Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Studies
3. Materials and Methods
3.1. General Information
3.2. Chemistry
3.2.1. General Procedure for the Synthesis of Carbonitriles 11a–n from 10
3.2.2. General Procedure for the Synthesis of Carbimidates 12a–n, 13a–h, 14a–e and 15a–c from 11a–n
Ethyl 8-cyclopropyl-9-oxo-8,9-dihydrothiazolo[5,4-f]quinazoline-2-carbimidates 12a–n
Benzyl 8-cyclopropyl-9-oxo-8,9-dihydrothiazolo[5,4-f]quinazoline-2-carbimidates (13a–h)
Ethyl 9-oxo-8,9-dihydrothiazolo[5,4-f]quinazoline-2-carbimidates (14a–e)
Isopropyl 9-oxo-8,9-dihydrothiazolo[5,4-f]quinazoline-2-carbimidates 15a–c
3.3. In Vitro Kinase Preparation and Assays [25]
3.3.1. Buffers
3.3.2. Kinase Preparations and Assays
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ATP | Adenosine triphosphate |
CMGC group | Group of kinases including Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAP kinases), Glycogen synthase kinases (GSK) and Cyclin dependent kinases (CDK-like kinases) |
DMF | Dimethylformamide |
MTDL | Multi-target-directed ligand |
NBS | N-bromosuccinimide |
SAR | Structure Activity Relationship |
References and Notes
- Martin, L.; Latypova, X.; Wilson, C.M.; Magnaudeix, A.; Perrin, M.-L.; Terro, F. Tau protein kinases: Involvement in Alzheimer’s disease. Ageing Res. Rev. 2013, 12, 289–309. [Google Scholar] [CrossRef] [PubMed]
- Flajolet, M.; He, G.; Heiman, M.; Lin, A.; Nairn, A.C.; Greengard, P. Regulation of Alzheimer’s disease amyloid-β formation by casein kinase I. Proc. Nat. Acad. Sci. USA 2007, 104, 4159–4164. [Google Scholar] [CrossRef] [PubMed]
- Weinmann, H.; Metternich, R. Drug discovery process for kinase Inhibitors. ChemBioChem 2005, 6, 455–459. [Google Scholar] [CrossRef] [PubMed] this paper is the editorial of a special issue “Kinases in drug discovery”. Chem. Biol. Chem. 2005, 6, 453–574.
- Wu, P.; Nielsen, T.E.; Clausen, M.H. Small-molecule kinase inhibitors: an analysis of FDA-approved drugs. Drug Discovery Today 2016, 21, 5–10. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Nielsen, T.E.; Clausen, M.H. FDA-approved small-molecule kinase inhibitors. Trends Pharmacol. Sci. 2015, 36, 422–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- For a complete review see: Harris, C.S.; Hennequin, L.; Morgentin, R.; Pasquet, G. Synthesis and functionnalization of 4-substituted quinazolines as kinases templates. In Targets in Heterocyclic Systems—Chemistry and Properties; Attanasi, O.A., Spinelli, D., Eds.; Italian Society of Chemistry: Roma, Italy, 2010; Volume 14, pp. 315–350. [Google Scholar]
- Logé, C.; Testard, A.; Thiéry, V.; Lozach, O.; Blairvacq, M.; Robert, J.-M.; Meijer, L.; Besson, T. Novel 9-oxo-thiazolo[5,4-f]quinazoline-2-carbonitrile derivatives as dual cyclin-dependent kinase 1 (CDK1)/glycogen synthase kinase-3 (GSK-3) inhibitors: synthesis, biological evaluation and molecular modeling studies. Eur. J. Med. Chem. 2008, 43, 1469–1477. [Google Scholar] [CrossRef] [PubMed]
