GC×GC-TOFMS Analysis of Essential Oils Composition from Leaves, Twigs and Seeds of Cinnamomum camphora L. Presl and Their Insecticidal and Repellent Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of the C. Camphora Essential Oils
2.2. Contact Toxicity
2.3. Repellent Activity
3. Materials and Methods
3.1. Plant Material
3.2. Chemicals
3.3. Insect
3.4. Essential Oils
3.5. GC×GC-TOFMS Analysis
3.6. Contact Toxicity Bioassay
3.7. Repellent Activity Bioassay
3.8. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Liu, C.H.; Mishra, A.K.; Tan, R.X.; Tang, C.; Yang, H.; Shen, Y.F. Repellent and insecticidal activities of essential oils from Artemisia princeps and Cinnamomum camphora and their effect on seed germination of wheat and broad bean. Bioresource Technol. 2006, 97, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Imai, S.; Ogawa, K. Quantitative analysis of carbon balance in the reproductive organs and leaves of Cinnamomum camphora (L.) Presl. J. Plant Res. 2009, 122, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Chen, J.; Liao, S.; Li, L.; Zhu, L.; Chen, L. Composition and biological activities of the essential oil extracted from a novel plant of Cinnamomum camphora Chvar. Borneol. J. Med. Plants Res. 2012, 6, 3487–3494. [Google Scholar]
- Yeh, R.Y.; Shiu, Y.L.; Shei, S.C.; Cheng, S.C.; Huang, S.Y.; Lin, J.C.; Liu, C.H. Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immun. 2009, 27, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Marasini, B.P.; Baral, P.; Aryal, P.; Ghimire, K.R.; Neupane, S.; Dahal, N.; Singh, A.; Ghimire, L.; Shrestha, K. Evaluation of antibacterial activity of some traditionally used medicinal plants against human pathogenic bacteria. Biomed. Res. Int. 2015, 2015, 265425. [Google Scholar] [CrossRef] [PubMed]
- Pragadheesh, V.S.; Saroj, A.; Yadav, A.; Chanotiya, C.S.; Alam, M.; Samad, A. Chemical characterization and antifungal activity of Cinnamomum camphora essential oil. Ind. Crop. Prod. 2013, 49, 628–633. [Google Scholar] [CrossRef]
- Chen, H.P.; Yang, K.; You, C.X.; Lei, N.; Sun, R.Q.; Geng, Z.F.; Ma, P.; Cai, Q.; Du, S.S.; Deng, Z.W. Chemical constituents and insecticidal activities of the essential oil of Cinnamomum camphora leaves against Lasioderma serricorne. J. Chem. 2014, 2014, 963729. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, B.; Kumar, A.; Dubey, N.K. Fungal contamination of raw materials of some herbal drugs and recommendation of Cinnamomum camphora oil as herbal fungitoxicant. Microb. Ecol. 2008, 56, 555–560. [Google Scholar] [CrossRef] [PubMed]
- Koo, H.N.; An, J.J.; Park, S.E.; Kim, J.I.; Kim, G.H. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance. Crop. Prot. 2014, 55, 91–97. [Google Scholar] [CrossRef]
- Sy Mohamad, S.F.; Mohamad, S.; Aziz, A.A. The susceptibility of aphids, Aphis gossypii Glover to lauric acid based natural pesticide. Procedia Eng. 2013, 53, 20–28. [Google Scholar] [CrossRef]
- Cao, C.W.; Zhang, J.; Gao, X.W.; Liang, P.; Guo, H.L. Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pestic. Biochem. Physiol. 2008, 90, 175–180. [Google Scholar] [CrossRef]
- Skevas, T.; Stefanou, S.E.; Lansink, A.O. Pesticide use, environmental spillovers and efficiency: A DEA risk-adjusted efficiency approach applied to Dutch arable farming. Eur. J. Oper. Res. 2014, 237, 658–664. [Google Scholar] [CrossRef]
- Carriere, C.H.; Kang, N.H.; Niles, L.P. Neuroprotection by valproic acid in an intrastriatal rotenone model of Parkinson’s disease. Neuroscience 2014, 267, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Kreutzweiser, D.; Thompson, D.; Grimalt, S.; Chartrand, D.; Good, K.; Scarr, T. Environmental safety to decomposer invertebrates of azadirachtin (neem) as a systemic insecticide in trees to control emerald ash borer. Ecotoxicol. Environ. Saf. 2011, 74, 1734–1741. [Google Scholar] [CrossRef] [PubMed]
