Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects
Abstract
:1. Introduction
2. Extraction and Separation Methods for Phenolic Compounds
2.1. Conventional Methods
2.2. Modern Extraction Techniques
2.3. Antioxidant Activity Assessment and Separation Methods
3. Sources of Phenolic Compounds, Their Antioxidant and Anticarcinogenic Properties
3.1. Main Classes of Phenolic Compounds and Their Sources
3.2. Flavonoids
3.2.1. Catechins
3.2.2. Flavonols, Flavones, Flavanones
Apigenin
Quercetin
Fisetin
Naringenin, Naringin, Hesperetin
3.2.3. Isoflavones
3.2.4. Anthocyanidins
3.2.5. Chalcones
3.3. Phenolic Acids
3.3.1. Hydroxybenzoic Acids
Gallic Acid
Ellagic Acid
3.3.2. Hydroxycinnamic Acids
3.4. Curcuminoids
3.5. Stilbenes
3.6. Tannins
3.7. Lignans
3.8. Synergistic Effects of Combinations of Polyphenols and Their Combinations with Drugs/Therapies
Whole Extracts from Various Plant Sources vs. Isolated Polyphenols
4. Conclusions and Future Perspectives
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
ABTS | 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) |
Akt | protein kinase B |
AP-1 | activator protein 1 |
AR | androgen receptor |
Bax | Bcl-2 associated X protein |
Bcl-2 | B-cell lymphoma 2 |
C/EBPβ | CCAAT/enhancer-binding protein beta |
COX | cyclooxygenase |
DNMT | DNA methyltransferase |
DPPH | 2,2-diphenyl-1-picrylhydrazyl |
EC | epicatechin |
ECG | epicatechin-3-gallate |
EGC | epigallocatechin |
EGF | epidermal growth factor |
EGFR | epidermal growth factor receptor |
EGCG | epigallocatechin-3-gallate |
ER | estrogen receptor |
FAS | Fas cell surface death receptor |
GC | gas chromatography |
GJIC | gap junction intracellular communication |
HAT | histone acetyltransferase |
HCA | heterocyclic amine |
HER2 | human epidermal growth factor receptor 2 |
HPLC | high-performance liquid chromatography |
IGF | insulin-like growth factor |
IL-1RI | interleukin 1 receptor type I |
iNOS | inducible nitric oxide synthases |
JAK | Janus kinase |
LDL | low-density lipoprotein |
LOX | lysyl oxidase |
MAPK | mitogen-activated protein kinases |
MGMT | O6-methylguanine DNA methyltransferase |
miRNA | micro RNA |
MMP | matrix metalloproteinase |
MLH1 | MutL homolog 1 |
MS | mass spectrometry |
NF-κB | nuclear factor kappa B |
NO | nitric oxide |
PAH | polycyclic aromatic hydrocarbons |
PI3K | phosphatidylinositol-3-kinases |
RAR | retinoic acid receptor |
ROS | reactive oxygen species |
SCF | supercritical fluids |
STAT | Signal Transducer and Activator of Transcription |
TGF | transforming growth factor |
TPA | tetradecanoyl phorbol acetate |
VEGF | vascular endothelial growth factor |
Wnt | wingless-related integration site |
References
- Surh, Y.-J. Cancer chemoprevention with dietary phytochemicals. Nat. Rev. Cancer 2003, 3, 768–780. [Google Scholar] [CrossRef] [PubMed]
- Fresco, P.; Borges, F.; Marques, M.P.M.; Diniz, C. The Anticancer Properties of Dietary Polyphenols and its Relation with Apoptosis. Curr. Pharm. Des. 2010, 16, 114–134. [Google Scholar] [CrossRef] [PubMed]
- Hendric, A.B. Flavonoid-membrane interactions: Possible consequences for biological effects of some polyphenolic compounds. Acta Pharmacol. Sin. 2006, 27, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Li, A.-N.; Li, S.; Zhang, Y.-J.; Xu, X.-R.; Chen, Y.-M.; Li, H.-B. Resources and Biological Activities of Natural Polyphenols. Nutrients 2014, 6, 6020–6047. [Google Scholar] [CrossRef] [PubMed]
- González-Vallinas, M.; González-Castejón, M.; Rodríguez-Casado, A.; Ramírez de Molina, A. Dietary phytochemicals in cancer prevention and therapy; a complementary approach with promising perspectives. Nutr. Rev. 2013, 71, 585–599. [Google Scholar] [CrossRef] [PubMed]
- Araújo, J.R.; Gonçalves, P.; Martel, F. Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr. Res. 2011, 31, 77–87. [Google Scholar] [CrossRef] [PubMed]
- Asensi, M.; Ortega, A.; Mena, S.; Feddi, F.; Estrela, J.M. Natural polyphenols in cancer therapy. Crit. Rev. Clin. Lab. Sci. 2011, 48, 197–216. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Mumper, J.R. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef] [PubMed]
- Konczak, I.; Zhang, W. Anthocyanins—More Than Nature’s Colours. J. Biomed. Biotechnol. 2004, 5, 239–240. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.D.; Hong, J.; Yang, G.; Liao, J.; Yang, C.S. Inhibition of carcinogenesis by polyphenols: Evidence from laboratory investigations. Am. J. Clin. Nutr. 2005, 81 (Suppl. S1), 284S–291S. [Google Scholar] [PubMed]
- Wu, J.-C.; Lai, C.-S.; Lee, P.-S.; Ho, C.-T.; Liou, W.-S.; Wang, Y.-J.; Pan, M.-H. Anti-cancer efficacy of dietary polyphenols is mediated through epigenetic modifications. Curr. Opin. Food Sci. 2016, 8, 1–7. [Google Scholar] [CrossRef]
