Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity
Abstract
:1. Introduction
2. Extraction of TCM Polysaccharides
2.1. Extraction Pre-Processing
2.2. Extraction Method
2.2.1. Traditional Water Extraction
2.2.2. Enzyme-Assisted Extraction
2.2.3. Physical Technique-Assisted Extraction
3. Purification of Polysaccharides
3.1. Removal of Impurities
3.2. Purification Method
4. Analysis of Polysaccharides
5. Modification of Polysaccharides
5.1. Sulfation
5.2. Phosphorylation
5.3. Carboxymethylation
5.4. Other Modifications
6. Biological Activities of TCM Polysaccharides
6.1. Immunity
6.1.1. Immune Cell
6.1.2. Cytokines
6.1.3. Antibody
6.1.4. Complement System
6.2. Antiviral Activity
6.3. Anti-Inflammatory Activity
6.4. Anti-Oxidative Activity
6.5. Anti-TumorActivity
6.6. OtherActivities
7. Summary
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Shi, M.M.; Piao, J.H.; Xu, X.L.; Zhu, L.; Yang, L.; Lin, F.L.; Chen, J.; Jiang, J.G. Chinese medicines with sedative–hypnotic effects and their active components. Sleep Med. Rev. 2016, 29, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, N.P. Nanocarriers for the delivery of active ingredients and fractions extracted from natural products used in traditional Chinese medicine (TCM). Adv. Colloid Interface 2015, 221, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wu, Y.; Xian, L.T.; Song, M.Y.; Zeng, L.; Xiong, W.; Liu, J.G.; Sun, W.D.; Wang, D.Y.; Hu, Y.L. Effects of Bush Sophora Root polysaccharide and its sulfate on immuno-enhancing of the therapeutic DVH. Int. J. Biol. Macromol. 2015, 80, 217–224. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Sun, Y.; Yu, C.; Liu, L. Chemical structure of one low molecular weight and water-soluble polysaccharide (EFP-W1) from the roots of Euphorbia fischeriana. Carbohydr. Polym. 2012, 87, 1236–1240. [Google Scholar] [CrossRef]
- Ding, X.; Hou, Y.; Hou, W. Structure feature and antitumor activity of a novel polysaccharide isolated from Lactarius deliciosus, Gray. Carbohydr. Polym. 2012, 89, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Tang, J.; Cao, M.; Guo, C.X.; Zhang, X.; Zhong, J.; Zhang, J.; Sun, Q.; Feng, S.; Yang, Z.R.; Zhao, J. Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Tricholoma matsutake. Int. J. Biol. Macromol. 2010, 47, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Z.; Wu, D.; Zhou, S.; Liu, Y.F.; Li, Z.P.; Feng, J.; Yang, Y. Structure elucidation of a bioactive polysaccharide from fruiting bodies of Hericium erinaceus in different maturation stages. Carbohydr. Polym. 2016, 144, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Z.; Jiang, N.; Liu, L.; Sheng, X.J.; Shi, A.M.; Hu, H.; Yang, Y.; Wang, Q. Extraction, purification and primary characterization of polysaccharides from Defatted Peanut (Arachis hypogaea) Cakes. Molecules 2016, 21, 716. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Lin, H.B.; Gong, S.; Chen, P.Y.; Geng, L.L.; Zeng, Y.M.; Li, D.Y. Effect of Astragalus polysaccharides on expression of TNF-α, IL-1β and NFATc4 in a rat model of experimental colitis. Cytokine 2014, 70, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Pu, X.Y.; Ma, X.L.; Liu, L.; Ren, J.; Li, H.B.; Li, X.Y.; Yu, S.; Zhang, W.J.; Fan, W.B. Structural characterization and antioxidant activity in vitro of polysaccharides from Angelica and Astragalus. Carbohydr. Polym. 2016, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Xue, H.X.; Gan, F.; Zhang, Z.Q.; Hu, J.F.; Chen, X.X.; Huang, K.H. Astragalus polysaccharides inhibits PCV2 replication by inhibiting oxidative stress and blocking NF-κB pathway. Carbohydr. Polym. 2015, 81, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Xiao, B.; Sun, T.Y. Antitumor and immunomodulatory activity of Astragalus membranaceus polysaccharides in H22 tumor-bearing mice. Int. J. Biol. Macromol. 2013, 62, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Kamarudin, F.; Gan, C.Y. Molecular structure, chemical properties and biological activities of Pinto bean pod polysaccharide. Int. J. Biol. Macromol. 2016, 88, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.H.; Tang, W.; Jin, M.L.; Li, J.E.; Xie, M.Y. Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: Structures and functionalities. Food Hydrocolloids 2016, 60, 148–160. [Google Scholar] [CrossRef]
- Zhang, F.; Lin, L.H.; Xie, J.H. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. Int. J. Biol. Macromol. 2016, 92, 246–253. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xiong, W.; Zeng, L.; Wang, D.Y.; Liu, J.G.; Wu, Y.; Hu, Y.L. Comparison of Bush Sophora Root polysaccharide and its sulfate's anti-duck hepatitis A virus activity and mechanism. Carbohydr. Polym. 2014, 102, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Qin, T.; Chen, J.; Wang, D.Y.; Hu, Y.L.; Zhang, J.; Wang, M.; Qiu, S.L.; Gao, Z.Z.; Liu, R.R.; Yu, Y.; Huang, Y.E.; Wang, Q.C.; Wang, Q.X. Selenylation modification can enhance immune-enhancing activity of Chinese angelica polysaccharide. Carbohydr. Polym. 2013, 95, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Ni, Y.Y.; Hu, X.S.; Li, Q.H. Effect of phosphorylation on antioxidant activities of pumpkin (Cucurbita pepo, Lady godiva) polysaccharide. Int. J. Biol. Macromol. 2015, 81, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.K.; Wang, W.Q.; Wu, J.Y. Recent advances in Cordyceps sinensis polysaccharides: Mycelial fermentation, isolation, structure, and bioactivities: A review. J. Funct. Foods 2014, 6, 33–47. [Google Scholar] [CrossRef]
- Zhang, M.; Cui, S.W.; Cheung, P.C.K.; Wang, Q. Antitumor polysaccharides from mushrooms: A review on their isolation process, structural characteristics and antitumor activity. Trends Food. Sci. Technol. 2007, 18, 4–19. [Google Scholar] [CrossRef]
- Jin, M.L.; Zhao, K.; Huang, Q.S.; Xu, C.L.; Shang, P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: A review. Carbohydr. Polym. 2012, 89, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.L.; You, Q.H.; Jiang, Z.H. Optimization of enzyme assisted extraction of polysaccharides from Tricholoma matsutake by response surface methodology. Carbohydr. Polym. 2011, 86, 1358–1364. [Google Scholar] [CrossRef]
- Wang, J.L.; Zhang, J.; Zhao, B.T.; Wang, X.F.; Wu, Y.Q.; Yao, J. A comparison study on microwave-assisted extraction of Potentilla anserina L. polysaccharides with conventional method: Molecule weight and antioxidant activities evaluation. Carbohydr. Polym. 2010, 8, 84–93. [Google Scholar] [CrossRef]
- Hromadkova, Z.; Ebringerova, A.; Valachovic, P. Comparison of classical and ultrasound-assisted extraction of polysaccharides from Salvia officinalis L. Ultrason. Sonochem. 1999, 5, 163–168. [Google Scholar] [CrossRef]
