A New Class of Glucosyl Thioureas: Synthesis and Larvicidal Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Synthesis of d-Glucose-Based Thioureas
2.2. Pesticidal and Growth Inhibition Actvities of d-Glucose-Based Thioureas
3. Materials and Methods
3.1. General Information
3.2. Typical Procedure for the Preparation of 5a–j: Preparation of (2S)-((2,3,4,6-tetra-O-Acetyl-β-d-gluco-pyranosyl)carbamothioylamino)-3-phenyl-1-propanol (5c)
3.3. Biological Assay
3.3.1. Larvicidal Activity against Mythimna separata Walker
3.3.2. Growth Inhibitory Activities to Mythimna separata Walker
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Heckel, D.G. Insecticide resistance after Silent Spring. Science 2012, 337, 1612–1614. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Tomizawa, M.; Ito, Y.; Abe, K.; Noro, Y.; Kamijima, M. A potential target for organophosphate insecticides leading to spermatotoxicity. J. Agric. Food Chem. 2013, 61, 9961–9965. [Google Scholar] [CrossRef] [PubMed]
- Storm, J.E. Patty's Toxicology; Wiley-VCH: Weinheim, Germany, 2012; Volume 95, pp. 1077–1234. [Google Scholar]
- Matthews, G.A.; Bateman, R.; Miller, P. Safety precautions. In Pesticide Application Methods, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; pp. 443–469. [Google Scholar]
- Casida, J.E. Curious about pesticide action. J. Agric. Food Chem. 2011, 59, 2762–2769. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M. Nonbiodegradable and other racalcitrant molecules. Biotechnol. Bioeng. 1973, XV, 611–647. [Google Scholar] [CrossRef]
- Maguire, R.J.; Carey, J.H.; Hart, J.H.; Tkacz, R.J.; Lee, H.B. Persistence and fate of deltamethrin sprayed on a pond. J. Agric. Food Chem. 1989, 37, 1153–1159. [Google Scholar] [CrossRef]
- Weston, D.P.; Lydy, M.J. Toxicity of the insecticide fipronil and is degradates to benthic macroinvertebrates of urban streams. Environ. Sci. Technol. 2014, 48, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Dawkar, V.V.; Chikate, Y.R.; Lomate, P.R.; Dholakia, B.B.; Gupta, V.S.; Giri, A.P. Molecular insights into resistance mechanisms of lepidopteran insect pests against toxicants. J. Proteome Res. 2013, 12, 4727–4737. [Google Scholar] [CrossRef] [PubMed]
- Cabras, P.; Angioni, A. Pesticide residues in grapes, wine, and their processing products. J. Agric. Food Chem. 2000, 48, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Jeschke, P.; Nauen, R.; Schindler, M.; Elbert, A. Overview of the status and global strategy for neonicotinoids. J. Agric. Food Chem. 2011, 59, 2897–2908. [Google Scholar] [CrossRef] [PubMed]
- Mori, K. Pesticide Chemistry: Crop Protection, Public Health, Environmental Safety; Ohkawa, H., Miyagawa, H., Lee, P.W., Eds.; Wiley-VCH Verlag GmbH & Co. KgaA: Weinheim, Germany, 2007; pp. 13–22. [Google Scholar]
- Ning, J.; Kong, F.Z.; Lin, B.M.; Lei, H.D. Large-scale preparation of the phytoalexin elicitor glucohexatose and its application as a green pesticide. J. Agric. Food Chem. 2003, 51, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Sinthusiri, J.; Soonwera, M.; Boonmeesupmak, P. Green insecticide from herbal essential oils against house fly, Musca domestica L. (Muscidae: Diptera). J. Agric. Tech. 2013, 9, 1453–1460. [Google Scholar]
- Qian, X.H.; Lee, P.W.; Cao, S. China: Forward to the green pesticides via a basic research program. J. Agric. Food Chem. 2010, 58, 2613–2623. [Google Scholar] [CrossRef] [PubMed]