- Ramos, S. Cancer chemoprevention and chemotherapy: Dietary polyphenols and signalling pathways. Mol. Nutr. Food Res. 2008, 52, 507–526. [Google Scholar] [CrossRef] [PubMed]
- Tabrez, S.; Priyadarshini, M.; Urooj, M.; Shakil, S.; Ashraf, G.M.; Khan, M.S.; Kamal, M.A.; Alam, Q.; Jabir, N.R.; Abuzenadah, A.M.; et al. Cancer Chemoprevention by Polyphenols and Their Potential Application as Nanomedicine. J. Environ. Sci. Health 2013, 31, 67–98. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Johnson, I.T.; Saltmarsh, M. Polyphenols: Antioxidants and beyond. Am. J. Clin. Nutr. 2005, 81 (Suppl. S1), 215S–217S. [Google Scholar] [PubMed]
- Beltz, L.A.; Bayer, D.K.; Moss, A.L.; Simet, I.M. Mechanisms of Cancer Prevention by Green and Black Tea Polyphenols. Anti-Cancer Agents Med. Chem. 2006, 6, 389–406. [Google Scholar] [CrossRef]
- Lambert, J.D.; Elias, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys. 2010, 501, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Afaw, F.; Mukhtar, H. Cancer Chemoprevention through Dietary Antioxidants: Progress and Promise. Antioxid. Redox Signal. 2008, 10. [Google Scholar] [CrossRef] [PubMed]
- Fantini, M.; Benvenuto, M.; Masuelli, L.; Frajese, G.V.; Tresoldi, I.; Modesti, A.; Bei, R. In Vitro and in Vivo Antitumoral Effects of Combinations of Polyphenols, or Polyphenols and Anticancer Drugs: Perspectives on Cancer Treatment. Int. J. Mol. Sci. 2015, 16, 9236–9282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Kok, T.M.; van Breda, S.G.; Manson, M.M. Mechanisms of combined action of different chemopreventive dietary compounds. Eur. J. Nutr. 2008, 47 (Suppl. S2), 51–59. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [PubMed]
- Mocanu, M.-M.; Nagy, P.; Szöllősi, J. Chemoprevention of breast cancer by dietary polyphenols. Molecules 2015, 20, 22578–22620. [Google Scholar] [CrossRef] [PubMed]
- Manach, C.; Williamson, G.; Morand, C.; Scalbert, A.; Rémésy, C. Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 2005, 81 (Suppl. S1), 230S–242S. [Google Scholar] [PubMed]
- Yang, C.S.; Kim, S.; Yang, G.-Y.; Lee, M.-J.; Liao, J.; Chung, J.Y.; Ho, C.-T. Inhibition of Carcinogenesis by Tea: Bioavailability of Tea Polyphenols and Mechanisms of Actions. Proc. Soc. Exp. Biol. Med. 1999, 220, 213–217. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.S.; Landau, J.M.; Huang, M.-T.; Newmark, H.L. Inhibition of carcinogenesis by dietary Polyphenolic compounds. Annu. Rev. Nutr. 2001, 21, 381–406. [Google Scholar] [CrossRef] [PubMed]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef] [PubMed]
- Brunner, G. Gas Extraction. An Introduction to Fundamentals of Supercritical Fluids and the Application to Separation Processes; Steinkopff: Darmstadt, Germany; Springer: New York, NY, USA, 1994. [Google Scholar]
- Brunner, G. Supercritical fluids: Technology and application to food processing. J. Food Eng. 2005, 67, 21–33. [Google Scholar] [CrossRef]
- Lack, E.; Gamse, T.; Marr, R. High Pressure technology: Fundamentals and application. In Industrial Chemistry Library; Bertucco, A., Vetter, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 9, p. 383. [Google Scholar]
- Knez Hrnčič, M.; Škerget, M.; Knez, Ž. Argon as a potential solvent to substitute conventional supercritical fluids. In Proceedings of the 21st International Congress of Chemical and Process Engineering (CHISA 2014) and 17th Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction (PRES 2014), Prague, Czech Republic, 23–27 August 2014; Conference PRES: Prague, Czech Republic, 2014. [Google Scholar]
- Knez, Ž. Food processing using supercritical fluids. In Emerging and Traditional Technologies for Safe, Healthy and Quality Food; Nedović, V., Raspor, P., Lević, J., Tumbas Šaponjac, V., Barbosa-Cánovas, G.V., Eds.; Food Engineering Series, 1571-0297; Elsevier: Amsterdam, The Netherlands, 2016; pp. 413–442. [Google Scholar]
- Diaz-Reinoso, B.; Moure, A.; Dominguez, H.; Parajó, J.C. Supercritical CO2 extraction and purification of compounds with antioxidant activity. J. Agric. Food Chem. 2006, 54, 2441–2469. [Google Scholar] [CrossRef] [PubMed]
- Martinez, J.L. Supercritical Fluid Extraction of Nutraceuticals and Bioactive Compounds; CRC Press: Boca Raton, FL, USA, 2007; pp. 275–304. [Google Scholar]
- King, J.W.; Srinivas, K. Multiple unit processing using sub- and supercritical fluids. J. Supercrit. Fluids 2009, 47, 598–610. [Google Scholar] [CrossRef]
- Abascal, K.; Ganora, L.; Yarnell, E. The effect of freeze-drying and its implications for botanical medicine: A review. Phytother. Res. 2005, 19, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Ajila, C.M.; Brar, S.K.; Verma, M. Extraction and analysis of polyphenols: Recent trends. Crit. Rev. Biotechnol. 2011, 31, 227–249. [Google Scholar] [CrossRef] [PubMed]