- Testard, A.; Logé, C.; Léger, B.; Robert, J.-M.; Lozach, O.; Blairvacq, M.; Meijer, L.; Thiéry, V.; Besson, T. Thiazolo[5,4-f]quinazolin-9-ones, inhibitors of glycogen synthase kinase-3. Bioorg. Med. Chem. Lett. 2006, 16, 3419–3423. [Google Scholar] [CrossRef] [PubMed]
- Loidreau, Y.; Deau, E.; Marchand, P.; Nourrisson, M.-R.; Logé, C.; Coadou, J.M.; Loaëc, N.; Meijer, L.; Besson, T. Synthesis and molecular modelling studies of 8-arylpyrido[3’,2’:4,5]thieno[3,2-d] pyrimidin-4-amines as multitarget Ser/Thr kinases inhibitors. Eur. J. Med. Chem. 2015, 92, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Loidreau, Y.; Marchand, P.; Dubouilh-Benard, C.; Nourrisson, M.-R.; Duflos, M.; Loaëc, N.; Meijer, L.; Besson, T. Synthesis and biological evaluation of N-aryl-7-methoxybenzo[b]furo[3,2-d] pyrimidin-4-amines and their N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amine analogues as dual inhibitors of CLK1 and DYRK1A kinases. Eur. J. Med. Chem. 2013, 59, 283–295. [Google Scholar] [CrossRef] [PubMed]
- Loidreau, Y.; Marchand, P.; Dubouilh-Benard, C.; Nourrisson, M.-R.; Duflos, M.; Lozach, O.; Loaëc, N.; Meijer, L.; Besson, T. Synthesis and biological evaluation of N-arylbenzo[b]thieno[3,2-d]pyrimidin-4-amines and their pyrido and pyrazino analogues as Ser/Thr kinase inhibitors. Eur. J. Med. Chem. 2012, 58, 171–183. [Google Scholar] [CrossRef] [PubMed]
- Foucourt, A.; Dubouilh-Benard, C.; Chosson, E.; Corbière, C.; Buquet, C.; Iannelli, M.; Leblond, B.; Marsais, F.; Besson, T. Microwave-accelerated Dimroth rearrangement for the synthesis of 4-anilino-6-nitroquinazolines. Application to an efficient synthesis of a microtubule destabilizing agent. Tetrahedron 2010, 66, 4495–4502. [Google Scholar] [CrossRef]
- Foucourt, A.; Hédou, D.; Dubouilh-Benard, C.; Désiré, L.; Casagrande, A.-S.; Leblond, B.; Loaëc, N.; Meijer, L.; Besson, T. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, Part I. Molecules 2014, 19, 15546–15571. [Google Scholar] [CrossRef] [PubMed]
- Foucourt, A.; Hédou, D.; Dubouilh-Benard, C.; Désiré, L.; Casagrande, A.-S.; Leblond, B.; Loaëc, N.; Meijer, L.; Besson, T. Design and synthesis of thiazolo[5,4-f]quinazolines as DYRK1A inhibitors, Part II. Molecules 2014, 19, 15411–15439. [Google Scholar] [CrossRef] [PubMed]
- Leblond, B.; Casagrande, A.-S.; Désiré, L.; Foucourt, A.; Besson, T. DYRK1 inhibitors and uses thereof WO 2013026806. Chem. Abstr. 2013, 158, 390018. [Google Scholar]
- Abbassi, R.; Johns, T.G.; Kassiou, M.; Munoz, L. DYRK1A in neurodegeneration and cancer: Molecular basis and clinical implications. Pharmacol. Ther. 2015, 151, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Medda, F.; Smith, B.; Gokhale, V.; Shaw, A.Y.; Dunckley, T.; Hulme, C. Beyond secretases: Kinase inhibitors for the treatment of Alzheimer's disease. Annu. Rep. Med. Chem. 2013, 48, 57–71. [Google Scholar]
- Smith, B.; Medda, F.; Gokhale, V.; Dunckley, T.; Hulme, C. Recent Advances in the Design, Synthesis, and Biological Evaluation of Selective DYRK1A Inhibitors: A New Avenue for a Disease Modifying Treatment of Alzheimer’s? ACS Chem. Neurosci. 2012, 3, 857–872. [Google Scholar] [CrossRef] [PubMed]