- Reverchon, E.; Marco, I. Supercritical fluid extraction and fractionation of natural matter. J. Supercrit. Fluid. 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Ma, T.T.; Sun, X.Y.; Tian, C.R.; Luo, J.Y.; Zheng, C.P.; Zhan, J.C. Polysaccharide extraction from Sphallerocarpus gracilis roots by response surface methodology. Int. J. Biol. Macromol. 2016, 88, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.P.; Zhang, H.; Li, W.J.; Xie, M.Y. Current development of polysaccharides from Ganoderma: Isolation, structure and bioactivities. Bioact. Carbohydr. Dietary Fibre 2013, 1, 10–20. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, Y.; Wang, X.; Huang, X.; Fei, Y.; Yu, Y.; Shou, D. Antioxidant property of water-soluble polysaccharides from Poriacocos Wolf using different extraction methods. Int. J. Biol. Macromol. 2016, 83, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Govender, S.; Pillay, V.; Chetty, D.J.; Essack, S.Y.; Dangor, C.M.; Govender, T. Optimisation and characterisation of bioadhesive controlled release tetracycline microspheres. Int. Pharm. J. 2005, 306, 24–40. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.A.; Mafra, I.; Soares, M.R.; Evtuguin, D.V.; Coimbra, M.A. Dimeric calcium complexes of arabinan-rich pectic polysaccharides from Olea europaea L. cell walls. Carbohydr. Polym. 2006, 65, 535–543. [Google Scholar]
- Yin, G.H.; Dang, Y.L. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box–Behnken statistical design. Carbohydr. Polym. 2008, 74, 603–610. [Google Scholar]
- Sun, Y.X.; Liu, J.C.; Kennedy, J.F. Application of response surface methodology for optimization of polysaccharides production parameters from the roots of Codonopsis pilosula by a central composite design. Carbohydr. Polym. 2010, 80, 949–953. [Google Scholar] [CrossRef]
- Zhang, H.L.; Li, J.; Xia, J.M.; Lin, S.Q. Antioxidant activity and physicochemical properties of an acidic polysaccharide from Morinda officinalis. Int. J. Biol. Macromol. 2013, 58, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Li, Q.; Mao, G.H.; Zou, Y.; Feng, W.W.; Zheng, D.H.; Wang, W.; Zhou, L.L.; Zhang, T.X.; Yang, J.; Yang, L.Q.; Wu, X.Y. Optimization of enzyme-assisted extraction and characterization of polysaccharides from Hericium erinaceus. Carbohydr. Polym. 2014, 101, 606–613. [Google Scholar] [CrossRef] [PubMed]
- Li, B.B.; Smith, B.; Hossain, M.M. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method. Sep. Purif. Technol. 2006, 48, 189–196. [Google Scholar] [CrossRef]
- Pan, L.H.; Wang, J.; Ye, X.Q.; Zha, X.Q.; Luo, J.P. Enzyme-assisted extraction of polysaccharides from Dendrobium chrysotoxum and its functional properties and immunomodulatory activity. LWT-Food Sci. Technol. 2015, 60, 1149–1154. [Google Scholar] [CrossRef]
- Li, F.; Yang, L.Q.; Zhao, T.; Zhao, J.L.; Zou, Y.M.; Zou, Y.; Wu, X.Y. Optimization of enzymatic pretreatment for n-hexane extraction of oil from Silybum marianum seeds using response surface methodology. Food Bioprod. Process. 2012, 90, 87–94. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, S.Y.; Liu, Y.; Wu, S.H.; Ran, J.Y. Optimization of enzyme-assisted extraction of the Lycium barbarum polysaccharides using response surface methodology. Carbohydr. Polym. 2011, 86, 1089–1092. [Google Scholar] [CrossRef]
- Thomas, L.; Parameswaran, B.; Pandey, A. Hydrolysis of pretreated rice straw by an enzyme cocktail comprising acidic xylanase from Aspergillus sp. for bioethanol production. Renew. Energ. 2016, 98, 9–15. [Google Scholar] [CrossRef]
- Wang, S.P.; Dong, X.F.; Tong, J.M. Optimization of enzyme-assisted extraction of polysaccharides from alfalfa and its antioxidant activity. Int. J. Biol. Macromol. 2013, 62, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Passos, C.P.; Yilmaz, S.; Silva, C.M.; Coimbra, M.A. Enhancement of grape seed oil extraction using a cell wall degrading enzyme cocktail. Food Chem. 2009, 115, 48–53. [Google Scholar] [CrossRef]
- Guillard, C.L.; Bergé, J.P.; Donnay-Moreno, C.; Bruzac, S.; Ragon, J.Y.; Baron, R.; Fleurence, J.; Dumay, J. Soft liquefaction of the red seaweed Grateloupia turuturu Yamada by ultrasound-assisted enzymatic hydrolysis process. J. Appl. Phycol. 2016, 28, 2575–2585. [Google Scholar] [CrossRef]
- Chan, C.H.; Yusoff, R.; Ngoh, G.C.; Kung, F.W.L. Microwave-assisted extractions of active ingredients from plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef] [PubMed]
- Ferhat, M.A.; Tigrine-Kordjani, N.; Chemat, S.; Meklati, B.Y.; Chemat, F. Rapid extraction of volatile compounds using a new simultaneous microwave distillation: solvent extraction device. Chromatographia 2007, 65, 217–222. [Google Scholar] [CrossRef]
- Liu, T.T.; Sui, X.Y.; Zhang, R.R.; Yang, L.; Zu, Y.G.; Zhang, L.; Zhang, Y.; Zhang, Z.H. Application of ionic liquids based microwave-assisted simultaneous extraction of carnosic acid, rosmarinic acid and essential oil from Rosmarinus officinalis. J. Chromatogr. A 2011, 1218, 8480–8489. [Google Scholar] [CrossRef] [PubMed]
- Ng, L.K.; Hupe, M. Effects of moisture content in cigar tobacco on nicotine extraction: Similarity between Soxhlet and focused open-vessel microwave-assisted techniques. J. Chromatogr. A 2003, 1011, 213–219. [Google Scholar] [CrossRef]
- Chen, F.L.; Du, X.Q.; Zu, Y.G.; Yang, L.; Wang, F. Microwave-assisted method for distillation and dual extraction in obtaining essential oil, proanthocyanidins and polysaccharides by one-pot process from Cinnamomi Cortex. Sep. Purif. Technol. 2016, 164, 1–11. [Google Scholar] [CrossRef]
- Perez-Serradilla, J.A.; Luque de Castro, M.D. Microwave-assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food Chem. 2011, 124, 1652–1659. [Google Scholar] [CrossRef]
- Gallo, M.; Ferracane, R.; Graziani, G.; Ritieni, A.; Fogliano, V. Microwave assisted extraction of phenolic compounds from four different spices. Molecules 2010, 15, 6365–6374. [Google Scholar] [CrossRef] [PubMed]
- Dahmoune, F.; Boulekbache, L.; Moussi, K.; Aoun, O.; Spigno, G.; Madani, K. Valorization of Citrus limon residues for the recovery of antioxidants: Evaluation and optimization of microwave and ultrasound application to solvent extraction. Ind. Crops Prod. 2013, 50, 77–87. [Google Scholar] [CrossRef]
- Pan, Y.M.; Wang, K.; Huang, S.Q.; Wang, H.S.; Mu, X.M.; He, C.H.; Ji, X.W.; Zhang, J.; Huang, F.J. Antioxidant activity of microwave-assisted extract of longan (Dimocarpus Longan Lour.) peel. Food. Chem. 2008, 106, 1264–1270. [Google Scholar] [CrossRef]
- Pan, Y.M.; He, C.H.; Wang, H.S.; Ji, X.W.; Wang, K.; Liu, P.Z. Antioxidant activity of microwave-assisted extract of Buddleia officinalis and its major active component. Food Chem. 2010, 121, 497–502. [Google Scholar] [CrossRef]
