Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times
Abstract
:1. Introduction
2. Results and Discussion
2.1. Color Evaluation
2.2. Bioactive Compound Content and Antiradical Capacity of Passerina del Frusinate Wines
2.3. HPLC-DAD Phenolic Acid Fingerprinting
3. Materials and Methods
3.1. Chemicals
3.2. Wine Samples
3.3. Wine Colour Evaluation
3.4. Determination of Total Polyphenol Content
3.5. Determination of Flavan-3-ols
3.6. Antiradical Capacity Determination
3.7. Chromatographic Analysis of Phenolic Acids Using Diode Array Detection (DAD)
3.8. HPLC-DAD Method Validation
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Boulton, R.B.; Singleton, V.L.; Bisson, L.F.; Kunkee, R.E. Red and white table wines. In Principles and Practices of Winemaking; Springer US: New York, NY, USA, 1999; pp. 193–243. [Google Scholar]
- Lee, C.; Jaworsky, A. Phenolic compounds in white grapes in New York. Am. J. Enol. Viticult. 1987, 38, 277–281. [Google Scholar]
- Xia, E.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.J.; Saliba, A.J.; Prenzler, P.D. Should red wine be considered a functional food? Compr. Rev. Food Sci. Food Saf. 2010, 9, 530–551. [Google Scholar] [CrossRef]
- Sacanella, E.; Vázquez-Agell, M.; Mena, M.P.; Antúnez, E.; Fernández-Solá, J.; Nicolás, J.M.; .Estruch, R. Down-regulation of adhesion molecules and other inflammatory biomarkers after moderate wine consumption in healthy women: A randomized trial. Am. J. Clin. Nutr. 2007, 86, 1463–1469. [Google Scholar] [PubMed]
- Rice-Evans, C.; Miller, N.; Paganga, G. Antioxidant properties of phenolic compounds. Trends Plant Sci. 1997, 2, 152–159. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Saliba, A.J.; Prenzler, P.D.; Ryan, D. Total phenolic content, antioxidant activity, and cross-cultural consumer rejection threshold in white and red wines functionally enhanced with catechin-rich extracts. J. Agric. Food Chem. 2011, 60, 388–393. [Google Scholar] [CrossRef] [PubMed]
- Pavloušek, P.; Kumšta, M. Authentication of riesling wines from the Czech Republic on the basis of the non-flavonoid phenolic compounds. Czech J. Food Sci. 2013, 31, 474–482. [Google Scholar]
- Budić-Leto, I.; Lovrić, T. Identification of phenolic acids and changes in their content during fermentation and ageing of white wines Pošip and Rukatac. Food Technol. Biotech. 2002, 40, 221–225. [Google Scholar]
- Garrido, J.; Borges, F. Wine and grape polyphenols—A chemical perspective. Food Res. Int. 2013, 54, 1844–1858. [Google Scholar] [CrossRef]
- Yamaguchi, M. The osteogenic effect of bioactive flavonoid p-hydroxycinnamic acid: Development in osteoporosis treatment. OA Biotechnol. 2013, 2, 15–23. [Google Scholar] [CrossRef]
- Gómez-Míguez, M.J.; González-Miret, M.L.; Hernanz, D.; Fernández, M.Á.; Vicario, I.M.; Heredia, F.J. Effects of prefermentative skin contact conditions on colour and phenolic content of white wines. J. Food Eng. 2007, 78, 238–245. [Google Scholar] [CrossRef]
- Fernández-Zurbano, P.; Ferreira, V.; Escudero, A.; Cacho, J. Role of hydroxycinnamic acids and flavanols in the oxidation and browning of white wines. J. Agric. Food Chem. 1998, 46, 4937–4944. [Google Scholar] [CrossRef]
- Olejar, K.J.; Fedrizzi, B.; Kilmartin, P.A. Antioxidant activity and phenolic profiles of Sauvignon Blanc wines made by various maceration techniques. Aust. J. Grape Wine Res. 2015, 21, 57–68. [Google Scholar] [CrossRef]
- Darias-Martín, J.J.; Rodríguez, O.; Díaz, E.; Lamuela-Raventós, R.M. Effect of skin contact on the antioxidant phenolics in white wine. Food Chem. 2000, 71, 483–487. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; Du Chaffaut, L.; Mennen, L.; Scalbert, A. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, B.; Volkova, N.; Suraski, A.; Aviram, M. White wine with red wine-like properties: Increased extraction of grape skin polyphenols improves the antioxidant capacity of the derived white wine. J. Agric. Food Chem. 2001, 49, 3164–3168. [Google Scholar] [CrossRef] [PubMed]
- Sant’Anna, V.; Gurak, P.D.; Ferreira Marczak, L.D.; Tessaro, I.C. Tracking bioactive compounds with colour changes in foods—A review. Dyes Pigments 2013, 98, 601–608. [Google Scholar] [CrossRef]
- Migliori, M.; Cantaluppi, V.; Mannari, C.; Bertelli, A.A.; Medica, D.; Quercia, A.D.; Panichi, V. Caffeic acid, a phenol found in white wine, modulates endothelial nitric oxide production and protects from oxidative stress-associated endothelial cell injury. PLoS ONE 2015, 10, e0117530. [Google Scholar] [CrossRef] [PubMed]
- Slinkard, K.; Singleton, V.L. Total phenol analysis: Automation and comparison with manual methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Carbone, K.; Giannini, B.; Picchi, V.; Lo Scalzo, R.; Cecchini, F. Phenolic composition and free radical scavenging activity of different apple varieties in relation to the cultivar, tissue type and storage. Food Chem. 2011, 127, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Carbone, K.; Mencarelli, F. Influence of Short-Term Postharvest Ozone Treatments in Nitrogen or Air Atmosphere on the Metabolic Response of White Wine Grapes. Food Bioprocess Technol. 2015, 8, 1739–1749. [Google Scholar] [CrossRef]
- Sample Availability: Samples of the wines analysed are available from the authors.