- Jadeja, G.C.; Maheshwari, R.C.; Naik, S.N. Extraction of natural insecticide azadirachtin from neem (Azadirachta ndica A. Juss) seed kernels using pressurized hot solvent. J. Supercrit. Fluid. 2011, 56, 253–258. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, L.; Zhu, G.; Li, L. Separation and enrichment of major quinolizidine type alkaloids from Sophora alopecuroides using macroporous resins. J. Chromatogr. B 2014, 945–946, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Bachrouch, O.; Ferjani, N.; Haouel, S.; Jemâa, J.M.B. Major compounds and insecticidal activities of two Tunisian Artemisia essential oils toward two major coleopteran pests. Ind. Crop. Prod. 2015, 65, 127–133. [Google Scholar] [CrossRef]
- Zandi-Sohani, N.; Ramezani, L. Evaluation of five essential oils as botanical acaricides against the strawberry spider mite Tetranychus turkestani Ugarov and Nikolskii. Int. Biodeterior. Biodegrad. 2015, 98, 101–106. [Google Scholar] [CrossRef]
- Nenaah, G.E. Bioactivity of powders and essential oils of three Asteraceae plants as post-harvest grain protectants against three major coleopteran pests. J. Asia-Pac. Entomol. 2014, 17, 701–709. [Google Scholar] [CrossRef]
- El-Seedi, H.R.; Khattab, A.; Gaara, A.H.M.; Mohamed, T.K.; Hassan, N.A.; El-kattan, A.E. Essential oil analysis of Micromeria nubigena H.B.K. and its antimicrobial activity. J. Essent. Oil Res. 2008, 20, 452–456. [Google Scholar]
- Prebihalo, S.; Brockman, A.; Cochran, J.; Dorman, F.L. Determination of emerging contaminants in wastewater utilizing comprehensive two-dimensional gas-chromatography coupled with time-of-flight mass spectrometry. J. Chromatogr. A 2015, 1419, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, A.L.; Polidoro, A.d.S.; Schneider, J.K.; da Cunha, M.E.; Saucier, C.; Jacques, R.A.; Cardoso, C.A.L.; Mota, J.S.; Caramão, E.B. Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOFMS) for the analysis of volatile compounds in Piper regnellii (Miq.) C. DC. essential oils. Microchem. J. 2015, 118, 242–251. [Google Scholar] [CrossRef]
- Da Cunha, M.E.; Schneider, J.K.; Brasil, M.C.; Cardoso, C.A.; Monteiro, L.R.; Mendes, F.L.; Pinho, A.; Jacques, R.A.; Machado, M.E.; Freitas, L.S.; et al. Analysis of fractions and bio-oil of sugar cane straw by one-dimensional and two-dimensional gas chromatography with quadrupole mass spectrometry (GC×GC/qMS). Microchem. J. 2013, 110, 113–119. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
- Gong, H.Y.; Liu, W.H.; Lv, G.Y.; Zhou, X. Analysis of essential oils of Origanum vulgare from six production areas of China and Pakistan. Rev. Bras. Farmacogn. 2014, 24, 25–32. [Google Scholar] [CrossRef]
- Brokl, M.; Fauconnier, M.L.; Benini, C.; Lognay, G.; du Jardin, D.; Focant, J.F. Improvement of ylang-ylang essential oil characterization by GC×GC-TOFMS. Molecules 2013, 18, 1783–1797. [Google Scholar] [CrossRef] [PubMed]
- Geng, S.L.; Cui, Z.X.; Huang, X.C.; Chen, Y.F.; Xu, D.; Xiong, P. Variations in essential oil yield and composition during Cinnamomum cassia bark growth. Ind. Crop. Prod. 2011, 33, 248–252. [Google Scholar] [CrossRef]
- Abdelwahab, S.I.; Zaman, F.Q.; Mariod, A.A.; Yaacob, M.; Abdelmageed, A.H.A.; Khamis, S. Chemical composition, antioxidant and antibacterial properties of the essential oils of Etlingera elatior and Cinnamomum pubescens kochummen. J. Sci. Food. Agric. 2010, 90, 2682–2688. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Kong, D.; Huang, R.; Liang, H.; Xu, C.; Wu, H. Variations in essential oil yields and compositions of Cinnamomum cassia leaves at different developmental stages. Ind. Crop. Prod. 2013, 47, 92–101. [Google Scholar] [CrossRef]
- Subki, S.Y.M.; Jamal, J.A.; Husain, K.; Manshoor, N. Characterisation of leaf essential oils of three Cinnamomum species from Malaysia by gas chromatography and multivariate data analysis. Pharmacogn. J. 2013, 5, 22–29. [Google Scholar] [CrossRef]