- Jia, X.J.; Ma, L.S.; Li, P.; Chen, M.W.; He, C.W. Prospects of Poriacocos polysaccharides: Isolation process, structural features and bioactivities. Trends Food. Sci. Technol. 2016, 54, 52–62. [Google Scholar] [CrossRef]
- Dahmoune, F.; Nayak, B.; Moussi, K.; Remini, H.; Madani, K. Optimization of microwave-assisted extraction of polyphenols from Myrtus communis L. leaves. Food. Chem. 2015, 166, 585–595. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.Z.; Jin, C.G.; Tong, Z.G.; Lu, J.; Tan, L.; Tian, L.; Chang, Q.Q. Optimization extraction, characterization and antioxidant activities of pectic polysaccharide from tangerine peels. Carbohydr. Polym. 2016, 136, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Fishman, M.L.; Chau, H.K.; Cooke, P.H.; Yadav, M.P.; Hotchkiss, A.T. Physico-chemical characterization of alkaline soluble polysaccharides from sugar beet pulp. Food Hydrocolloids 2009, 23, 1554–1562. [Google Scholar] [CrossRef]
- Dean, J.R.; Xiong, G.H. Extraction of organic pollutants from environmental matrices: selection of extraction technique. TrAC-Trends Anal. Chem. 2000, 19, 553–564. [Google Scholar] [CrossRef]
- Delgado-Povedano, M.M.; Luque de Castro, M.D. A review on enzyme and ultrasound: A controversial but fruitful relationship. Ana. Chim. Acta 2015, 889, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.J.; Li, X.; Wan, M.J.; Chen, J.P.; Li, S.J.; Cao, M.; Zhang, D.Y. Effect of extraction methods on property and bioactivity of water-soluble polysaccharides from Amomum villosum. Carbohydr. Polym. 2015, 117, 632–635. [Google Scholar] [CrossRef] [PubMed]
- Vinatoru, M.; Toma, M.; Mason, T.J. Ultrasonically assisted extraction of bioactive principles from plants and their constituents. Adv. Sonochem. 1999, 5, 216. [Google Scholar]
- Fu, L.; Chen, H.; Dong, P.; Zhang, X.; Zhang, M. Effects of Ultrasonic Treatment on the Physicochemical Properties and DPPH Radical Scavenging Activity of Polysaccharides from Mushroom Inonotus obliquus. J. Food Sci. 2010, 75, C322–C327. [Google Scholar] [CrossRef] [PubMed]
- Glisic, S.B.; Ristic, M.; Skala, D.U. The combined extraction of sage (Salvia officinalis L.): Ultrasound followed by supercritical CO2 extraction. Ultrason. Sonochem. 2011, 18, 318–326. [Google Scholar] [CrossRef] [PubMed]
- Velickovic, D.T.; Milenovic, D.M.; Ristic, M.S.; Veljkovic, V.B. Kinetics of ultrasonic extraction of extractive substances from garden (Salvia officinalis L.) and glutinous (Salvia glutinosa L.) sage. Ultrason. Sonochem. 2006, 13, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Toma, M.; Vinatoru, M.; Paniwnyk, L.; Mason, T.J. Investigation of the effects of ultrasound on vegetal tissues during solvent extraction. Ultrason. Sonochem. 2001, 8, 137–142. [Google Scholar] [CrossRef]
- Mislovicova, D.; MasArovA, J.; Bendzalova, K.; Soltes, L.; Machova, E. Sonication of chitin–glucan, preparation of water-soluble fractions and characterization by HPLC. Ultrason. Sonochem. 2000, 7, 63–68. [Google Scholar] [CrossRef]
- Zhou, C.S.; Ma, H.L. Ultrasonic Degradation of Polysaccharide from a Red Algae (Porphyrayezoensis). J. Agric. Food Chem. 2006, 54, 2223–2228. [Google Scholar] [CrossRef] [PubMed]
- Ebringerova, A.; Z Hromadkova, Z. The effect of ultrasound on the structure and properties of the water-soluble corn hull heteroxylan. Ultrason. Sonochem. 1997, 4, 305–309. [Google Scholar] [CrossRef]
- Liu, H.; Bao, J.G.; Du, Y.M.; Zhou, X.; Kennedy, J.F. Effect of ultrasonic treatment on the biochemphysical properties of chitosan. Carbohydr. Polym. 2006, 64, 553–559. [Google Scholar] [CrossRef]
- Glisic, S.; Ivanovic, J.; Ristic, M.; Skala, D. Extraction of sage (Salvia officinalis L.) by supercritical CO2: Kinetic data, chemical composition and selectivity of diterpenes. J. Supercrit. Fluid. 2010, 52, 62–70. [Google Scholar] [CrossRef]
- Zhao, Z.J.; Lian, Y.; Wang, G.Q.; Li, W.W. Orthogonal test for optimization of CO2-SFE process of pachyman in Poria cocos(Schw.) wolf. Lishizhen Med. Mater. Med. Res. 2008, 19, 1628–1629. [Google Scholar]
- Staub, A.M. Removal of protein-Sevag method. Methods Carbohydr. Chem. 1965, 5, 5–6. [Google Scholar]
- Qu, C.L.; Yu, S.C.; Jin, H.L.; Wang, J.S.; Luo, L. The pretreatment effects on the antioxidant activity of jujube polysaccharides. Spectrochim. Acta A. 2013, 114, 339–343. [Google Scholar] [CrossRef] [PubMed]
- Cai, W.R.; Xu, H.L.; Xie, L.L.; Sun, J.; Sun, T.T.; Wu, X.Y.; Fu, Q.B. Purification, characterization and in vitro anticoagulant activity of polysaccharides from Gentiana scabra Bunge roots. Carbohydr. Polym. 2016, 140, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Luo, J.G.; Sun, Y.; Ye, H.; Lu, Z.X.; Zeng, X.X. A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin. Bioresour. Technol. 2010, 101, 6077–6083. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Meng, D.M.; Song, Y.; Li, J.; Zhang, Y.Y.; Hu, X.S.; Ni, Y.Y.; Li, Q.H. Simultaneous Decoloration and Deproteinization of Crude Polysaccharide from Pumpkin Residues by Cross-Linked Polystyrene Macroporous Resin. J. Agric. Food Chem. 2012, 60, 8450–8456. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Dai, Q.Q.; Ren, J.L.; Jian, L.F.; Peng, F.; Sun, R.C.; Liu, G.L. Effect of structural characteristics of corncob hemicelluloses fractionated by graded ethanol precipitation on furfural production. Carbohydr. Polym. 2016, 136, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.S.; Xie, B.X.; Yan, J.; Zhao, F.C.; Xiao, J.; Yao, L.Y.; Zhao, B.; Huang, Y.X. In vitro antioxidant and antitumor activities of polysaccharides extracted from Asparagus officinalis. Carbohydr. Polym. 2012, 87, 392–396. [Google Scholar] [CrossRef]
- Morris, G.A.; Adams, G.G.; Harding, S.E. On hydrodynamic methods for the analysis of the sizes and shapes of polysaccharides in dilute solution: A short review. Food Hydrocolloid. 2014, 42, 318–334. [Google Scholar] [CrossRef]
- Paulsen, B.S.; Olafsdottir, E.S.; Ingolfsdottir, K. Chromatography and electrophoresis in separation and characterization of polysaccharides from lichens. J. Chromatogr. A 2002, 967, 163–171. [Google Scholar] [CrossRef]
- Wang, Q.J.; Fang, Y.Z. Analysis of sugars in traditional Chinese drugs. J. Chromatogr. B. 2004, 812, 309–324. [Google Scholar] [CrossRef]
- Preethi, S.; Saral, M. Screening of natural polysaccharides extracted from the fruits of Pithecellobium dulce as a pharmaceutical adjuvant. Int. J. Biol. Macromol. 2016, 92, 347–356. [Google Scholar]