- Stalikas, C.D. Extraction, separation, and detection methods for phenolic acids and flavonoids. J. Sep. Sci. 2007, 30, 3268–3295. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Y.; Liu, Q.; Beta, T. Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. Food Chem. 2010, 121, 140–147. [Google Scholar] [CrossRef]
- Metivier, R.P.; Francis, F.J.; Clydesdale, F.M. Solvent extraction of anthocyanins from wine pomace. J. Food Sci. 1980, 45, 1099–1100. [Google Scholar] [CrossRef]
- Prior, R.L.; Lazarus, S.A.; Cao, G.; Muccitelli, H.; Hammerstone, J.F. Identification of procyanidins and anthocyanins in blueberries and cranberries (Vaccinium spp.) using highperformance liquid chromatography/mass spectrometry. J. Agric. Food Chem. 2001, 49, 1270–1276. [Google Scholar] [CrossRef] [PubMed]
- Guyot, S.; Marnet, N.; Drilleau, J. Thiolysis-HPLC characterization of apple procyanidins covering a large range of polymerization states. J. Agric. Food Chem. 2001, 49, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Labarbe, B.; Cheynier, V.; Brossaud, F.; Souquet, J.M.; Moutounet, M. Quantitative fractionation of grape proanthocyanidins according to their degree of polymerization. J. Agric. Food Chem. 1999, 47, 2719–2723. [Google Scholar] [CrossRef] [PubMed]
- Knez Hrnčič, M. Thermodynamic and Physical Properties for High Pressure Process Design. Ph.D. Thesis, University of Maribor, Maribor, Slovenia, 2014. [Google Scholar]
- Pinelo, M.; Zornoza, B.; Meyer, A.S. Selective release of phenols from apple skin: Mass transfer kinetics during solvent and enzyme-assisted extraction. Sep. Purif. Technol. 2008, 63, 620–627. [Google Scholar] [CrossRef]
- Nardini, M.; Cirillo, E.; Natella, F.; Mencarelli, D.; Comisso, A.; Scaccini, C. Detection of bound phenolic acids: Prevention by ascorbic acid and ethylenediaminetetraacetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem. 2002, 79, 119–124. [Google Scholar] [CrossRef]
- Solanaa, M.; Boschiero, I.; Dall’Acquab, S.; Bertucco, A. A comparison between supercritical fluid and pressurized liquid extraction methods for obtaining phenolic compounds from Asparagus Officinalis L. J. Supercrit. Fluids 2015, 100, 201–208. [Google Scholar] [CrossRef]
- King, M.B.; Bott, T.R. Extraction of Natural Products Using Near-Critical Solvents; Chapman & Hall: Glasgow, UK, 1993; pp. 84–100. [Google Scholar]
- McHugh, M.A.; Krukonis, V.J. Supercritical Fluid Extraction: Principles and Practice; Butterworths: Stoneham, MA, USA, 1986. [Google Scholar]
- Lack, E.; Simandy, B. High Pressure technology: Fundamentals and application. In Industrial Chemistry Library; Bertucco, A., Vetter, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 9, pp. 537–575. [Google Scholar]
- Kikic, I.; Lora, M.; Bertucco, A. A Thermodynamic Analysis of Three-Phase Equilibria in Binary and Ternary Systems for Applications in Rapid Expansion of a Supercritical Solution (RESS), Particles from Gas-Saturated Solutions (PGSS), and Supercritical Antisolvent (SAS). Ind. Eng. Chem. Res. 1997, 36, 5507–5515. [Google Scholar] [CrossRef]
- Fernandez, D.P.; Goodwin, A.R.H.; Lemmon, E.W.; Levelt-Sengers, J.M.H.; Williams, R.C. A formulation for the static permittivity of water and steam at temperatures features from 238 K to 873 K at pressures up to 1200 MPa, Including derivatives and Debye-Hückel coefficients. J. Phys. Chem. 1997, 26, 1126–1166. [Google Scholar]
- Miller, D.J.; Hawthorne, S.B. Solubility of liquid organic flavor and fragrance compounds in subcritical (hot/liquid) water from 298 to 473 K. J. Chem. Eng. Data 2000, 45, 315–318. [Google Scholar] [CrossRef]
- Chen, Y.C.; Sugiyama, Y.; Abe, N.; Kuruto-Nima, R.; Nozawa, R.; Hirota, A. DPPH radical scavenging compounds from Dou-Chi, a soybean fermented food. Biosci. Biotechnol. Biochem. 2005, 69, 999–1006. [Google Scholar] [CrossRef] [PubMed]
- Shahidi, F.; Janitha, P.K.; Wanasundara, P.D. Use of a free radical method to evaluate antioxidant activity. LWT Food Sci. Technol. 1995, 28, 25–30. [Google Scholar]
- Kefalas, P.; Kllithraka, S.; Parejo, I.; Makris, D.P. A Comparative Study on the in Vitro Antiradical Activity and Hydroxyl Free Radical Scavenging Activity in Aged Red Wines. Food Sci. Technol. Int. 2003, 9, 383–387. [Google Scholar] [CrossRef]
- Kalin, P.; Gülçin, I.; Gören, A.C. Antioxidant Activity and Polyphenol Content of Cranberries (Vaccinium macrocarpon). Rec. Nat. Prod. 2015, 9, 496–502. [Google Scholar]
- Gülçin, I.; Huyut, Z.; Elmastaş, M.; Aboul-Enein, H.Y. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 2010, 3, 43–53. [Google Scholar] [CrossRef]