- Kanokmedhakul, S.; Kanokmedhakul, K.; Prajuabsuk, T.; Panichajakul, S.; Panyamee, P.; Prabpai, S.; Kongsaeree, P. Azadirachtin derivatives from seed kernels of Azadirachta excels. J. Nat. Prod. 2005, 68, 1047–1050. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural products as sources for new pesticides. J. Nat. Prod. 2012, 75, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Wiwattanapatapee, R.; Sae-Yun, A.; Petcharat, J.; Ovatlarnporn, C.; Itharat, A. Development and evaluation of granule and emulsifiable concentrate formulations containing derris elliptica extract for crop pest control. J. Agric. Food Chem. 2009, 57, 11234–11241. [Google Scholar] [CrossRef] [PubMed]
- Feyereisen, R. Insect P450 inhibitors and insecticides: Challenges and opportunities. Pest. Manag. Sci. 2015, 71, 793–800. [Google Scholar] [CrossRef] [PubMed]
- Petroski, R.J.; Stanley, D.W. Natural compounds for pest and weed control. J. Agric. Food Chem. 2009, 57, 8171–8179. [Google Scholar] [CrossRef] [PubMed]
- Cohen, E. Chitin synthesis and inhibition: A revisit. Pest. Manag. Sci. 2001, 57, 946–950. [Google Scholar] [CrossRef] [PubMed]
- Merzendorfer, H. Chitin synthesis inhibitors: Old molecules and new developments. Insect Sci. 2013, 20, 121–138. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Sasama, Y.; Takahashi, N.; Ikemi, N. Cyflumetofen, a novel acaricide—Its mode of action and selectivity. Pest. Manag. Sci. 2013, 69, 1080–1084. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.F.; Lü, M.Y.; Chen, L.; Li, Q.S.; Song, H.B.; Bi, F.C.; Huang, R.Q.; Wang, Q.M. Design, synthesis, bioactivity, and structure-activity relationship (SAR) studies of novel benzoylphenylureas containing oxime ether group. J. Agric. Food Chem. 2008, 56, 11376–11391. [Google Scholar] [CrossRef] [PubMed]
- DeMilo, A.B.; Ostromecky, D.M.; Chang, S.C.; Redfern, R.E.; Fye, R.L. Heterocyclic analogs of diflubenzuron as growth and reproduction inhibitors of the fall armyworm and house fly. J. Agric. Food Chem. 1978, 26, 164–166. [Google Scholar] [CrossRef]
- Sun, R.F.; Wang, Z.W.; Li, Y.Q.; Xiong, L.X.; Liu, Y.X.; Wang, Q.M. Design, synthesis, and insecticidal evaluation of new benzoylureas containing amide and sulfonate groups based on the sulfonylurea receptor protein binding site for diflubenzuron and glibenclamide. J. Agric. Food Chem. 2013, 61, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Ascher, K.R.S.; Nemny, N.E. Toxicity of the chitin synthesis inhibitors, diflubenzuron and its dichloro-analogue, to Spodoptera littoralis larvae. Pestic. Sci. 1976, 7, 1–9. [Google Scholar] [CrossRef]
- Zhang, J.; Tang, X.H.; Ishaaya, I.; Cao, S.; Wu, J.J.; Yu, J.L.; Li, H.; Qian, X.H. Synthesis and insecticidal activity of heptafluoroisopropyl-containing benzoylphenylurea structures. J. Agric. Food Chem. 2010, 58, 2736–2740. [Google Scholar] [CrossRef] [PubMed]
- Rama, F.; Meazza, G.; Bettarini, F.; Piccardi, P.; Massardo, P.; Caprioli, V. Synthesis and bioactivity of some fluorine-containing benzoyl arylureas. Part II: Insecticidal products in which the aryl group bears a polyfluoroalkoxy or (polyfluoroalkoxy)alkoxy side chain. Pestic. Sci. 1992, 35, 145–152. [Google Scholar] [CrossRef]
- Sreelatha, T.; Hymavathi, A.; Babu, K.S.; Murthy, J.M.; Pathipati, U.R.; Rao, J.M. Synthesis and insect antifeedant activity of plumbagin derivatives with the amino acid moiety. J. Agric. Food Chem. 2009, 57, 6090–6094. [Google Scholar] [CrossRef] [PubMed]