Sample | TPC 1 | FLC 2 | ACDPPH 3 | ACABTS 4 |
---|---|---|---|---|
W0 | 391 ± 2 a | 32.7 ± 0.3 a | 37 ± 2 b | 34 ± 0.6 b |
W18 | 695 ± 5 c | 247.8 ± 0.8 c | 25.9 ± 0.4 a | 28.0 ± 0.9 a |
W24 | 509 ± 4 b | 154.0 ± 0.5 b | 36 ± 1 b | 36 ± 1 b |
Chemical Class | Compound | Retention Time (min) | Intra-D (CV%) | Inter-D (CV%) | LOD 1 (ppm) | LOQ 2 (ppm) |
---|---|---|---|---|---|---|
HBAs 3 | Gallic acid | 10.31 ± 0.03 | 0.29 | 0.67 | 0.88 | 2.66 |
Vanillic acid | 33.35 ± 0.02 | 0.06 | 0.33 | 0.95 | 2.89 | |
Syringic acid | 34.42 ± 0.01 | 0.03 | 0.18 | 0.10 | 0.29 | |
HCAs 4 | Caffeic acid | 33.71 ± 0.01 | 0.04 | 0.20 | 0.36 | 1.11 |
4-coumaric acid | 37.66 ± 0.01 | 0.04 | 0.18 | 0.57 | 1.34 | |
Ferulic acid | 39.06 ± 0.01 | 0.03 | 0.18 | 0.02 | 0.05 | |
3-coumaric acid | 40.16 ± 0.02 | 0.05 | 0.21 | 0.25 | 0.77 | |
2-coumaric acid | 43.08 ± 0.02 | 0.05 | 0.28 | 0.36 | 1.09 |
Chemical Class | Compound | W0 | W18 | W24 |
---|---|---|---|---|
HBAs 1 | gallic acid | 10.6 ± 0.1 c | 5.9 ± 0.1 b | 3.42 ± 0.04 a |
vanillic acid | 5.23 ± 0.05 a | 16.2 ± 0.2 c | 8.5 ± 0.2 b | |
syringic acid | 3.30 ± 0.01 a | 8.5 ± 0.2 c | 5.9 ± 0.1 b | |
HCAs 2 | caffeic acid | 2.36 ± 0.02 a | 13.4 ± 0.1 c | 5.69 ± 0.04 b |
4-coumaric acid | 1.75 ± 0.01 b | 1.41 ± 0.04 a | 1.94 ± 0.01 c | |
ferulic acid | 1.40 ± 0.01 a | 1.39 ± 0.02 a | 1.75 ± 0.02 b | |
3-coumaric acid | trace | trace | nd | |
2-coumaric acid | trace | trace | nd |
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, K.; Fiordiponti, L. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times. Molecules 2016, 21, 960. https://doi.org/10.3390/molecules21070960
Carbone K, Fiordiponti L. Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times. Molecules. 2016; 21(7):960. https://doi.org/10.3390/molecules21070960
Chicago/Turabian StyleCarbone, Katya, and Luciano Fiordiponti. 2016. "Colour Evaluation, Bioactive Compound Content, Phenolic Acid Profiles and in Vitro Biological Activity of Passerina del Frusinate White Wines: Influence of Pre-Fermentative Skin Contact Times" Molecules 21, no. 7: 960. https://doi.org/10.3390/molecules21070960