- Grace, M.H.; Yousef, G.G.; Esposito, D.; Raskin, I.; Lila, M.A. Bioactive Capacity, Sensory Properties, and Nutritional Analysis of a Shelf Stable Protein-rich Functional Ingredient with Concentrated Fruit and Vegetable Phytoactives. Plant Foods Hum. Nutr. 2014, 69, 372–378. [Google Scholar] [CrossRef] [PubMed]
- Grace, M.H.; Yousef, G.G.; Gustafson, S.J.; Truong, V.D.; Yencho, G.C.; Lila, M.A. Phytochemical changes in phenolics, anthocyanins, ascorbic acid, and carotenoids associated with sweet potato storage and impacts on bioactive properties. Food Chem. 2014, 145, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Oki, T.; Masuda, M.; Furuta, S.; Nishiba, Y.; Terahara, N.; Suda, I. Involvement of anthocyanins and other phenolic compounds in radical-scavenging activity of purple-fleshed sweet potato cultivars. J. Food Sci. 2002, 67, 1752–1756. [Google Scholar] [CrossRef]
- López-Alarcón, C.; Denicola, A. Evaluating the antioxidant capacity of natural products: A review on chemical and cellular-based assays. Anal. Chim. Acta 2013, 76, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Method Enzymol. 1999, 299, 152–178. [Google Scholar]
- Delpino-Rius, A.; Eras, J.; Vilaró, F.; Cubero, M.A.; Balcells, M.; Canela-Garayo, R. Characterisation of phenolic compounds in processed fibers from the juice industry. Food Chem. 2015, 172, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Capriotti, A.L.; Cavaliere, C.; Foglia, P.; Piovesana, S.; Ventura, S. Chromatographic Methods Coupled to Mass Spectrometry Detection for the Determination of Phenolic Acids in Plants and Fruits. J. Liq. Chromatogr. Relat. Technol. 2015, 38, 353–370. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Recent Developments in the HPLC Separation of Phenolic Food Compounds. Crit. Rev. Anal. Chem. 2015, 45, 41–51. [Google Scholar] [CrossRef]
- Ruhul Amin, A.R.M.; Kucuk, O.; Khuri, F.R.; Shin, D.M. Perspectives for Cancer Prevention with Natural Compounds. J. Clin. Oncol. 2009, 27, 2712–2725. [Google Scholar] [CrossRef] [PubMed]
- Weichselbaum, E.; Buttriss, J.L. Polyphenols in the diet. Nutr. Bull. 2010, 35, 157–164. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, J.; Neveu, V.; Vos, F.; Scalbert, A. Identification of the 100 richest dietary sources of polyphenols: An application of the Phenol-Explorer database. Eur. J. Clin. Nutr. 2010, 64, S112–S120. [Google Scholar] [CrossRef] [PubMed]
- Duthie, G.G.; Duthie, S.J.; Kyle, J.A.M. Plant polyphenols in cancer and heart disease: Implications as nutritional antioxidants. Nutr. Res. Rev. 2000, 13, 79–106. [Google Scholar] [CrossRef] [PubMed]
- Kris-Etherton, P.M.; Hecker, K.D.; Bonanome, A.; Coval, S.M.; Binkoski, A.E.; Hilpert, K.F.; Griel, A.E.; Etherton, T.D. Bioactive Compounds in Foods: Their Role in the Prevention of Cardiovascular Disease and Cancer. Am. J. Med. 2002, 113, 71S–88S. [Google Scholar] [CrossRef]
- Lewandowska, H.; Kalinowska, M.; Lewandowski, W.; Stępkowski, T.M.; Brzóska, K. The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J. Nutr. Biochem. 2015, 32, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Ramos, S. Effects of dietary flavonoids on apoptotic pathways related to cancer chemoprevention. J. Nutr. Biochem. 2007, 18, 427–442. [Google Scholar] [CrossRef] [PubMed]
- Scalbert, A.; Manach, C.; Morand, C.; Rémésy, C.; Jiménez, L. Dietary Polyphenols and the Prevention of Diseases. Crit. Rev. Food Sci. Nutr. 2005, 45, 287–306. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.B.; Muzashvili, T.S.; Georgiev, M.I. Advance on biotechnology for glycosylation of high-value flavonoids. Biotechnol. Adv. 2014, 32, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Calderon-Montaño, J.M.; Burgos-Moron, E.; Perez-Guerrero, C.; Lopez-Lazaro, M. A review on the dietary flavonoid kaempferol. Mini Rev. Med. Chem. 2011, 11, 298–344. [Google Scholar] [CrossRef] [PubMed]
- Babova, O.; Occhipintia, A.; Capuzzo, A.; Maffei, M.E. Extraction of bilberry (Vaccinium myrtillus) antioxidants using supercritical/subcritical CO2 and ethanol as co-solvent. J. Supercrit. Fluids 2016, 107, 358–363. [Google Scholar] [CrossRef]
- Wei, Y.D.; Sun, T.T.; Liu, H.H.; Pei, Z.-L.; Jiang, L.-F.; Li, R.; Huang, S.-Y. The Total Flavanone of Movus Aalba Extraction and the Identification by Ultrasonic Wave. Lishizhen Med. Mater. Med. Res. 2012, 23, 2811–2812. [Google Scholar]
- Feng, R.-Z.; Wang, Q.; Tong, W.-Z.; Xiong, J.; Wei, Q.; Zhou, W.-H.; Yin, Z.-Q.; Yin, X.-Y.; Wang, L.-Y.; Chen, Y.-Q.; et al. Extraction and antioxidant activity of flavonoids of Morus nigra. Int. J. Clin. Exp. Med. 2015, 8, 22328–22336. [Google Scholar] [PubMed]