- Xu, Z.; Li, X.; Feng, S.L.; Liu, J.; Zhou, L.J.; Yuan, M.; Ding, C.B. Characteristics and bioactivities of different molecular weight polysaccharides from camellia seed cake. Int. J. Biol. Macromol. 2016, 91, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.S.; Chen, H.X.; Zhang, Y.; Zhang, N.; Fu, L.L. Chemical modification and antioxidant activities of polysaccharide from mushroom Inonotus obliquus. Carbohydr. Polym. 2012, 89, 371–378. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.M.; Yin, Y.; Yang, W.; Ma, M.L.; Yang, L.; Chen, X.J.; Zhang, Z.; Ye, B.; Song, L.Y. Structural elucidation and biological activity of a novel polysaccharide by alkaline extraction from cultured Cordyceps militaris. Carbohydr. Polym. 2009, 75, 166–171. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Xu, X.B.; Gu, Z.X.; Liu, S.; Gao, N.; He, X.Z.; Xin, X. Purification and characterization of a glucan from Bacillus calmette guerin and the antitumor activity of its sulfated derivative. Carbohydr. Polym. 2015, 128, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, X.Z.; Wu, Z.P.; Kuang, C.T. Research progress on extraction, purification and content determination of plant polysaccharides. Chem. Ind. Forest Prod. 2009, 29, 238–242. [Google Scholar]
- Yang, L.Q.; Zhang, L.M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohydr. Polym. 2009, 76, 349–361. [Google Scholar] [CrossRef]
- Wei, W.L.; Zeng, R.; Gu, C.M.; Qu, Y.; Huang, L.F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J. Ethnopharmacol. 2016, 190, 116–141. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.T.; Edgar, K.J. “Click” reactions in polysaccharide modification. Prog. Polym. Sci. 2016, 53, 52–85. [Google Scholar] [CrossRef]
- Xie, J.H.; Wang, Z.J.; Shen, M.Y.; Nie, S.P.; Gong, B.; Li, H.S.; Zhao, Q.; Li, W.J.; Xie, M.Y. Sulfated modification, characterization and antioxidant activities of polysaccharide from Cyclocarya paliurus. Food Hydrocolloids 2016, 53, 7–15. [Google Scholar] [CrossRef]
- He, Y.L.; Ye, M.; Jing, L.Y.; Du, Z.Z.; Surahio, M.; Xu, H.M.; Li, J. Preparation, characterization and bioactivities of derivatives of an exopolysaccharide from Lachnum. Carbohydr. Polym. 2015, 117, 788–796. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.H.; Jia, M.; Zhou, S.Y.; Pan, F.; Mei, Q.B. Antivirus and immune enhancement activities of sulfated polysaccharide from Angelica sinensis. Int. J. Biol. Macromol. 2012, 50, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Alban, S.; Kraus, J.; Franz, G. Synthesis of laminarin sulfates with anticoagulant activity. Arzneimittelforschung 1992, 42, 1005–1008. [Google Scholar] [PubMed]
- Lu, Y.; Wang, D.Y.; Hu, Y.L.; Huang, X.Y.; Wang, J.M. Sulfated modification of epimedium polysaccharide and effects of the modifiers on cellular infectivity of IBDV. Carbohydr. Polym. 2008, 71, 180–186. [Google Scholar] [CrossRef]
- Baba, M.; Snoeck, R.; Pauwels, R.; Clercq, E. Sulfated polysaccharides are potent and selective inhibitors of various enveloped viruses, including herpes simplex virus, cytomegalovirus, vesicular stomatitis virus, and human immunodeficiency virus. Antimicrob Agents Chemother. 1988, 32, 1742–1745. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.X.; Xiong, Q.Q.; Li, S.L.; Zhao, X.R.; Zeng, X.X. Structural characterization, sulfation and antitumor activity of a polysaccharide fraction from Cyclina sinensis. Carbohydr. Polym. 2015, 15, 200–206. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.F.; Liao, K.S.; Wu, Y.S.; Pan, Q.; Wu, L.L.; Jiao, H.; Guo, D.A.; Li, B.; Liu, B. Optimization, characterization, sulfation and antitumor activity of neutral polysaccharides from the fruit of Borojoa sorbilis cuter. Carbohydr. Polym. 2016, 151, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, S.S.; Passos, C.P.; Madureira, P.; Vilanova, M.; Coimbra, M.A. Structure-function relationships of immunostimulatory polysaccharides: A review. Carbohydr. Polym. 2015, 132, 378–396. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, F.T.G.S.; Camelini, C.M.; Cordeiro, M.N.S.; Mascarello, A.; Malagoli, B.G.; Larsen, I.; Rossi, M.J.; Nunes, R.J.; Braga, F.C.; Brandt, C.R.; Simoes, C.M.O. Characterization and cytotoxic activity of sulfated derivatives of polysaccharides from Agaricus brasiliensis. Int. J. Biol. Macromol. 2013, 57, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.S.; Fidelis, G.P.; Cordeiro, S.L.; Oliveira, R.M.; Sabry, D.A.; Câmara, R.B.G. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharmacother. 2010, 64, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Telles, C.B.S.; Sabry, D.A.; Almeida-Lima, J.; Costa, M.S.S.P.; Melo-Silveira, R.F.; Trindade, E.S. Sulfation of the extracellular polysaccharide produced by the edible mushroom Pleurotus sajor-caju alters its antioxidant, anticoagulant and antiproliferative properties in vitro. Carbohydr. Polym. 2011, 85, 514–521. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Y.J.; Park, H.S.; Xia, Y.M.; Kim, G.S. Antitumor activity of sulfated extracellular polysaccharides of Ganoderma lucidum from the submerged fermentation broth. Carbohydr. Polym. 2012, 87, 1539–1544. [Google Scholar] [CrossRef]
- Wijesekara, I.; Pangestuti, R.; Kim, S.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohyd. Polym. 2011, 84, 14–21. [Google Scholar] [CrossRef]
- Wang, J.M.; Hu, Y.L.; Wang, D.Y.; Zhang, F.; Zhao, X.N.; Abula, S.F.D.; Fan, Y.P.; Guo, L.W. Lycium barbarum polysaccharide inhibits the infectivity of Newcastle disease virus to chicken embryo fibroblast. Int. J. Biol. Macromol. 2010, 46, 212–216. [Google Scholar] [CrossRef] [PubMed]
- Dace, R.; Bride, E.M.; Brooks, K.; Gander, J.; Buszko, M.; Doctor, V.M. Comparison of the Anticoagulant Action of Sulfated and phosphorylated polysaccharides. Thromb. Res. 1997, 87, 113–121. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, H.; Wang, Y.X.; Nie, S.P.; Li, C.; Xie, M.Y. Sulfated modification of the polysaccharides from Ganoderma atrum and their antioxidant and immunomodulating activities. Food. Chem. 2015, 186, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Cong, Q.F.; Xiao, F.; Liao, W.F.; Dong, Q.; Ding, K. Structure and biological activities of an alginate from Sargassum fusiforme: and its sulfated derivative. Int. J. Biol. Macromol. 2014, 69, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Niu, S.F.; Zhao, B.T.; Wang, X.F.; Yao, J.; Zhang, J.; Zhao, W.W.; Zhao, Y.T. Regioselective synthesis of sulfated guar gum: Comparative studies of structure and antioxidant activities. Int. J. Biol. Macromol. 2013, 62, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Yang, W.; Yang, T.; Zhang, X.N.; Zuo, Y.; Tian, J.; Yao, J.; Zhang, J.; Lei, Z.Q. Catalytic synthesis of sulfated polysaccharides I: Characterization of chemical structure. Int. J. Biol. Macromol. 2015, 74, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Zhu, L.; Liu, X.Y.; Li, Y.Y.; Zhao, C.D.; Xu, Z.G.; Yan, W.F.; Zhang, H.X. Synthesis and antioxidant activity of phosphorylated polysaccharide from Portulaca oleracea L. with H 3PW 12O 40 immobilized on polyamine functionalized polystyrene bead as catalyst. J. Mol. Catal. A Chem. 2011, 342–343, 74–82. [Google Scholar] [CrossRef]