- Varjosalo, M.; Keskitalo, S.; Van Drogen, A.; Nurkkala, H.; Vichalkovski, A.; Aebersold, R.; Gstaiger, M. The protein interaction landscape of the human CMGC kinase group. Cell Rep. 2013, 3, 1306–1320. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, C.; Miralinaghi, P.; Mariano, M.; Hartmann, R.W.; Engel, M. Hydroxybenzothiophene ketones are efficient pre-mRNA splicing modulators due to dual inhibition of Dyrk1A and Clk1/4. ACS Med. Chem. Lett. 2014, 5, 963–967. [Google Scholar] [CrossRef] [PubMed]
- Dehbi, O.; Tikad, A.; Bourg, S.; Bonnet, P.; Lozach, O.; Meijer, L.; Aadil, M.; Akssira, M.; Guillaumet, G.; Routier, S. Synthesis and optimization of an original V-shaped collection of 4–7-disubstituted pyrido[3,2-d]pyrimidines as CDK5 and DYRK1A Inhibitors. Eur. J. Med. Chem. 2014, 80, 352–363. [Google Scholar] [CrossRef] [PubMed]
- Bajda, M.; Guzior, N.; Ignasik, M.; Malawska, B. Multi-target-directed ligands in Alzheimer’s disease treatment. Curr. Med. Chem. 2011, 18, 4949–4975. [Google Scholar] [CrossRef] [PubMed]
- Cavalli, A.; Bolognesi, M.L.; Minarini, A.; Rosini, M.; Tumiatti, V.; Recanatini, M.; Melchiorre, C. Multi-target-directed ligands to combat neurodegenerative diseases. J. Med. Chem. 2008, 51, 347–372. [Google Scholar] [CrossRef] [PubMed]
- Babu, P.A.; Chitti, S.; Rajesh, B.; Prasanth, V.V.; Kishen, J.V.R.; Vali, R.K. In silico based ligand design and docking studies of GSK-3β inhibtors. Chem. Bio. Inform. J. 2010, 10, 1–10. [Google Scholar] [CrossRef]
- Alexandre, F.R.; Domon, L.; Frère, S.; Testard, A.; Thiéry, V.; Besson, T. Microwaves in drug discovery and multi-step synthesis. Mol. Divers. 2003, 7, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, F.R.; Berecibar, A.; Wrigglesworth, R.; Besson, T. Efficient synthesis of thiazoloquinazolinone derivatives. Tetrahedron Lett. 2003, 44, 4455–4458. [Google Scholar]
- Besson, T.; Guillard, J.; Rees, C.W. Multistep synthesis of thiazoloquinazolines under microwave irradiation in solution. Tetrahedron Lett. 2000, 41, 1027–1030. [Google Scholar] [CrossRef]
- Hédou, D.; Harari, M.; Godeau, J.; Dubouilh-Benard, C.; Fruit, C.; Besson, T. Synthesis of polyfunctionalized benzo[d]thiazoles as novel anthranilic acid derivatives. Tetrahedron Lett. 2015, 56, 4088–4092. [Google Scholar] [CrossRef]
- Hédou, D.; Deau, E.; Harari, M.; Sanselme, M.; Fruit, C.; Besson, T. Rational multistep synthesis of a novel polyfunctionalized benzo[d]thiazole and its thiazolo[5,4-b]pyridine analogue. Tetrahedron 2014, 70, 5541–5549. [Google Scholar] [CrossRef]
- Hédou, D.; Guillon, R.; Lecointe, C.; Logé, C.; Chosson, E.; Besson, T. Novel synthesis of angular thiazolo[5,4-f] and [4,5-h]quinazolines, preparation of their linear thiazolo[4,5-g] and [5,4-g]quinazoline analogs. Tetrahedron 2013, 69, 3182–3191. [Google Scholar] [CrossRef]
- Methyl 2-amino-5-nitrobenzoate (2) is commercially available but quite expensive. It can be efficiently synthesized from the cheaper 5-nitro- anthranilic acid [28].