- Biesaga, M. Influence of extraction methods on stability of flavonoids. J. Chromatogr. A 2011, 1218, 2505–2512. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Wan, S.B.; Yang, H.; Yuan, J.; Chan, T.H.; Dou, Q.P. EGCG, green tea polyphenols and their synthetic analogs and prodrugs for human cancer prevention and treatment. Adv. Clin. Chem. 2011, 53, 155–177. [Google Scholar] [PubMed]
- Lee, K.W.; Lee, H.J. The roles of polyphenols in cancer chemoprevention. Biofactors 2006, 26, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Kampa, M.; Nifli, A.-P.; Notas, G.; Castanas, E. Polyphenols and cancer cell growth. Rev. Physiol. Biochem. Pharmacol. 2007, 159, 79–113. [Google Scholar] [PubMed]
- Park, E.-J.; Pezzuto, J.M. The Pharmacology of Resveratrol in Animals and Humans. Biochim. Biophys. Acta 2015, 1852, 1071–113. [Google Scholar] [CrossRef] [PubMed]
- Khan, N.; Mukhtar, H. Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett. 2008, 269, 269–280. [Google Scholar] [CrossRef] [PubMed]
- Manson, M.M. Cancer prevention—The potential for diet to modulate molecular signalling. Trends Mol. Med. 2003, 9, 11–18. [Google Scholar] [CrossRef]
- Link, A.; Balaguer, F.; Goel, A. Cancer chemoprevention by dietary polyphenols: Promising role for epigenetics. Biochem. Pharmacol. 2010, 80, 1771–1792. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.P.; Moreno, F.S.; Ross, S.A. Targeting the Epigenome with Bioactive Food Components for Cancer Prevention. J. Nutrigenet. Nutrigenom. 2011, 4, 275–292. [Google Scholar] [CrossRef] [PubMed]
- Su, Y. Molecular Regulation of Breast Cancer Susceptibility by Dietary Factors. Ph.D. Thesis, University of Arkansas for Medical Sciences, Little Rock, AR, USA, 4 December 2008. [Google Scholar]
- ClinicalTrials.gov: A Service of the U.S. National Institutes of Health. Available online: https://www.clinicaltrials.gov/ct2/results?term=EGCG+and+cancer&Search=Search (accessed on 21 March 2016).
- Khan, N.; Bharali, D.J.; Adhami, V.M.; Siddiqui, I.A.; Cui, H.; Shabana, S.M.; Mousa, S.A.; Mukhtar, H. Oral administration of naturally occurring chitosan-based nanoformulated green tea polyphenol EGCG effectively inhibits prostate cancer cell growth in a xenograft model. Carcinogenesis 2014, 35, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, E.; La Guardia, M.; Giammanco, S.; di Majo, D.; Giammanco, M. Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. Food Chem. 2007, 104, 466–479. [Google Scholar] [CrossRef]
- Turrini, E.; Ferruzzi, L.; Fimognari, C. Potential Effects of Pomegranate Polyphenols in Cancer Prevention and Therapy. Oxid. Med. Cell. Longev. 2015, 2015, 938475. [Google Scholar] [CrossRef] [PubMed]
- Lall, R.K.; Syed, D.N.; Adhami, V.M.; Khan, M.I.; Mukhtar, H. Dietary Polyphenols in Prevention and Treatment of Prostate Cancer. Int. J. Mol. Sci. 2015, 16, 3350–3376. [Google Scholar] [CrossRef] [PubMed]
- Manthey, J.A.; Guthrie, N.; Grohmann, K. Biological Properties of Citrus Flavonoids Pertaining to Cancer and Inflammation. Curr. Med. Chem. 2001, 8, 135–153. [Google Scholar] [CrossRef] [PubMed]
- Sharmila, G.; Bhat, F.A.; Arunkumar, R.; Elumalai, P.; Singh, P.R.; Senthilkumar, K.; Arunakaran, J. Chemopreventive effect of quercetin, a natural dietary flavonoid on prostate cancer in in vivo model. Clin. Nutr. 2014, 33, 718–726. [Google Scholar] [CrossRef] [PubMed]
- Fresco, P.; Borges, F.; Diniz, C.; Marques, M.P.M. New Insights on the Anticancer Properties of Dietary Polyphenols. Med. Res. Rev. 2006, 26, 747–766. [Google Scholar] [CrossRef] [PubMed]
- Middleton, E. Biological properties of plant flavonoids: An overview. Int. J. Pharmacogn. 1996, 34, 344–348. [Google Scholar] [CrossRef]
- Havsteen, B.H. The biochemistry and medical significance of the flavonoids. Pharmacol. Ther. 2002, 96, 67–202. [Google Scholar] [CrossRef]
- Wang, X.L.; Hur, H.G.; Lee, J.H.; Kim, K.T.; Kim, S.I. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl. Environ. Microbiol. 2005, 71, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-L.; Liu, Z.-P. Natural Products as Anti-Invasive and Anti-Metastatic Agents. Curr. Med. Chem. 2011, 18, 808–829. [Google Scholar] [CrossRef] [PubMed]
- Lila, M.A. Anthocyanins and Human Health: An in Vitro Investigative Approach. J. Biomed. Biotechnol. 2004, 5, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Ghafoora, K.; Park, J.; Choi, Y.H. Optimization of supercritical fluid extraction of bioactive compounds from grape (Vitis labrusca B.) peel by using response surface methodology. Innov. Food Sci. Emerg. 2010, 11, 485–490. [Google Scholar] [CrossRef]
- Das, M.; Manna, K. Chalcone Scaffold in Anticancer Armamentarium: A Molecular Insight. J. Toxicol. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Orlikova, B.; Tasdemir, D.; Golais, F.; Dicato, M.; Diederich, M. Dietary chalcones with chemopreventive and chemotherapeutic potential. Genes Nutr. 2011, 6, 125–147. [Google Scholar] [CrossRef] [PubMed]