- Garg, S.N.; Gupta, D.; Charles, R.; Yadav, A.; Naavi, A.A. Volatile oil constituents of leaf, stem and bark of Cinnamomum camphora (Linn.) Nees and Eberm. Indian Perfum. 2002, 46, 41–44. [Google Scholar]
- Wang, Y.; An, Z.; Zhen, C.G.; Liu, Q.Z.; Shi, W.P. Composition of the essential oil of Cynanchum mongolicum (Asclepiadaceae) and insecticidal activities against Aphis glycines (Hemiptera: Aphidiae). Pharmacogn. Mag. 2014, 10, S130–S134. [Google Scholar] [CrossRef] [PubMed]
- Chopa, C.S.; Descamps, L.R. Composition and biological activity of essential oils against Metopolophium dirhodum (Hemiptera: Aphididae) cereal crop pest. Pest. Manag. Sci. 2012, 68, 1492–1500. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Long, E.; Wen, J.; Cao, L.; Zhu, C.; Hu, H.; Ruan, Y.; Okanurak, K.; Hu, H.; Wei, X.; et al. Linalool, derived from Cinnamomum camphora (L.) Presl leaf extracts, possesses molluscicidal activity against Oncomelania hupensis and inhibits infection of Schistosoma japonicum. Parasit. Vector. 2014, 7, 407. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.F.; Yang, K.; Zhang, H.M.; Cao, J.; Fang, R.; Liu, Z.L.; Du, S.S.; Wang, Y.Y.; Deng, Z.W.; Zhou, L.G. Components and insecticidal activity against the maize weevils of Zanthoxylum schinifolium fruits and leaves. Molecules 2011, 16, 3077–3088. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.S.; You, C.X.; Liang, J.Y.; Zhang, W.J.; Geng, Z.F.; Wang, C.F.; Du, S.S.; Lei, N. Chemical composition and bioactivities of the essential oil from Etlingera yunnanensis against two stored product insects. Molecules 2015, 20, 15735–15747. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.L.; Zhao, N.N.; Liu, C.M.; Zhou, L.G.; Du, S.S. Identification of insecticidal constituents of the essential oil of Curcuma wenyujin rhizomes active against Liposcelis bostrychophila badonnel. Molecules 2012, 17, 12049–12060. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.C.; Li, Y.P.; Li, H.Q.; Deng, Z.W.; Zhou, L.G.; Liu, Z.L.; Du, S.S. Identification of repellent and insecticidal constituents of the essential oil of Artemisia rupestris L. Aerial parts against Liposcelis bostrychophila badonnel. Molecules 2013, 18, 10733–10746. [Google Scholar] [CrossRef] [PubMed]
- El-Seedi, H.R.; Khalil, N.S.; Azeem, M.; Taher, E.A.; Göransson, U.; Pålsson, K.; Borg-Karlson, A.-K. Chemical composition and repellency of essential oils from four medicinal plants against Ixodes ricinus nymphs (Acari: Ixodidae). J. Med. Entomol. 2012, 49, 1067–1075. [Google Scholar] [CrossRef] [PubMed]
- Pavela, R.; Zabka, M.; Vrchotova, N.; Triska, J.; Kazda, J. Selective effects of the extract from Angelica archangelica L. against Harmonia axyridis (Pallas)-an important predator of aphids. Ind. Crop. Prod. 2013, 51, 87–92. [Google Scholar] [CrossRef]
- Overgaard, H.J.; Sirisopa, P.; Mikolo, B.; Malterud, K.E.; Wangensteen, H.; Zou, Y.F.; Paulsen, B.S.; Massamba, D.; Duchon, S.; Corbel, V.; et al. Insecticidal activities of bark, leaf and seed extracts of Zanthoxylum heitzii against the african malaria vector Anopheles gambiae. Molecules 2014, 19, 21276–21290. [Google Scholar] [CrossRef] [PubMed]
- Abbott, W. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Ikeura, H.; Kobayashi, F.; Hayata, Y. Repellent effect of herb extracts on the population of wingless green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). J. Agric. Sci. 2012, 4, 139–144. [Google Scholar] [CrossRef]
- Mann, R.S.; Tiwari, S.; Smoot, J.M.; Rouseff, R.L.; Stelinski, L.L. Repellency and toxicity of plant-based essential oils and their constituents against Diaphorina citri kuwayama (Hemiptera: Psyllidae). J. Appl. Entomol. 2012, 136, 87–96. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the essential oils and linalool are available from the authors.