- Deau, E.; Hédou, D.; Chosson, E.; Levacher, V.; Besson, T. Convenient one-pot synthesis of N3-substituted pyrido[2,3-d]-, pyrido[3,4-d]-, pyrido[4,3-d]-pyrimidin-4(3H)-ones, and quinazolin-4(3H)-ones analogs. Tetrahedron Lett. 2013, 54, 3518–3521. [Google Scholar] [CrossRef]
- Giraud, F.; Alves, G.; Debiton, E.; Nauton, L.; Thery, V.; Durieu, E.; Ferandin, Y.; Lozach, O.; Meijer, L.; Anizon, F.; Pereira, E.; Moreau, P. Synthesis, protein kinase inhibitory potencies, and in vitro antiproliferative activities of meridianin derivatives. J. Med. Chem. 2011, 54, 4474–4489. [Google Scholar] [CrossRef] [PubMed]
- Bach, S.; Knockaert, M.; Reinhardt, J.; Lozach, O.; Schmitt, S.; Baratte, B.; Koken, M.; Coburn, S.P.; Tang, L.; Jiang., T.; Liang, D.C.; et al. Roscovitine targets, protein kinases and pyridoxal kinase. J. Biol. Chem. 2005, 280, 31208–31219. [Google Scholar] [CrossRef] [PubMed]
- Leclerc, S.; Garnier, M.; Hoessel, R.; Marko, D.; Bidd, J.A.; Snyder, G.L.; Greengard, P.; Biernat, J.; Mandelkow, E.-M.; Eisenbrand, G.; et al. Indirubins inhibit glycogen synthase kinase-3β and CDK5/P25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer’s Disease: A property common to most cyclin-dependent kinase inhibitors? J. Biol. Chem. 2001, 276, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Primot, A.; Baratte, B.; Gompel, M.; Borgne, A.; Liabeuf, S.; Romette, J.L.; Jho, E.H.; Costantini, F.; Meijer, L. Purification of GSK-3 by affinity chromatography on immobilized axin. Protein Expression Purif. 2000, 20, 394–404. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, J.; Ferandin, Y.; Meijer, L. Purification of CK1 by affinity chromatography on immobilised axin. Protein Expression Purif. 2007, 54, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Gadewar, M.; Tripathi, R.; Prasad, S.K.; Patel, D.K. A review on medicinal importance, pharmacological activity and bioanalytical aspects of beta-carboline alkaloid “Harmine”. Asian Pac. J. Trop. Biomed. 2012, 2, 660–664. [Google Scholar] [CrossRef]
- Jain, P.; Karthikeyan, C.; Moorthy, N.S.H.N.; Waiker, D.K.; Jain, A.K.; Trivedi, P. Human CDC2-like kinase 1 (CLK1): A novel target for Alzheimer’s disease. Curr. Drug Targets 2014, 15, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Becker, W.; Soppa, U.; Tejedor, F.J. DYRK1A: A potential drug target for multiple Down Syndrome neuropathologies. CNS Neurol. Disord.-Drug Targets 2014, 13, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Tell, V.; Hilgeroth, A. Recent developments of protein kinase inhibitors as potential AD therapeutics. Front. Cell. Neurosci. 2013, 7. [Google Scholar] [CrossRef] [PubMed]
- Coombs, T.C.; Tanega, C.; Shen, M.; Wang, J.L.; Auld, D.S.; Gerritz, S.W.; Schoenen, F.J.; Thomas, C.J.; Aubé, J. Small-molecule pyrimidine inhibitors of the cdc2-like (Clk) and dual specificity tyrosine phosphorylation-regulated (Dyrk) kinases: Development of chemical probe ML315. Bioorg. Med. Chem. Lett. 2013, 23, 3654–3661. [Google Scholar] [CrossRef] [PubMed]
- Maqbool, M.; Mobashir, M.; Hoda, N. Pivotal role of glycogen kinase-3: A therapeutic target for Alzheimer’s disease. Eur. J. Med. Chem. 2016, 107, 63–81. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds 12, 13, 14 and 15 are not available from the authors.