- Wang, C.Y.; Guan, H.S. Advances of researches on antiviral activities of polysaccharides-II. Antiviral activities of sulfated polysaccharides. Prog. Biotechnol. 2000, 20, 3–8. [Google Scholar]
- Chattopadhyay, K.; Mateu, C.G.; Mandal, P.; Pujol, C.A.; Damonte, E.B.; Ray, B. Galactan sulfate of Grateloupia indica: Isolation, structural features and antiviral activity. Phytochemistry 2007, 68, 1428–1435. [Google Scholar] [CrossRef] [PubMed]
- Dodgson, K.S.; Price, R.G. A note on the determination of the ester sulphate content of sulphated polysaccharides. Biochem. J. 1962, 84, 106–110. [Google Scholar] [CrossRef] [PubMed]
- Antonopoulos, C.A.; Daniel, A.F.; Havanka, R.; Haslewood, G.A.D. A modification for the determination of sulfate in mucopolysaccharides by the benzidine method. Acta Chem. Scand. 1962, 16, 1521–1522. [Google Scholar] [CrossRef]
- Wang, J.L.; Yang, W.; Wang, J.C.; Wang, X.; Wu, F.; Yao, J.; Zhang, J.; Lei, Z.Q. Regioselective sulfation of Artemisia sphaerocephala polysaccharide: Characterization of chemical structure. Carbohydr. Polym. 2015, 133, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Guo, H.Y.; Zhang, J.; Wang, X.F.; Zhao, B.T.; Yao, J.; Wang, Y.P. Sulfated modification, characterization and structure–antioxidant relationships of Artemisia sphaerocephala polysaccharides. Carbohydr. Polym. 2010, 81, 897–905. [Google Scholar] [CrossRef]
- Blennow, A.; Nielsen, T.H.; Baunsgaard, L.; Mikkelsen, R.; Engelsen, S.B. Starch phosphorylation: A new front line in starch research. Trends Plant. Sci. 2002, 7, 445–450. [Google Scholar] [CrossRef]
- Heinze, T.; Liebert, T.; Heublein, B.; Hornig, S. Functional polymers base on dextran. Adv. Polym. Sci. 2006, 205, 199–291. [Google Scholar]
- Ye, M.; Yuan, R.Y.; He, Y.L.; Du, Z.Z.; Ma, X.J. Phosphorylation and anti-tumor activity of exopolysaccharide from Lachnum YM120. Carbohydr. Polym. 2013, 97, 690–694. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Zhang, Z.S.; Yao, Q.; Zhao, M.X.; Qi, H.M. Phosphorylation of low-molecular-weight polysaccharide from Enteromorpha linza with antioxidant activity. Carbohydr. Polym. 2013, 96, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Fu, H.T.; Xu, J.J.; Shang, J.Y.; Cheng, Y.M. Physiochemical and biological properties of phosphorylated polysaccharides from Dictyophora indusiata. Int. J. Biol. Macromol. 2015, 72, 894–899. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.M.; Zhang, W.W.; Li, X.G.; Lü, X.X.; Li, N.; Gao, X.L.; Song, J.M. Preparation and in vitro antioxidant activity of κ-carrageenan oligosaccharides and their oversulfated, acetylated, and phosphorylated derivatives. Carbohydr. Res. 2005, 340, 685–692. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.X.; Wan, Z.J.; Shi, L.; Lu, X.X. Preparation and antiherpetic activities of chemically modified polysaccharides from Polygonatum cyrtonema Hua. Carbohydr. Polym. 2011, 83, 737–742. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, Q.B.; Zhang, Z.S.; Zhang, J.J.; Li, P.C. Synthesized phosphorylated and aminated derivatives of fucoidan and their potential antioxidant activity in vitro. Int. J. Biol. Macromol. 2009, 4, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.S.; Zhang, Q.B.; Wang, J.; Zhang, H.; Niu, X.Z.; Li, P.C. Preparation of the different derivatives of the low-molecular-weight porphyran from Porphyra haitanensis and their antioxidant activities in vitro. Int. J. Biol. Macromol. 2009, 45, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Lowry, O.H.; Roberts, N.R.; Leiner, K.Y.; Wu, M.L.; Farr, A.L. The quantitative histochemistry of brain Chemical Methods. J. Biol. Chem. 1954, 207, 1–17. [Google Scholar] [PubMed]
- Sun, X.; Pan, D.D.; Zeng, X.Q.; Cao, J.X. Phosphorylation modification of Polysaccharides from Enteromorpha. J. Food Sci. 2011, 24, 17. [Google Scholar]
- Holman, W.I.M. A new technique for the determination of phosphorus by the molybdenum blue method. Biochem. J. 1943, 37, 256–259. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Xu, X.J.; Zhang, L.N.; Zeng, F.B. Chain conformation and anti-tumor activities of phosphorylated (1→3)-β-d-glucan from Poriacocos. Carbohydr. Polym. 2009, 78, 581–587. [Google Scholar] [CrossRef]
- Pal, S.; Sen, G.; Mishra, S.; Dey, R.K.; Jha, U. Carboxymethyl tamarind: Synthesis, characterization and its application as novel drug-delivery agent. J. Appl. Polym. Sci. 2008, 110, 392–400. [Google Scholar] [CrossRef]
- Pal, S.; Pal, A. Carboxymethyl guar: Its synthesis and macromolecular characterization. J. Appl. Polym. Sci. 2009, 111, 2630–2636. [Google Scholar] [CrossRef]
- Chakravorty, A.; Barman, G.; Mukherjee, S.; Sa, B. Effect of carboxymethylation on rheological and drug release characteristics of locust bean gum matrix tablets. Carbohydr. Polym. 2016, 144, 50–58. [Google Scholar] [CrossRef] [PubMed]
- El-Sherbiny, I.M. Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. Eur. Polym. J. 2009, 45, 199–210. [Google Scholar] [CrossRef]
- Magnani, M.; Calliari, C.M. Optimized methodology for extraction of (1→3)(1→6)-β-d-glucan from Saccharomyces cerevisiae and in vitro evaluation of the cytotoxicity and genotoxicity of the corresponding carboxymethyl derivative. Carbohydr. Polym. 2009, 78, 658–665. [Google Scholar] [CrossRef]
- Wu, Y.N.; Ye, M.; Du, Z.Z.; Jing, L.Y.; Surahio, M.; Yang, L. Carboxymethylation of an exopolysaccharide from Lachnum and effect of its derivatives on experimental chronic renal failure. Carbohydr. Polym. 2014, 114, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Hou, X.H.; Wang, Y.F.; Zhang, L.N. Correlation between structure and anti-gastric adenocarcinoma activity of β-d-glucan isolated from Poria cocos sclerotium. World Chin. J. Digestol. 2012, 20, 1277–1283. [Google Scholar]
- Yang, L.Q.; Zhao, T.; Wei, H.; Zhang, M.; Zou, Y.; Mao, G.H.; Wu, X.Y. Carboxymethylation of polysaccharides from Auricularia auricula and their antioxidant activities in vitro. Int. J. Biol. Macromol. 2011, 49, 1124–1130. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.B.; Zhao, C.; Pan, W.; Wang, J.P.; Wang, W.J. Carboxylate groups play a major role in antitumor activity of Ganoderma applanatum polysaccharide. Carbohydr. Polym. 2015, 123, 283–287. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Zhang, Z.S.; Zhao, M.X. Carboxymethylation of polysaccharides from Tremella fuciformis for antioxidant and moisture-preserving activities. Int. J. Biol. Macromol. 2015, 72, 526–530. [Google Scholar] [CrossRef] [PubMed]