No. | Compound | RI | Rt (s) 1 | Peak Area (%) | |||
---|---|---|---|---|---|---|---|
Leaf | Twig | Seed | |||||
1 | methyl isobutyl ketone | <800 | 196, 0.98 | 0.04 | 0.04 | Tr 2 | |
2 | hexanal | <800 | 236, 1.19 | 0.03 | 0.02 | - 3 | |
3 | 3-hexen-1-ol | 843 | 284, 1.33 | 0.03 | tr | - | |
4 | (E)-2-hexenal | 843 | 284, 1.48 | 0.03 | - | - | |
5 | 1-hexanol | 858 | 296, 1.25 | 0.03 | - | - | |
6 | α-thujene | 924 | 356, 1.10 | 0.11 | 0.10 | 0.27 | |
7 | α-pinene | 935 | 368, 1.14 | 1.20 | 0.76 | 1.00 | |
8 | camphene | 950 | 384, 1.23 | 0.41 | 0.33 | 0.23 | |
9 | sabinene | 973 | 408, 1.30 | 1.95 | 0.68 | 1.36 | |
10 | β-pinene | 980 | 416, 1.31 | 1.25 | 0.51 | 1.54 | |
11 | α-phellandrene | 1006 | 444, 1.33 | 0.09 | 0.14 | 2.70 | |
12 | α-terpinene | 1017 | 456, 1.34 | 0.19 | 0.21 | 0.83 | |
13 | p-cymene | 1024 | 464, 1.54 | 0.16 | 0.51 | 1.10 | |
14 | limonene | 1028 | 468, 1.38 | 0.92 | 0.65 | 2.32 | |
15 | eucalyptol | 1034 | 476, 1.54 | 16.46 | 17.21 | 20.90 | |
16 | β-ocimene | 1042 | 484, 1.36 | tr | 0.16 | 0.21 | |
17 | γ-terpinene | 1056 | 500, 1.47 | 0.51 | 0.98 | 1.94 | |
18 | terpinolene | 1084 | 532, 1.53 | 0.15 | 0.23 | 0.44 | |
19 | trans-linalool oxide | 1084 | 532, 1.65 | 0.12 | 0.18 | tr | |
20 | 3,7-dimethyl-1,3,7-octatriene | 1095 | 544, 1.67 | 11.07 | 11.47 | - | |
21 | linalool | 1099 | 548, 1.57 | 11.58 | 5.13 | 14.66 | |
22 | hotrienol | 1099 | 548, 1.68 | 0.59 | 0.79 | - | |
23 | 6-methyl-3,5-heptadiene-2-one | 1099 | 548, 2.12 | - | 0.03 | - | |
24 | E,E-2,6-dimethyl-1,3,5,7-octatetraene | 1127 | 580, 1.62 | 0.06 | 0.03 | - | |
25 | camphor | 1149 | 604, 2.20 | 18.48 | 13.17 | 5.55 | |
26 | octanoic acid | 1160 | 616, 1.54 | - | - | 0.03 | |
27 | endo-borneol | 1174 | 632, 1.90 | 0.30 | 0.16 | - | |
28 | terpinen-4-ol | 1181 | 640, 1.83 | 0.87 | 1.11 | 1.01 | |
29 | α-terpineol | 1196 | 656, 1.90 | 5.00 | 4.38 | 2.98 | |
30 | estragole | 1196 | 656, 2.16 | - | - | 0.04 | |
31 | E,E-2,6-dimethyl-3,5,7-octatriene-2-ol | 1203 | 664, 1.86 | 0.08 | - | - | |
32 | trans-3-methyl-6-(1-methylethyl)-2-cyclohexen-1-ol | 1207 | 668, 1.87 | - | 0.04 | 0.03 | |
33 | carveol | 1215 | 676, 2.09 | 0.06 | 0.04 | - | |
34 | citronellol | 1219 | 680, 1.67 | 0.02 | 0.02 | - | |
35 | (Z)-3,7-dimethyl-2,6-octadienal | 1234 | 696, 2.02 | 0.03 | 0.02 | - | |