- Pittendrigh, B.R.; Laskowski, H.; O’Shea, G.; Larsen, A.; Wolfe, R. Carbohydrate-based mosquito control: A field test of the concept. Environ. Entomol. 2001, 30, 388–393. [Google Scholar] [CrossRef]
- Steve, P.; Jan, T. Insecticides-Advances in Integrated Pest Management; Perveen, F., Ed.; Intechopen: Rijeka, Croatia, 2012; pp. 214–250. [Google Scholar]
- Bland, J.M.; Edwards, J.V.; Eaton, S.R.; Lax, A.R. Potential of natural peptidic compounds as leads for novel pesticides. Pestic. Sci. 1993, 39, 331–340. [Google Scholar] [CrossRef]
- Mao, M.Z.; Li, Y.X.; Zhou, Y.Y.; Zhang, X.L.; Liu, Q.X.; Di, F.J.; Song, H.B.; Xiong, L.X.; Li, Y.Q.; Li, Z.M. Synthesis and insecticidal evaluation of novel N-pyridylpyrazolecarboxamides containing an amino acid methyl ester and their analogues. J. Agric. Food Chem. 2014, 62, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Berecibar, A.; Grandjean, C.; Siriwardena, A. Synthesis and biological activity of natural aminocyclopentitol glycosidase inhibitors: Mannostatins, Trehazolin, Allosamidins, and their analogues. Chem. Rev. 1999, 99, 779–844. [Google Scholar] [CrossRef] [PubMed]
- Shiozaki, M.; Kobayashi, Y.; Arai, M.; Haruyama, H. Synthesis of 6-epi-trehazolin from d-ribonolactone: Evidence for the non-existence of a 5,6-ringfused structural isomer of 6-epi-trehazolin. Tetrahedron Lett. 1994, 35, 887–890. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Shiozaki, M.; Ando, O. Syntheses of Trehazolin derivatives and evaluation as glycosidase inhibitors. J. Org. Chem. 1995, 60, 2570–2580. [Google Scholar] [CrossRef]
- Elshahawi, S.I.; Shaaban, K.A.; Kharel, M.K.; Thorson, J.S. A comprehensive review of glycosylated bacterial natural products. Chem. Soc. Rev. 2015, 44, 7591–7697. [Google Scholar] [CrossRef] [PubMed]
- Yamagishi, T.; Uchida, C.; Ogawa, S. Total synthesis of the Trehalase inhibitor Salbostatin. Chem. Eur. J. 1995, 1, 634–636. [Google Scholar] [CrossRef]
- Vertesy, L.; Fehlhaber, H.W.; Schulz, A. Glycosidase Inhibitor Salbostatin, process for Its Preparation, and Its Use. US Patent 5,091, 524, 25 February 1992. [Google Scholar]
- Trapero, A.; Egido-Gabás, M.; Bujons, J.; Llebaria, A. Synthesis and evaluation of hydroxymethylaminocyclitols as glycosidase inhibitors. J. Org. Chem. 2015, 80, 3512–3529. [Google Scholar] [CrossRef] [PubMed]
- Shing, T.K.M.; Cheng, H.M. Intramolecular direct aldol reactions of sugar diketones: Syntheses of valiolamine and validoxylamine. Org. Lett. 2008, 10, 4137–4139. [Google Scholar] [CrossRef] [PubMed]
- Fukase, H.; Horii, S. Synthesis of valiolamine and its N-substituted derivatives AO-128, validoxylamine G, and validamycin G via branched-chain inosose derivatives. J. Org. Chem. 1992, 57, 3651–3658. [Google Scholar] [CrossRef]
- Cipolla, L.; Sgambato, A.; Forcella, M.; Fusi, P.; Parenti, P.; Cardona, F.; Bini, D. N-Bridged 1-deoxynojirimycin dimers as selective insect trehalase inhibitors. Carbohydr. Res. 2014, 389, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Schareina, T.; Zapf, A.; Cotté, A.; Müller, N.; Beller, M. A practical and improved Copper-catalyzed synthesis of the central intermediate of diafenthiuron and related products. Org. Process Res. Dev. 2008, 12, 537–539. [Google Scholar] [CrossRef]
- Knox, J.R.; Toia, R.F.; Casida, J.E. Insecticidal thioureas: Preparation of [phenoxy-4–3H]diafenthiuron, the corresponding carbodiimide, and related compounds. J. Agric. Food Chem. 1992, 40, 909–913. [Google Scholar] [CrossRef]