Compound | Yield b (%) | Compound | Yield b (%) | ||
---|---|---|---|---|---|
11a | 78 | 11h | 84 | ||
11b | 82 | 11i | 77 | ||
11c | 80 | 11j | 78 | ||
11d | 58 | 11k | 85 | ||
11e | 70 | 11l | 77 | ||
11f | 73 | 11m | 81 | ||
11g | 69 | 11n | 84 |
Product | Yield a (%) | Product | Yield a (%) | Product | Yield a (%) | Product | Yield a (%) |
---|---|---|---|---|---|---|---|
12a | 91 | 12h | 70 | 13a | 87 | 14a | 93 |
12b | 71 | 12i | 80 | 13b | 58 | 14b | 76 |
12c | 76 | 12j | 86 | 13c | 55 | 14c | 72 |
12d | 92 | 12k | 68 | 13d | 65 | 14d | 80 |
12e | 89 | 12l | 74 | 13e | 90 | 14e | 92 |
12f | 76 | 12m | 82 | 13f | 86 | 15a | 88 |
12g | 92 | 12n | 90 | 13g | 94 | 15b | 65 |
- | - | - | - | 13h | 62 | 15c | 90 |
Compounds | CDK5/p25 | CK1δ/ε | CLK1 | DYRK1A | GSK-3α/β |
---|---|---|---|---|---|
11a | >10 | >10 | 1.1 | 3.3 | 3.3 |
11b | >10 | >10 | 4.1 | 7.8 | ≥10 |
11c | >10 | >10 | 1.3 | 7.7 | 1.2 |
12a | 3.9 | >10 | 0.031 | 0.091 | 0.082 |
12b | >10 | >10 | 0.51 | 0.39 | 1.2 |
12c | >10 | >10 | 0.21 | 0.32 | 0.12 |
12d | 3.0 | 5.4 | 0.16 | 0.14 | 0.041 |
12e | 4.9 | >10 | 0.29 | 0.072 | 0.028 |
12f | >10 | >10 | 0.091 | 0.13 | 0.16 |
12g | 1.8 | >10 | 0.38 | 0.17 | 0.030 |
12h | >10 | >10 | 0.99 | 0.5 | 0.3 |
12i | >10 | >10 | 1.8 | 1.0 | 1.8 |
12j | >10 | >10 | 0.69 | 0.2 | 1.2 |
12k | >10 | >10 | 0.88 | 0.38 | 0.51 |
12l | >10 | >10 | 7.9 | 3.0 | 1.20 |
12m | >10 | >10 | >10 | >10 | ≥10 |
12n | >10 | >10 | 0.080 | 0.18 | 1.7 |
13a | >10 | >10 | 0.06 | 0.06 | 0.1 |
13b | >10 | >10 | 0.59 | 0.29 | 0.69 |
13c | >10 | >10 | 0.48 | 0.16 | 0.11 |
13d | >10 | >10 | 0.27 | 0.13 | 0.057 |
13e | >10 | >10 | 0.32 | 0.062 | 0.028 |
13f | >10 | >10 | 0.071 | 0.059 | 0.071 |
13g | >10 | >10 | 1.30 | 0.28 | 0.083 |
13h | >10 | >10 | 1.40 | 0.21 | 0.15 |
14a | >10 | >10 | 0.1 | 0.21 | 0.2 |
14b | >10 | >10 | 1.9 | 0.82 | 1.2 |
14c | >10 | >10 | 0.49 | 0.37 | 0.17 |
14d | >10 | >10 | 0.34 | 0.37 | 0.17 |
14e | >10 | >10 | 0.78 | 0.23 | 0.029 |
15a | >10 | >10 | 0.043 | 0.42 | 0.42 |
15b | >10 | >10 | 2.1 | 3.9 | 2.5 |
15c | >10 | >10 | 1.2 | 0.95 | 0.27 |
Harmine | >10 | 1.5 | 0.026 | 0.029 | >10 |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hédou, D.; Godeau, J.; Loaëc, N.; Meijer, L.; Fruit, C.; Besson, T. Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases. Molecules 2016, 21, 578. https://doi.org/10.3390/molecules21050578
Hédou D, Godeau J, Loaëc N, Meijer L, Fruit C, Besson T. Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases. Molecules. 2016; 21(5):578. https://doi.org/10.3390/molecules21050578
Chicago/Turabian StyleHédou, Damien, Julien Godeau, Nadège Loaëc, Laurent Meijer, Corinne Fruit, and Thierry Besson. 2016. "Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases" Molecules 21, no. 5: 578. https://doi.org/10.3390/molecules21050578
APA StyleHédou, D., Godeau, J., Loaëc, N., Meijer, L., Fruit, C., & Besson, T. (2016). Synthesis of Thiazolo[5,4-f]quinazolin-9(8H)-ones as Multi-Target Directed Ligands of Ser/Thr Kinases. Molecules, 21(5), 578. https://doi.org/10.3390/molecules21050578