36 | (Z)-3,7-dimethyl-2,6-octadien-1-ol | 1245 | 708, 1.83 | 0.04 | 0.09 | 0.07 | |
37 | (E)-3,7-dimethyl-2,6-octadienal | 1264 | 728, 2.04 | 0.03 | 0.02 | - | |
38 | bornyl acetate | 1283 | 748, 1.84 | 0.25 | 0.25 | 0.03 | |
39 | safrole | 1290 | 756, 2.42 | 0.04 | 0.05 | 3.28 | |
40 | thymol | 1294 | 760, 2.20 | - | 0.03 | - | |
41 | δ-elemene | 1337 | 804, 1.45 | 0.07 | - | 0.08 | |
42 | α-cubebene | 1349 | 816, 1.45 | 0.04 | 0.17 | tr | |
43 | 2-methoxy-3-(2-propenyl)-phenol | 1349 | 816, 2.47 | - | 0.13 | - | |
44 | n-decanoic acid | 1361 | 828, 1.65 | - | - | 1.72 | |
45 | neryl acetate | 1369 | 836, 1.80 | - | - | 0.03 | |
46 | unknown | 1369 | 836, 1.82 | 0.02 | tr | - | |
47 | ylangene | 1373 | 840, 1.52 | 0.08 | 0.08 | 0.07 | |
48 | α-copaene | 1381 | 848, 1.51 | 0.18 | 0.96 | 0.35 | |
49 | β-elemene | 1389 | 856, 1.58 | 0.42 | 0.38 | 0.31 | |
50 | methyleugenol | 1393 | 860, 2.55 | 0.12 | 0.40 | 19.98 | |
51 | dodecanal | 1401 | 868, 1.58 | - | 0.04 | 0.04 | |
52 | α-gurjunene | 1414 | 880, 1.60 | 0.04 | 0.21 | 0.24 | |
53 | α-santalene | 1418 | 884, 1.52 | - | 0.12 | - | |
54 | β-caryophyllene | 1426 | 892, 1.69 | 3.40 | 3.13 | 1.71 | |
55 | γ-elemene | 1435 | 900, 1.49 | - | 0.03 | - | |
56 | β-famesene | 1447 | 912, 1.48 | - | 0.03 | - | |
57 | aromandendrene | 1447 | 912, 1.66 | 0.34 | 0.80 | 0.38 | |
58 | β-santalene | 1460 | 924, 1.62 | - | 0.04 | - | |
59 | α-humulene | 1464 | 928, 1.75 | 2.62 | 4.12 | 1.23 | |
60 | γ-gurjunene | 1473 | 936, 1.83 | 0.08 | - | - | |
61 | γ-muurolene | 1477 | 940, 1.72 | 0.29 | 1.24 | 0.54 | |
62 | 1-(1,3-dimethyl-3-cyclohexen-1-yl)-ethanone | 1481 | 944, 1.80 | - | 0.02 | - | |
63 | germacrene D | 1485 | 948, 1.79 | 3.76 | 0.46 | 0.57 | |
64 | α-selinene | 1494 | 956, 1.79 | - | 6.13 | 2.87 | |
65 | α-muurolene | 1502 | 964, 1.79 | 1.91 | 0.29 | 0.48 | |
66 | β-bisabolene | 1507 | 968, 1.59 | - | 0.04 | - | |
67 | δ-cadinene | 1520 | 980, 1.79 | 0.45 | 3.42 | 0.56 | |
68 | trans-calamenene | 1524 | 984, 1.98 | 0.07 | 0.68 | 0.04 | |
69 | cadina-1(2),4-diene | 1537 | 996, 1.82 | 0.07 | 0.57 | 0.07 | |
70 | 1,2,3-trimethoxy-5-(2-propenyl)-benzene | 1537 | 996, 2.68 | - | - | 0.06 | |
71 | (E)-α-bisabolene | 1542 | 1000, 1.87 | 0.07 | 0.67 | - | |
72 | α-calacorene | 1546 | 1004, 2.13 | tr | 0.08 | 0.02 | |