- Capitani, D.; Porro, F.; Segre, A.L. High field NMR analysis of the degree of substitution in carboxymethyl cellulose sodium salt. Carbohydr. Polym. 2000, 42, 283–286. [Google Scholar] [CrossRef]
- Shi, M.J.; Wei, X.Y.; Xu, J.; Chen, B.J.; Zhao, D.Y.; Cui, S.; Zhou, T. Carboxymethylated degraded polysaccharides from Enteromorpha prolifera: Preparation and in vitro antioxidant activity. Food. Chem. 2017, 215, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.B.; Jin, X.Z.; Pan, W.; Wang, J.J. Syntheses of new rare earth complexes with carboxymethylated polysaccharides and evaluation of their in vitro antifungal activities. Carbohydr. Polym. 2014, 113, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.S.; Zhang, Q.B.; Wang, J.; Shi, X.L.; Song, H.F.; Zhang, J.J. In vitro antioxidant activities of acetylated, phosphorylated and benzoylated derivatives of porphyran extracted from Porphyra haitanensis. Carbohydr. Polym. 2009, 78, 449–453. [Google Scholar] [CrossRef]
- Feng, H.B.; Fan, J.; Bo, H.Q.; Tian, X.; Bao, H.; Wang, X.H. Selenylation modification can enhance immune-enhancing activity of Chuanminshen violaceum polysaccharide. Carbohydr. Polym. 2016, 153, 302–311. [Google Scholar]
- Cui, G.T.; Zhang, W.X.; Wang, Q.J.; Zhang, A.; Mu, H.B.; Bai, H.J.; Duan, J.Y. Extraction optimization, characterization and immunity activity of polysaccharides from Fructus Jujubae. Carbohydr. Polym. 2014, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Xie, F.; Sakwiwatkul, K.; Zhang, C.R.; Wang, Y.M.; Zhai, L.J.; Hu, S.H. Atractylodis macrocephalae Koidz. polysaccharides enhance both serum IgG response and gut mucosal immunity. Carbohydr. Polym. 2013, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Pan, K.; Jiang, Q.G.; Liu, G.Q.; Miao, X.Y.; Zhong, D.W. Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities. Int. J. Biol. Macromol. 2013, 301–306. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.Y.; Wang, C.L.; Wang, Y.R.; Li, Z.J.; Chen, M.H.; Li, F.J.; Sun, Y.P. Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice. Chin. J. Nat. Med. 2015, 760–766. [Google Scholar] [CrossRef]
- Kodama, N.; Murata, Y.; Asakawa, A.; Inui, A.; Hayashi, M.; Sakai, N.; Nanba, H. Maitake D-fraction enhances antitumor effects and reduces immunosuppression by mitomycin-C in tumor-bearing mice. Nutrition 2005, 21, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.P.; Ma, L.; Zhang, W.M.; Cui, X.Q.; Zhen, Y.; Suolangzhaxi; Song, X.P. Liposome can improve the adjuvanticity of astragalus polysaccharide on the immune response against ovalbumin. Int. J. Biol. Macromol. 2013, 60, 206–212. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Y.; Chen, X.L.; Qiu, S.L.; Hu, Y.L.; Wang, D.Y.; Liu, X.; Zhao, X.J.; Liu, C.; Chen, X.H. Adjuvanticity of compound astragalus polysaccharide and sulfated epimedium polysaccharide per os. Int. J. Biol. Macromol. 2013, 62, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B.; Yoona, Y.D.; Ahna, H.J.; Lee, H.S.; Lee, C.W.; Yoon, W.K.; Park, S.K.; Kim, H.M. Toll-like receptor-mediated activation of B Cells and bacrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus. Int. J. Immunopharmacol. 2003, 3, 1301–1312. [Google Scholar] [CrossRef]
- Ruan, Z.; Su, J.; Dai, H.C.; Wu, M.C. Characterization and immunomodulating activities of polysaccharide from Lentinus edodes. Int. J. Immunopharmacol. 2005, 5, 811–820. [Google Scholar]
- Raveendran, P.K.; Rodrigueza, S.; Ramachandran, R.; Alamo, A.; Melnick, S.J.; Escalon, E.; Garcia, P.I., Jr.; Wnuk, S.F.; Ramachandran, C. Immune stimulating properties of a novel polysaccharide from the medicinal plant Tinospora cordifolia. Int. J. Immunopharmacol. 2004, 4, 1645–1659. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.S.; Tsai, Y.F.; Lin, S.; Lin, C.C.; Hhoo, K.H.; Lin, C.H.; Wong, C.H. Studies on the immuno-modulating and anti-tumor activities of Ganoderma lucidum (Reishi) polysaccharides. Bioorg. Med. Chem. 2004, 12, 5595–5601. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Ge, B.L.; Li, Z.H.; Guan, F.X.; Li, F.F. Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr. Polym. 2016, 140, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hong, E.K. Immunostimulating activity of the polysaccharides isolated from Cordyceps militaris. Int. Immunopharmacol. 2011, 11, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Bo, R.N.; Zheng, S.S.; Xing, J.; Luo, L.; Niu, Y.L.; Huang, Y.E.; Liu, Z.G.; Hu, Y.L.; Liu, J.G.; Wu, Y.; Wang, D.Y. The immunological activity of Lycium barbarum polysaccharides liposome in vitro and adjuvanticity against PCV2 in vivo. Int. J. Biol. Macromol. 2016, 85, 294–301. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.E.; Liu, Z.G.; Bo, R.N.; Xing, J.; Luo, L.; Zhen, S.S.; Niu, Y.L.; Hu, Y.L.; Liu, J.G.; Wu, Y.; Wang, D.Y. The enhanced immune response of PCV-2 vaccine using Rehmannia glutinosa polysaccharide liposome as an adjuvant. Int. J. Biol. Macromol. 2016, 86, 929–936. [Google Scholar] [CrossRef] [PubMed]
- Cecilie, S.N.; Drissa, D.; Terje, E.M.; Malterud, K.E.; Kiyohara, H.; Matsumoto, T.; Yamada, H.; Paulsen, B.S. Isolation, partial characterisation and immunomodulating activities of polysaccharides from Vernonia kotschyana Sch. Bip. ex Walp. J. Ethnopharmacol. 2004, 91, 141–152. [Google Scholar]
- Di, H.Y.; Zhang, Y.Y.; Chen, D.F. Isolation of an anti-complementary polysaccharide from the root of Bupleurum chinense and identification of its targets in complement activation cascade. Chin. J. Nat. Med. 2013, 11, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.G.; Kuang, H.X.; Yang, B.Y.; Wang, Q.H.; Liang, J.; Sun, Y.P.; Wang, Y.H. Optimum extraction of acidic polysaccharides from the stems of Ephedra sinica Stapf by Box-Behnken statistical design and its anti-complement activity. Carbohydr. Polym. 2011, 84, 282–291. [Google Scholar] [CrossRef]