- Kerbstadt, S.; Eliasson, L.; Mustafa, A.; Ahrné, L. Effect of novel drying techniques on the extraction of anthocyanins from bilberry press cake using supercritical carbon dioxide. Innov. Food Sci. Emerg. 2015, 29, 209–214. [Google Scholar] [CrossRef]
- Stoner, G.D.; Mukhtar, H. Polyphenols as cancer chemopreventive agents. J. Cell Biochem. 1995, 22, 169–180. [Google Scholar] [CrossRef]
- Verma, S.; Singh, A.; Mishra, A. Gallic acid: Molecular rival of cancer. Environ. Toxicol. Pharmacol. 2013, 35, 473–485. [Google Scholar] [CrossRef] [PubMed]
- Santos, I.S.; Ponte, B.M.; Boonme, P.; Silva, A.M.; Souto, E.B. Nanoencapsulation of polyphenols for protective effect against colon-rectal cancer. Biotechnol. Adv. 2013, 31, 514–523. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.S.; Ameri, F.; Gadgil, P. Effect of Marinades on the Formation of Heterocyclic Amines in Grilled Beef Steaks. J. Food Sci. 2008, 73, T100–T105. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, D.K.; Mishra, P.K. Curcumin and Its Analogues: Potential Anticancer Agents. Med. Res. Rev. 2010, 30, 818–860. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.A.; Gescher, A.J.; Steward, W.P. Curcumin: The story so far. Eur. J. Cancer 2005, 41, 1955–1968. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Tobón, J.F.; Carvalho, P.I.N.; Rostagno, M.A.; Petenate, A.J.; Meireles, M.A.A. Extraction of curcuminoids from deflavored turmeric (Curcuma longa L.) using pressurized liquids: Process integration and economic evaluation. J. Supercrit. Fluids 2014, 95, 167–174. [Google Scholar]
- Seyed, M.A.; Jantan, I.; Bukhari, S.N.A.; Vijayaraghavan, K. A Comprehensive Review on the Chemotherapeutic Potential of Piceatannol for Cancer Treatment, with Mechanistic Insights. J. Agric. Food Chem. 2016, 64, 725–737. [Google Scholar] [CrossRef] [PubMed]
- Bhat, K.P.L.; Pezzuto, J.M. Cancer Chemopreventive Activity of Resveratrol. Ann. N. Y. Acad. Sci. 2002, 957, 210–229. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, I.A.; Sanna, V.; Ahmad, N.; Sechi, M.; Mukhtar, H. Resveratrol nanoformulation for cancer prevention and therapy. Ann. N. Y. Acad. Sci. 2015, 1348, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Stivala, L.A.; Savio, M.; Carafoli, F.; Perucca, P.; Bianchi, L.; Maga, G.; Forti, L.; Pagnoni, U.M.; Albini, A.; Prosperi, E.; et al. Specific structural determinants are responsible for the antioxidant activity and the cell cycle effects of resveratrol. J. Biol. Chem. 2001, 276, 22586–22594. [Google Scholar] [CrossRef] [PubMed]
- Soural, I.; Vrchotová, N.; Tříska, J.; Balík, J.; Horník, Š.; Cuřínová, P.; Sýkora, J. Various Extraction Methods for Obtaining Stilbenes from Grape Cane of Vitis vinifera L. Molecules 2015, 20, 6093–6112. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Ito, H. Tannins of Constant Structure in Medicinal and Food Plants-Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules 2011, 16, 2191–2217. [Google Scholar] [CrossRef]
- Cheynier, V.; Dueñas-Paton, M.; Salas, E.; Maury, C.; Souquet, J.-M.; Sarni-Manchado, P.; Fulcrand, H. Structure and Properties of Wine Pigments and Tannins. Am. J. Enol. Vitic. 2006, 57, 298–305. [Google Scholar]
- Chung, K.-T.; Wong, T.Y.; Wei, C.-I.; Huang, Y.-W.; Lin, Y. Tannins and Human Health: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.-T.; Wei, C.-I.; Johnson, M.G. Are tannins a double-edged sword in biology and health? Trends Food Sci. Technol. 1998, 9, 168–175. [Google Scholar] [CrossRef]
- Pansera, M.R.; Iob, G.A.; Atti-Santos, A.C.; Rossato, M.; Atti-Serafini, L.; Cassel, E. Extraction of tannin by Acacia mearnsii with supercritical fluids. Braz. Arch. Biol. Technol. 2004, 47, 995–998. [Google Scholar] [CrossRef]
- Koleckar, V.; Kubikova, K.; Rehakova, Z.; Kuca, K.; Jun, D.; Jahodar, L.; Opletal, L. Condensed and Hydrolysable Tannins as Antioxidants Influencing the Health. Mini Rev. Med. Chem. 2008, 8, 436–447. [Google Scholar] [CrossRef] [PubMed]
- Sawadogo, W.R.; Schumacher, M.; Teiten, M.-H.; Dicato, M.; Diederich, M. Traditional West African pharmacopeia, plants and derived compounds for cancer therapy. Biochem. Pharmacol. 2012, 84, 1225–1240. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Spiegelhalder, B.; Bartsch, H. The antioxidant/anticancer potential of phenolic compounds isolated from olive oil. Eur. J. Cancer 2000, 36, 1235–1247. [Google Scholar] [CrossRef]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hull, W.E.; Spiegelhalder, B.; Bartsch, H. Identification of Lignans as Major Components in the Phenolic Fraction of Olive Oil. Clin. Chem. 2000, 46, 976–988. [Google Scholar] [PubMed]