73 | unknown | 1551 | 1008, 1.61 | - | - | 0.16 | |
74 | selina-3,7(11)-diene | 1551 | 1008, 1.81 | - | - | 0.12 | |
75 | (E)-nerolidol | 1555 | 1012, 1.70 | 2.13 | - | 0.22 | |
76 | unknown | 1569 | 1024, 1.94 | 0.57 | 0.48 | 0.16 | |
77 | unknown | 1577 | 1032, 1.48 | - | - | 0.09 | |
78 | spathulenol | 1581 | 1036, 2.15 | 0.53 | 0.76 | 0.10 | |
79 | unknown | 1586 | 1040, 1.85 | 0.10 | 0.06 | - | |
80 | gleenol | 1586 | 1040, 1.89 | - | 0.07 | - | |
81 | caryophyllene oxide | 1591 | 1044, 2.16 | 0.39 | 1.38 | - | |
82 | β-elemenone | 1595 | 1048, 1.99 | - | - | 0.08 | |
83 | viridiflorol | 1599 | 1052, 2.20 | - | 0.12 | - | |
84 | tetradecanal | 1604 | 1056, 1.57 | - | 0.03 | - | |
85 | trans-2-undecen-1-ol | 1604 | 1056, 1.57 | - | - | 0.02 | |
86 | 8,9-dehydro-neoisolongifolene | 1618 | 1068, 2.14 | 0.03 | 0.05 | - | |
87 | humulene epoxide II | 1618 | 1068, 2.22 | 0.19 | 0.69 | - | |
88 | unknown | 1628 | 1076, 2.15 | 0.60 | - | - | |
89 | cubenol | 1632 | 1080, 2.03 | - | 0.57 | - | |
90 | ledene oxide-(II) | 1637 | 1084, 2.22 | 0.16 | - | - | |
91 | longipinene epoxide | 1642 | 1088, 2.21 | - | 0.46 | - | |
92 | α-cadinol | 1661 | 1104, 2.13 | 0.10 | 0.19 | 0.04 | |
93 | unknown | 1665 | 1108, 2.22 | - | 0.59 | 0.10 | |
94 | bisabolol | 1670 | 1112, 1.91 | - | 0.02 | - | |
95 | trans-farnesol | 1708 | 1144, 1.91 | 0.02 | 0.03 | - | |
96 | unknown | 1722 | 1156, 2.31 | 1.30 | 1.29 | 0.02 | |
Total | 92.33 | 90.57 | 94.98 |
Samples | 24 h | 48 h | ||||||
---|---|---|---|---|---|---|---|---|
LC50 (mg/L) | 95% CI (mg/L) | Slope ± SE | Chi Square (χ2) | LC50 (mg/L) | 95% CI (mg/L) | Slope ± SE | Chi Square (χ2) | |
Leaves | 312.42 | 249.93–376.41 | 1.58 ± 0.16 | 1.48 | 245.79 | 191.31–299.85 | 1.61 ± 0.16 | 2.97 |
Twigs | 376.77 | 283.19–476.81 | 1.15 ± 0.14 | 0.56 | 274.99 | 194.13–356.11 | 1.13 ± 0.15 | 0.24 |
Seeds | 200.92 | 128.05–272.58 | 1.08 ± 0.15 | 0.48 | 146.78 | 88.77–206.14 | 1.13 ± 0.16 | 0.37 |
Linalool | 523.66 | 417.69–673.64 | 1.09 ± 0.11 | 1.98 | 262.77 | 202.20–333.83 | 1.02 ± 0.11 | 2.19 |
Imidacloprid | 12.53 | 10.10–15.46 | 1.17 ± 0.10 | 1.17 | 3.58 | 2.84–4.39 | 1.45 ± 0.12 | 1.72 |
Time (h) | Concentration (μL/mL) | Repellent Rate (%) | Concentration (μL/mL) | Repellent Rate (%) | |||
---|---|---|---|---|---|---|---|
Leaves | Twigs | Seeds | Linalool | DEET | |||