- Gerber, P.; Dugene, J.D.; Adams, E.V.; Sherman, J.H. Protective effect of seaweed extracts for chicken embryos infected with influenza B or Mumps virus. Proc. Soc. Exp. Biol. Med. 1958, 99, 590–593. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Y.; Wang, D.Y.; Hu, Y.L.; Lu, Y.; Guo, Z.H.; Kong, X.F.; Sun, J.L. Effect of sulfated astragalus polysaccharide on cellular infectivity of infectious bursal disease virus. Int. J. Biol. Macromol. 2008, 42, 166–171. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Song, M.Y.; Wang, Y.X.; Xiong, W.; Zeng, L.; Zhang, S.B.; Xu, M.Y.; Du, H.X.; Liu, J.G.; Wang, D.Y.; Wu, Y.; Hu, Y.L. The anti-DHAV activities of astragalus polysaccharide and its sulfate compared with those of BSRPS and its sulfate. Carbohydr. Polym. 2015, 117, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.J.; Wei, Y.Y.; Yin, D.; Shuai, X.H.; Zeng, Y.; Hu, T.J. Effect of Sophora subprosrate polysaccharide on oxidative stress induced by PCV2 infection in RAW264.7 cells. Int. J. Biol. Macromol. 2013, 62, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Yin, Z.Q.; Li, L.; Cheng, A.C.; Jia, R.Y.; Xu, J.; Wang, Y.; Yao, X.P.; Lv, C.; Zhao, X.H. Antiviral activity of sulfated Chuanminshen violaceum polysaccharide against duck enteritis virus in vitro. Antivir. Res. 2013, 98, 344–351. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.L.; Zhao, K.; Huang, Q.S.; Shang, P. Structural features and biological activities of the polysaccharides from Astragalus membranaceus. Int. J. Biol. Macromol. 2014, 64, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.H.; Song, J.; Shi, Y.Q.; Wang, C.M.; Chen, B.; Xie, D.H.; Jia, X.B. Anti-hepatitis B virus activity of chickweed [Stellaria media (L.) Vill.] extracts in HepG2.2.15 cells. Molecules 2012, 17, 8633–8646. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.M.; Chen, H.J.; Chen, K.; Gao, Y.F.; Gao, S.; Liu, X.F.; Li, J.G. Sulfated modification can enhance antiviral activities of Achyranthes bidentata polysaccharide against porcine reproductive and respiratory syndrome virus (PRRSV) in vitro. Int. J. Biol. Macromol. 2013, 52, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Zhang, Y.T.; Yin, Z.Q.; Zhao, X.H.; Liang, X.X.; He, C.L.; Yin, L.Z.; Lv, C.; Zhao, L.; Gang, Y.; Shi, F.; Shu, G.; Jia, R.Y. Antiviral effect of sulfated Chuanminshen violaceum polysaccharide in chickens infected with virulent Newcastle disease virus. Virology 2015, 476, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.P.; Wang, D.Y.; Liu, J.G.; Hu, Y.L.; Zhao, X.J.; Han, G.C.; Nguyen, T.L.; Chang, S.S. Adjuvantcity of epimedium polysaccharide-propolis flavone on inactivated vaccines against AI and ND virus. Int. J. Biol. Macromol. 2012, 51, 1028–1032. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.J.; Du, J.L.; Cao, L.P.; Jia, R.; Shen, Y.J.; Zhao, C.Y.; Xu, P.; Yin, G.J. Anti-inflammatory and hepatoprotective effects of Ganoderma lucidum polysaccharides on carbon tetrachloride-induced hepatocyte damage in common carp (Cyprinus carpio L.). Int. Immunopharmacol. 2015, 25, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.H.; Li, J.J.; Yan, J.; Liu, S.; Guo, Y.L.; Chen, D.J.; Luo, Q. Lycium barbarum polysaccharides ameliorates renal injury and inflammatory reaction in alloxan-induced diabetic nephropathy rabbits. Life Sci. 2016, 157, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, A.P.; Melissa, D.H. Effect of in vitro generation of oxygen free radicals on T cell function in young and old rats. Free Radic. Bio. Med. 1998, 25, 903–913. [Google Scholar]
- Chen, Y.; Xiong, W.; Zeng, L.; Wang, Y.; Zhang, S.B.; Xu, M.Y.; Song, M.Y.; Wang, Y.X.; Du, H.X.; Liu, J.G.; Wang, D.Y.; Wu, Y.; Hu, Y.L. Bush Sophora Root polysaccharide and its sulfate can scavenge free radicals resulted from duck virus hepatitis. Int. J. Biol. Macromol. 2014, 66, 186–193. [Google Scholar] [CrossRef] [PubMed]
- Olatunji, O.J.; Feng, Y.; Olatunji, O.O.; Tang, J.; Wei, Y.; Ouyang, Z.; Su, Z.L. Polysaccharides purified from Cordyceps cicadae protects PC12 cells against glutamate-induced oxidative damage. Carbohydr. Polym. 2016, 153, 187–195. [Google Scholar] [CrossRef] [PubMed]
- 171 Liu, Y.; Liu, F.; Yang, Y.; Li, D.; Lv, J.; Ou, Y.J.; Sun, F.J.; Chen, J.H.; Shi, Y.; Xia, P.Y. Astragalus polysaccharide ameliorates ionizing radiation-induced oxidative stress in mice. Int. J. Biol. Macromol. 2014, 68, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Qiu, S.L.; Chen, J.; Chen, X.; Fan, Q.; Zhang, C.S.; Wang, D.Y.; Li, X.P.; Chen, X.Y.; Chen, X.L.; Liu, C.; Gao, Z.Z.; Li, H.Q.; Hu, Y.L. Optimization of selenylation conditions for lyceum barbarum polysaccharide based on antioxidant activity. Carbohydr. Polym. 2014, 103, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Yue, L.; Wang, W.W.; Wang, Y.; Du, T.; Shen, W.P.; Tang, H.L.; Wang, Y.; Yin, H.P. Bletilla striata polysaccharide inhibits angiotensin II-induced ROS and inflammation via NOX4 and TLR2 pathways. Int. J. Biol. Macromol. 2016, 89, 376–388. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Liu, D.; Wang, W.; Zhao, H.; Wang, M.; Yin, H.P. Cordyceps sinensis polysaccharide inhibits PDGF-BB-induced inflammation and ROS production in human mesangial cells. Carbohydr. Polym. 2015, 125, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Liu, K.X.; Peng, J.Y.; Wang, C.Y.; Kang, L.; Chang, N.; Sun, H.J. Rhizoma Dioscoreae Nipponicae polysaccharides protect HUVECs from H2O2-induced injury by regulating PPARγ factor and the NADPH oxidase/ROS–NF-κB signal pathway. Toxicol. Lett. 2015, 232, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Du, G. Lycium barbarum polysaccharide stimulates of MCF-7 cells by the ERK pathway. Life Sci. 2012, 91, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Li, X.Q.; Wang, X.; Fan, H.T.; Zhang, X.N.; Hou, Y.; Liu, S.B.; Mei, K.B. A novel polysaccharide, isolated from Angelica sinensis (Oliv.) Diels induces the apoptosis of cervical cancer HeLa cells through an intrinsic apoptotic pathway. Phytomedicine 2010, 17, 598–605. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.Y.; Liu, R.Q.; Si, C.L.; Zhou, F.; Wang, Y.X.; Ding, L.N.; Jing, C.; Liu, A.J.; Zhang, Y.M. Structural analysis and anti-tumor activity comparison of polysaccharides from Astragalus. Carbohydr. Polym. 2011, 85, 895–902. [Google Scholar] [CrossRef]
- Li, S.G.; Wang, D.G.; Tian, W.; Wang, X.X.; Zhao, J.X.; Liu, Z.; Chen, R. Characterization and anti-tumor activity of a polysaccharide from Hedysarum polybotrys Hand.-Mazz. Carbohydr. Polym. 2008, 73, 344–350. [Google Scholar] [CrossRef]
- Bai, L.; Zhu, L.Y.; Yang, B.S.; Shi, L.J.; Liu, Y.; Jiang, A.M.; Zhao, L.L.; Song, G.; Liu, T.F. Antitumor and immunomodulating activity of a polysaccharide from Sophora flavescens Ait. Int. J. Biol. Macromol. 2012, 51, 705–709. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.B.; Li, W.; Wang, H.T.; Yan, W.; Zhou, Y.; Wang, G.; Cui, J.; Wang, F. Anti-tumor and immunomodulating activities of a polysaccharide from the root of Sanguisorba officinalis L. Int. J. Biol. Macromol. 2012, 51, 484–488. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.H.; Dai, P.; Ren, L.Y.; Song, B.; Chen, X.; Wang, X.; Wang, J.; Zhang, T.; Zhu, W. Apoptosis-induced anti-tumor effect Curcuma kwangsiensis polysaccharides against human nasopharyngeal carcinoma cells. Carbohyd. Polym. 2012, 89, 1067–1072. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.L.; Li, Y.H.; Dong, M.; Wu, X.; Wang, X.C.; Xiao, Y.S. Inhibitory effect of Schisandra chinensis leaf polysaccharide against L5178Y lymphoma. Carbohydr. Polym. 2012, 88, 21–25. [Google Scholar] [CrossRef]