- Pascual, A.; Rindlisbacher, A.; Schmidli, H.; Stamm, E. N-(pyrid-3-yl)thioureas and derivatives as acaricides. II. Quantitative structure-activity relationships and chemodynamic behaviour. Pestic. Sci. 1995, 44, 369–379. [Google Scholar] [CrossRef]
- Pascual, A.; Rindlisbacher, A. N-(pyrid-3-yl)thioureas and derivatives as acaricides. I. Synthesis and biological properties. Pestic. Sci. 1994, 42, 253–263. [Google Scholar] [CrossRef]
- Mao, C.H.; Wang, Q.M.; Huang, R.Q.; Bi, F.C.; Chen, L.; Liu, Y.X.; Shang, J. Synthesis and insecticidal evaluation of novel N-oxalyl derivatives of tebufenozide. J. Agric. Food Chem. 2004, 52, 6737–6741. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Z.K.; Fan, Z.J.; Wu, Q.J.; Zhang, Y.J.; Mi, N.; Wang, S.X.; Zhang, Z.C.; Song, H.B.; Liu, F. Synthesis and insecticidal activity of N-tert-butyl-N,N′-diacylhydrazines containing 1,2,3-thiadiazoles. J. Agric. Food Chem. 2011, 59, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, M. Importance of physicochemical properties for the design of new pesticides. J. Agric. Food Chem. 2011, 59, 2909–2917. [Google Scholar] [CrossRef] [PubMed]
- Morou, E.; Lirakis, M.; Pavlidi, N.; Zotti, M.; Nakagawa, Y.; Smagghe, G.; Vontas, J.; Swevers, L. A new dibenzoylhydrazine with insecticidal activity against Anopheles mosquito larvae. Pest. Manag. Sci. 2013, 69, 827–833. [Google Scholar] [CrossRef] [PubMed]
- Sawada, Y.; Yanai, T.; Nakagawa, H.; Tsukamoto, Y.; Yokoi, S.; Yanagi, M.; Toya, T.; Sugizaki, H.; Kato, Y.; Shirakura, H.; et al. Synthesis and insecticidal activity of benzoheterocyclic analogues of N′-benzoyl-N-(tert-butyl)benzohydrazide: Part 1. Design of benzoheterocyclic analogues. Pest. Manag. Sci. 2003, 59, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Jia, Z.H.; Xiong, L.X.; Yan, T.; Yang, N.; Wu, G.P.; Song, H.B.; Li, Z.M. Chiral dicarboxamide scaffolds containing a sulfiliminyl moiety as potential ryanodine receptor activators. J. Agric. Food Chem. 2014, 62, 6269–6277. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.L.; Guo, Y.; Zhi, X.Y.; Yu, X.; Xu, H. Stereoselective synthesis of 2α-chloropicropodophyllotoxins and insecticidal activity of their esters against oriental armyworm, Mythimna separata walker. J. Agric. Food Chem. 2014, 62, 3726–3733. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Z.Y.; Wu, Q.Y.; Yang, G.F. Design, synthesis and insecticidal activity of novel 1,1-dichloropropene derivatives. Pest. Manag. Sci. 2015, 71, 694–700. [Google Scholar] [CrossRef] [PubMed]
- He, S.Z.; Shao, Y.H.; Fan, L.L.; Che, Z.P.; Xu, H.; Zhi, X.Y.; Wang, J.J.; Yao, X.J.; Qu, H. Synthesis and quantitative structure–activity relationship (QSAR) study of novel 4-acyloxypodophyllotoxin derivatives modified in the A and C rings as insecticidal agents. J. Agric. Food Chem. 2013, 61, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Redemann, C.E.; Niemann, C. Acetobromoglucose. Org. Synth. 1942, 22, 1–5. [Google Scholar]
- Liu, K.; Cui, H.F.; Nie, J.; Dong, K.Y.; Li, X.J.; Ma, J.A. Highly enantioselective michael addition of aromatic ketones to nitroolefins promoted by chiral bifunctional primary amine-thiourea catalysts based on saccharides. Org. Lett. 2007, 9, 923–925. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Wang, C.G.; Wu, Y.; Zhou, Z.H.; Tang, C.C. Eur. J. Org. Chem. 2008, 27, 4563–4566.