12 | 20 | 75.44 ± 1.76a | 70.97 ± 2.79a | 76.19 ± 2.75a | / | 10 | 88.71 ± 4.27a |
10 | 47.37 ± 3.03b | 51.61 ± 2.79b | 53.40 ± 3.17b | 70.18 ± 3.51a | 5 | 77.42 ± 4.41ab | |
5 | 31.58 ± 5.26c | 30.65 ± 1.61c | 36.51 ± 1.59c | 56.14 ± 4.64b | 2 | 72.58 ± 4.34b | |
2 | 19.30 ± 1.75d | 19.35 ± 1.62d | 20.63 ± 4.20c | 49.12 ± 4.34bc | 0.5 | 54.84 ± 4.63c | |
1 | 10.53 ± 3.04d | 6.45 ± 1.61e | 12.70 ± 1.59d | 36.84 ± 3.83cd | 0.1 | 38.71 ± 4.27d | |
0.5 | / 1 | / | / | 26.32 ± 3.04d | 0.01 | 20.97 ± 1.61e | |
24 | 20 | 83.83 ± 1.47a | 72.13 ± 1.64a | 89.86 ± 1.45a | / | 10 | 80.70 ± 1.75a |
10 | 60.29 ± 4.41b | 59.01 ± 5.91b | 69.57 ± 2.51b | 76.56 ± 2.70a | 5 | 71.93 ± 4.64ab | |
5 | 42.65 ± 4.31c | 52.46 ± 4.34b | 55.07 ± 3.83c | 65.63 ± 4.14b | 2 | 66.67 ± 1.75b | |
2 | 25.00 ± 2.56d | 36.07 ± 5.68c | 36.23 ± 1.45d | 59.38 ± 4.13bc | 0.5 | 54.38 ± 3.51c | |
1 | 17.65 ± 3.89d | 29.51 ± 5.91d | 21.74 ± 0e | 48.44 ± 2.71d | 0.1 | 43.86 ± 6.32c | |
0.5 | / | / | / | 37.50 ± 1.56e | 0.01 | 19.3 ± 3.51d |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Wang, J.; Song, L.; Cao, X.; Yao, X.; Tang, F.; Yue, Y. GC×GC-TOFMS Analysis of Essential Oils Composition from Leaves, Twigs and Seeds of Cinnamomum camphora L. Presl and Their Insecticidal and Repellent Activities. Molecules 2016, 21, 423. https://doi.org/10.3390/molecules21040423
Jiang H, Wang J, Song L, Cao X, Yao X, Tang F, Yue Y. GC×GC-TOFMS Analysis of Essential Oils Composition from Leaves, Twigs and Seeds of Cinnamomum camphora L. Presl and Their Insecticidal and Repellent Activities. Molecules. 2016; 21(4):423. https://doi.org/10.3390/molecules21040423
Chicago/Turabian StyleJiang, Hao, Jin Wang, Li Song, Xianshuang Cao, Xi Yao, Feng Tang, and Yongde Yue. 2016. "GC×GC-TOFMS Analysis of Essential Oils Composition from Leaves, Twigs and Seeds of Cinnamomum camphora L. Presl and Their Insecticidal and Repellent Activities" Molecules 21, no. 4: 423. https://doi.org/10.3390/molecules21040423
APA StyleJiang, H., Wang, J., Song, L., Cao, X., Yao, X., Tang, F., & Yue, Y. (2016). GC×GC-TOFMS Analysis of Essential Oils Composition from Leaves, Twigs and Seeds of Cinnamomum camphora L. Presl and Their Insecticidal and Repellent Activities. Molecules, 21(4), 423. https://doi.org/10.3390/molecules21040423