- Meagher, L.P.; Beecher, G.R.; Flanagan, V.P.; Li, B.W. Isolation and characterization of the lignans, isolariciresinol and pinoresinol, in flaxseed meal. J. Agric. Food Chem. 1999, 47, 3173–3180. [Google Scholar] [CrossRef] [PubMed]
- Mandžuka, Z.; Knez, Ž. Influence of temperature and pressure during PGSS™ micronization and storage time on degree of crystallinity and crystal forms of monostearate and tristearate. J. Supercrit. Fluids 2008, 45, 102–111. [Google Scholar] [CrossRef]
- Knez, Ž.; Škerget, M.; Knez Hrnčič, M.; Čuček, D. Particle formation using sub- and supercritical fluids. In Supercritical Fluid Technology for Energy and Environmental Applications; Ankeev, V., Fan, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 31–67. [Google Scholar]
- Knez, Ž. Kinetics of soxhlet-type and supercritical extraction of natural products: A mathematical model. In Solvent Extraction in the Process Industries, Proceedings of the ISEC ‘93—Solvent Extraction in the Process Industries, London, UK, 9–15 September 1993; Elsevier Applied Science for SCI: New York, NY, USA, 1993; pp. 705–712. [Google Scholar]
- Knez, Ž. High pressure process technology—Quo vadis? Chem. Eng. Res. Des. 2004, 82, 1541–1548. [Google Scholar] [CrossRef]
- Vatai, T.; Škerget, M.; Knez, Ž.; Kareth, S.; Wehowski, M.; Weidner, E. Extraction and formulation of anthocyanin-concentrates from grape residues. J. Supercrit. Fluids 2008, 45, 32–36. [Google Scholar] [CrossRef]
- Bren, U.; Zupan, M.; Guengerich, F.P.; Mavri, J. Chemical Reactivity as a Tool to Study Carcinogenicity: Reaction between Chloroethylene Oxide and Guanine. J. Org. Chem. 2006, 71, 4078–4084. [Google Scholar] [CrossRef] [PubMed]
- Bren, U.; Guengerich, F.P.; Mavri, J. Guanine Alkylation by the Potent Carcinogen Aflatoxin B1: Quantum Chemical Calculations. Chem. Res. Toxicol. 2007, 20, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Galeša, K.; Bren, U.; Kranjc, A.; Mavri, J. Carcinogenicity of Acrylamide: A Computational Study. J. Agric. Food Chem. 2008, 56, 8720–8727. [Google Scholar] [CrossRef] [PubMed]
- Bren, U.; Oostenbrink, C. Cytochrome P450 3A4 Inhibition by Ketoconazole: Tackling the Problem of Ligand Cooperativity Using Molecular Dynamics Simulations and Free-Energy Calculations. J. Chem. Inf. Model. 2012, 52, 1573–1582. [Google Scholar] [CrossRef] [PubMed]
- Lajovic, A.; Nagy, L.D.; Guengerich, F.P.; Bren, U. Carcinogenesis of Urethane: Simulation versus Experiment. Chem. Res. Toxicol. 2015, 28, 691–701. [Google Scholar] [CrossRef] [PubMed]
Polyphenol | Sources | Extraction | Effects | References |
---|---|---|---|---|
Epigallocatechin 3-O-gallate (EGCG) (flavonoids/catechins) | Tea, fruits (apples, grapes, berries), red wine, chocolate | Maceration, ultrasonic extraction, microwave extraction, stirring | Antioxidative, pro-oxidative, pro-apoptotic, anti-proliferative, suppression of growth and invasion, antiangiogenic, antimetastatic, antimutagenic, anti-inflammatory, inhibition of telomerase activity and lipid peroxidation, modulation of estrogen activity, modulation and reversal of epigenetic changes | [1,8,10,13,17,18,35,69,81,82,84,85,86] |
Apigenin (flavonoids/flavones) | Aromatic plants (chamomile, parsley, oregano, thyme), grapefruit, oranges, onions | Organic solvent extraction using methanol, ethanol and propanol as well as their mixtures | Antioxidative, anti-mutagenic, anti-inflammatory, anti-viral, inhibition of tumor growth, pro-apoptotic, suppression of tumor progression, anti-invasive, antiangiogenic, antimetastatic, anti-proliferative, modulation of epigenetic changes | [8,13,36,93,94] |
Quercetin (flavonoids/flavonols) | Vegetables (onions, broccoli), fruits (apples, apricots, berries), nuts, seeds, tea, wine, cocoa | Subcritical water extraction, ultrasonic-assisted extraction | Strongly antioxidative; pro-oxidative, antiviral, inhibition of tumor formation and migration, pro-apoptotic, anti-proliferative, antimetastatic, anti-angiogenic, inhibition of lipid peroxidation, reduction of tumor incidence and multiplicity, prevention of GJIC inhibition, modulation of epigenetic changes | [5,8,10,11,13,24,35,70,71,81,82,86,91,95,96,97] |
Fisetin (flavonoids/flavonols) | Strawberries, apples, persimmons, grapes, onions and cucumbers | HCl, EDTA, and formic acid extraction methods | Antioxidative, pro-apoptotic, induction of cell cycle arrest, inhibition of androgen signaling and tumor growth, antiproliferative, decrease in viability of tumor cells | [8,22,35,36,37,91,93] |
