. https://doi.org/10.3390/molecules21121671
APA StyleBarbosa, L. C. A., Filomeno, C. A., & Teixeira, R. R. (2016). Chemical Variability and Biological Activities of Eucalyptus spp. Essential Oils. Molecules, 21(12), 1671. https://doi.org/10.3390/molecules21121671