- Vakulya, B.; Varga, S.; Csámpai, A.; Soós, T. Highly enantioselective conjugate addition of nitromethane to chalcones using bifunctional Cinchona organocatalysts. Org. Lett. 2005, 7, 1967–1969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.L.; Syed, S.; Barbas, C.F., III. Highly enantio- and diastereoselective Mannich reactions of glycine Schiff bases with in situ generated N-Boc-imines catalyzed by a Cinchona alkaloid thiourea. Org. Lett. 2010, 12, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Gennari, C.; Carcano, M.; Donghi, M.; Mongelli, N.; Vanotti, E.; Vulpetti, A. Taxol semisynthesis: A highly enantio- and diastereoselective synthesis of the side chain and a new method for ester formation at C-13 using thioesters. J. Org. Chem. 1997, 62, 4746–4755. [Google Scholar] [CrossRef]
- Hu, Z.Y.; Erhardt, P.W. Utilization of a benzoyl migration to effect an expeditious synthesis of the paclitaxel C-13 side chain. Org. Process Res. Dev. 1997, 1, 387–390. [Google Scholar] [CrossRef]
- Li, Y.X.; Chen, W.; Yang, X.P.; Yu, G.P.; Mao, M.Z.; Zhou, Y.Y.; Liu, T.W.; Li, Z.M. Regioselective synthesis of novel 3-Thiazolidine acetic acid derivatives from glycosido ureides. Chem. Biol. Drug Des. 2011, 78, 969–978. [Google Scholar] [CrossRef] [PubMed]
- Kong, S.S.; Fan, W.D.; Wu, G.P.; Miao, Z.W. Enantioselective synthesis of tertiary α-hydroxy phosphonates catalyzed by carbohydrate/cinchona alkaloid thiourea organocatalysts. Angew. Chem. Int. Ed. 2012, 51, 8864–8867. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the compounds 5a–5j are available from the authors.
Larvicidal Activity (%) a at (mg/L) | ||||||
---|---|---|---|---|---|---|
Compound | 6.25 | 12.5 | 25.0 | 50.0 | 100.0 | CG b |
5a | 13.3 | 10.0 | 13.3 | 16.7 | 10.0 | 13.3 |
5b | 0 | 10.0 | 10.0 | 10.0 | 16.7 | 13.3 |
5c | 3.3 | 3.3 | 6.7 | 3.3 | 13.3 | 13.3 |
5d | 0 | 6.7 | 3.3 | 3.3 | 13.3 | 0 |
5e | 0 | 3.3 | 0 | 10.0 | 0 | 0 |
5f | 0 | 0 | 3.3 | 0 | 0 | 3.3 |
5g | 0 | 3.3 | 0 | 0 | 0 | 3.3 |
5h | 3.3 | 3.3 | 0 | 0 | 3.3 | 3.3 |
5i | 0 | 6.7 | 0 | 3.3 | 3.3 | 0 |
5j | 0 | 3.3 | 0 | 6.7 | 0 | 0 |
Growth Inhibition Activity (%) a at (mg/L) | ||||||
---|---|---|---|---|---|---|
Compds | 6.25 | 12.5 | 25.0 | 50.0 | 100.0 | CG b |
5a | 6.07 | 4.59 | 16.56 | 30.16 | 39.34 | - |
5b | 1.97 | 8.85 | 6.89 | 26.56 | 34.75 | - |
5c | 7.87 | 9.67 | 25.25 | 35.25 | 47.38 | - |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, P.-A.; Feng, J.-T.; Wang, X.-Z.; Li, M.-Q. A New Class of Glucosyl Thioureas: Synthesis and Larvicidal Activities. Molecules 2016, 21, 925. https://doi.org/10.3390/molecules21070925
Wang P-A, Feng J-T, Wang X-Z, Li M-Q. A New Class of Glucosyl Thioureas: Synthesis and Larvicidal Activities. Molecules. 2016; 21(7):925. https://doi.org/10.3390/molecules21070925
Chicago/Turabian StyleWang, Ping-An, Jun-Tao Feng, Xing-Zi Wang, and Mu-Qiong Li. 2016. "A New Class of Glucosyl Thioureas: Synthesis and Larvicidal Activities" Molecules 21, no. 7: 925. https://doi.org/10.3390/molecules21070925
APA StyleWang, P. -A., Feng, J. -T., Wang, X. -Z., & Li, M. -Q. (2016). A New Class of Glucosyl Thioureas: Synthesis and Larvicidal Activities. Molecules, 21(7), 925. https://doi.org/10.3390/molecules21070925