Naringin (flavonoids/flavanones) | Citrus fruits, tomatoes, aromatic plants | Supercritical fluid extraction, conventional soxhlet extraction with different volatile solvents | Antioxidative, anti-inflammatory, anti-metastatic, delayed tumor development, reduction of tumor incidence, blocking of peroxide cytotoxicity and apoptosis of healthy cells | [8,31,32,33,69,82,91,94] |
Naringenin (flavonoids/flavanones) | Citrus fruits, tomatoes, aromatic plants | Supercritical fluid extraction, methanol extraction | Antioxidative, anti-metastatic, antiproliferative, stimulation of DNA repair after oxidative damage | [7,31,32,33,91,92,94,98] |
Hesperetin (flavonoids/flavanones) | Citrus fruits, tomatoes, aromatic plants | Microwave-assisted extraction, extraction with organic solvents and mixtures (DMSO–methanol) | Antioxidative, inhibition of malignancy, antimetastatic, antiviral, anti-inflammatory | [31,32,33,70,83,91,94,97] |
Genistein (flavonoids/isoflavones) | Legumes, especially soya | Sub- and supercritical fluid extraction (pressurized hot water extraction, carbon dioxide) | Antioxidative, anti-invasive, anti-inflammatory, anti-metastatic, delay/repression of tumor developement/growth, reduction of tumor multiplicity and volume, pro-apoptotic, antiproliferative, estrogenic activity, prevention of GJIC inhibition, modulation of epigenetic changes | [1,3,8,10,11,17,22,24,31,70,71,81,86,88,100] |
Xanthohumol (flavonoids/chalcones) | Hops, beer | Supercritical fluid extraction | Antioxidative, anti-inflammatory, antiestrogenic, modulation of enzymatic action, pro-apoptotic, anti-invasive, suppression of tumor growth, anti-proliferative, targeting several processes | [6,32,76,100,102,103,104] |
Isoliquiritigenin (flavonoids/chalcones) | Licorice, shallot and bean sprouts | Soxhlet extraction, supercritical fluid extraction | Potent antioxidant, anti-inflammatory, antimetastatic, anti-invasive, anti-adhesive, inhibition of migration | [100,122] |
Gallic acid (phenolic acids/hydroxybenzoic acids) | Berries, pineapples, bananas, lemons, wines | Soxhlet extraction, ultrasonic-assisted extraction, microwave-assisted extraction | Antioxidative, pro-oxidative, anti-inflammatory, antibacterial, antiviral, anti-melanogenic, antimutagenic, suppression of tumor growth, anti-invasive, antiproliferative, inhibition of tumorigenesis, anti-angiogenic, modulation of androgen receptor | [8,22,81,93,105,106,107,108] |
Ellagic acid (phenolic acids/hydroxybenzoic acids) | Berries, pomegranate, walnuts and pecans | Ultrasound-assisted extraction | Antioxidant, anti-inflammatory, anti-bacterial, anti-angiogenic, antimetastatic, pro-apoptotic, anti-proliferative, anti-invasive, inhibition of motility | [13,93,105,106,108] |
Rosmarinic acid (phenolic acids/hydroxycinnamic acids) | Herbs from the Lamiaceae family | Extraction with organic solvents, supercritical fluid extraction | Antioxidative, reduction of HCA formation, modulation of epigenetic changes | [86,105,109] |
Curcumin (curcuminoids) | Turmeric, mustard | Extraction with different solvents in pure form or their mixtures | Antioxidative, anti-angiogenic, anti-adhesive, tumor growth suppressive, antiproliferative, proapoptotic, antimetastatic, anti-inflammatory, modulation and reversal of epigenetic changes | [11,13,24,71,110,111,112] |
Resveratrol (stilbenes) | Red wine, grapes, berries, peanuts | Supercritical fluid extraction, pressurized liquid extraction (water, methanol and other organic solvents) | Antioxidative, anti-inflammatory, anti-cyclooxygenase, antiproliferative, proapoptotic, antiestrogenic, modulation of lipid metabolism, inhibition of platelet aggregation | [83,100,113,114,115,116,117] |
Pterostilbene (stilbenes) | Red wine, grapes, berries, peanuts | Maceration, extraction at elevated temperature, fluidized-bed extraction, Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction | Antioxidative, anti-inflammatory, analgesic, anti-cyclooxygenase, pro-apoptotic, antiproliferative, modulation of lipid metabolism | [83,100,113,114,115,117] |
Piceatannol (stilbenes) | Red wine, grapes, berries, peanuts | Maceration, extraction at elevated temperature, fluidized-bed extraction, Soxhlet extraction, microwave-assisted extraction and accelerated solvent extraction | Antioxidative, anti-inflammatory, anti-cyclooxygenase, modulation of lipid metabolism | [83,100,113,114,115,117] |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. https://doi.org/10.3390/molecules21070901
Brglez Mojzer E, Knez Hrnčič M, Škerget M, Knez Ž, Bren U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules. 2016; 21(7):901. https://doi.org/10.3390/molecules21070901
Chicago/Turabian StyleBrglez Mojzer, Eva, Maša Knez Hrnčič, Mojca Škerget, Željko Knez, and Urban Bren. 2016. "Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects" Molecules 21, no. 7: 901. https://doi.org/10.3390/molecules21070901