- Zhao, L.Y.; Dong, Y.H.; Chen, G.T.; Hu, Q.H. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum. Carbohydr. Polym. 2010, 80, 783–789. [Google Scholar] [CrossRef]
- Wei, D.; Wei, Y.; Cheng, W.; Zhang, L. Sulfated modification, characterization and antitumor activities of Radix hedysari polysaccharide. Int. J. Biol. Macromol. 2012, 51, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, Y.; Wang, Y.; Zhang, J.; Ouyang, X.; Peng, R.; Yang, J. Antitumor and immunostimulatory activity of a polysaccharide-protein complex from Scolopendra subspinipes mutilans L. Koch in tumor-bearing mice. Food Chem. Toxicol. 2012, 50, 2648–2655. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.Q.; Zheng, Z.J.; Peng, Y.; Li, W.X.; Chen, X.M.; Lu, J.X. Opposite effects on tumor growth depending on dose of Achyranthes bidentata polysaccharides in C57BL/6 mice. Int. Immunopharmacol. 2007, 7, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Ji, N.F.; Yao, L.S.; Li, Y.; He, W.; Yi, K.S.; Huang, M. Polysaccharide of Cordyceps sinensis enhances cisplatin cytotoxicity in non-small cell lung cancer H157 cell line. Integr. Cancer Ther. 2011, 10, 359–367. [Google Scholar] [CrossRef] [PubMed]
Technique | Application | Advantage | Disadvantage |
---|---|---|---|
Gas chromatography, GC | Determination of dissociated monosaccharides, and constituent monosaccharides of oligosaccharides and polysaccharides | Simple instrumentation, high selectivity, high resolution, high accuracy | Limited to volatile compounds, thermal instability |
High-performance liquid chromatography, HPLC | Purification, qualitative and quantitative determination of dissociated monosaccharides, oligosaccharides, and constituent monosaccharides of polysaccharides, MW determination | High separation efficiency, wide availability, high sensitivity and reproducibility, good resolution and linearity, high accuracy and precision | Extended analytical time |
Ultra-performance liquid chromatography, UPLC | Similar to HPLC as an advanced technique | Reduced analytical time, reduced solvent consumption | Reduced solvent consumption, high equipment requirement |
Gel column chromatography, GCC | Purification and MW determination of polysaccharides | Quickness, high selectivity, good repeatability | Low mass resolution |
Thin layer chromatography, TLC | Purity measurement, determination of constituent monosaccharides of oligosaccharides and polysaccharides | Simple instrumentation, versatility, quickness, flexibility and low cost | Low efficiency in separation, low accuracy and sensitivity, unsatisfactory repeatability |
Polysaccharide Source | Phosphyorylation Reagent | Analysis Result | Activity Comparison | Ref. |
---|---|---|---|---|
Cucurbita pepo | Phosphorus oxychloride/pyridine | DS: 0.33–0.52 | Higher antioxidant activity | [19] |
Enteromorpha linza | Formamide/tributylamine/polyphosphoric acid | Phosphate (%): 4.05 | Higher antioxidant activity | [122] |
Porphyra | Formamide/tributylamine/polyphosphoric acid | Phosphate (%): 4.33 | Parallel scavenging activity | [127] |
Dictyophora indusiata | Orthophosphoric acid/urea | DS: 0.206 | Higher water solubility, antioxidant, and antitumor activities | [123] |
Cyamopsis tetragonoloba | Triphenylmethyl chloride/phosphorus oxychloride/pyridine | DS: 0.34 | Higher antioxidant activity | [110] |
Polygonatum cyrtonema Hua | Phosphorus oxychloride/triethyl phosphate/ pyridine | DS: 0.65 | Higher antiherpetic activity | [125] |
Poria cocos | Urea/dimethyl sulfoxide/orthophosphoric acid | DS: 0.056–0.153 | New antitumor activity | [131] |
Portulacao leracea L. | Dimethyl formamide/3-phosphono-propionic acid/catalyst | DS: 0.09–0.33 | Higher antioxidant activity | [112] |
Virus Species | Virus | Polysaccharide Source | Ref. |
---|---|---|---|
ssDNA viruses | Porcine circovirus virus type 2 | Astragalus | [12] |
Lycium barbarum | [160] | ||
Sophora subprosrate | [168] | ||
Rehmannia glutinosa | [161] | ||
dsDNA viruses | Duck enteritis virus | Chuanminshen violaceum | [169] |
DNA reverse transcribing viruses | Human hepatitis B virus | Astragalus | [170] |
Chickweed | [171] | ||
(+)ssRNA viruses | Duck hepatitis A virus | Bush sophora root | [17] |
Astragalus | [167] | ||
Porcine reproductive and respiratory syndrome virus | Astragalus | [170] | |
Achyranthes bidentata | [172] | ||
Swine fever virus | Astragalus | [170] | |
(−)ssRNA viruses | Influenza B virus | Gelidium cartilagenium | [165] |
Newcastle disease virus | Chuanmingshen violaceum | [173] | |
Lycium barbarum | [106] | ||
Ophiopogon japonicus | [174] | ||
Mumps virus | Gelidium cartilagenium | [165] | |
dsRNA viruses | Infectious bursal disease virus | Astragalus | [166] |
Epimedium | [106] |
Aspects | Polysaccharide Source | Tumor cell | Anti-Tumor Activity Mechanism | Ref. |
---|---|---|---|---|
Directly | Astragalus | H22, HepG2, MGC-803 | Inhibit growth of tumor | [187,188] |
Lycium barbarum | MCF-7, BIU87 | Induce apoptosis | [185] | |
Radix Hedysari | A549, BGC-823 | Arrest the cells at G1 phase | [194] | |
Centipede | S180, H22 | Inhibit growth of tumor | [195] | |
Angelica sinensis | Hela | Induce apoptosis | [186] | |
Achyranthes bidentata | LLC | cell cycle arrest | [196] | |
Cordyceps sinensis | H157 | Inhibit growth of tumor | [197] | |
Indirectly | Sophora flavescens | H22 | Enhance immunity | [189] |
Sanguisorba officinalis | S180 | Enhance immunity | [190] | |
Curcuma kwangsiensis | CNE-2 | Enhance immunity | [191] | |
Schisandra chinensis | L5178Y | Enhance immunity | [192] | |
Ganoderma lucidum | MDA-MB-231 | Enhance cytophagy effect of macrophagocyte | [193] |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yao, F.; Ming, K.; Wang, D.; Hu, Y.; Liu, J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules 2016, 21, 1705. https://doi.org/10.3390/molecules21121705
Chen Y, Yao F, Ming K, Wang D, Hu Y, Liu J. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules. 2016; 21(12):1705. https://doi.org/10.3390/molecules21121705
Chicago/Turabian StyleChen, Yun, Fangke Yao, Ke Ming, Deyun Wang, Yuanliang Hu, and Jiaguo Liu. 2016. "Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity" Molecules 21, no. 12: 1705. https://doi.org/10.3390/molecules21121705
APA StyleChen, Y., Yao, F., Ming, K., Wang, D., Hu, Y., & Liu, J. (2016). Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity. Molecules, 21(12), 1705. https://doi.org/10.3390/molecules21121705