Banana Passion Fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, Phytochemical Composition and Antioxidant Capacity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Enzymatic Hydrolysis
2.2. Characterization of Phenolic Compounds
2.2.1. Proanthocyanidins
2.2.2. Flavan-3-ol Monomers
2.3. Carotenoids
2.4. Antioxidant Capacity
3. Experimental Section
3.1. Fruit Samples
3.2. Enzymatic Hydrolysis
3.3. Standards, Chemicals and Solvents
3.4. Identification of Phenolic Compounds by HPLC-DAD-ESI/MSn and Quantification by RP-HPLC-DAD
3.5. Identification and Quantification of Carotenoid Compounds by Rapid Resolution Liquid Chromatography (RRLC)
3.6. Antioxidant Capacity
3.7. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Koolen, H.H.F.; Silva, F.M.A.; Gozzo, F.C.; Souza, A.Q.L.; Souza, A.D.L. Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L. f.) by UPLC-ESI-MS/MS. Food Res. Int. 2013, 51, 467–473. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; Vega-Vega, V.; Rosas-Domínguez, C.; Palafox-Carlos, H.; Villa-Rodriguez, J.A.; Wasim Siddiqui, M.; Dávila-Aviña, J.E.; González-Aguilar, G.A. Agro-industrial potential of exotic fruit byproducts as a source of food additives. Food Res. Int. 2011, 44, 1866–1874. [Google Scholar] [CrossRef]
- Lobo, M.; Medina, C.I. Recursos genéticos de pasifloráceas en Colombia. In Cultivo, Poscosecha y Comercialización de las Pasifloráceas en Colombia: Maracuyá, Granadilla, Gulupa y Curuba, 1st ed.; Sociedad Colombiana de Ciencias Hortícolas: Bogotá, Colombia, 2009; pp. 7–18. [Google Scholar]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G.; Bórquez, J.; Kennelly, E.J. The Passiflora tripartita (banana passion) fruit: A source of bioactive flavonoid C-glycosides isolated by HSCCC and characterized by HPLC-DAD-ESI/MS/MS. Molecules 2013, 18, 1672–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conde-Martínez, N.; Sinuco, D.C.; Osorio, C. Chemical studies on curuba (Passiflora mollissima (Kunth) L.H. Bailey) fruit flavor. Food Chem. 2014, 157, 356–363. [Google Scholar] [CrossRef] [PubMed]
- Leterme, P.; Buldgen, A.; Estrada, F.; Londoño, A.M. Mineral content of tropical fruits and unconventional foods of the Andes and the rain forest of Colombia. Food Chem. 2006, 95, 644–652. [Google Scholar] [CrossRef]
- Contreras-Calderón, J.; Calderón-Jaimes, L.; Guerra-Hernández, E.; García-Villanova, B. Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res. Int. 2011, 44, 2047–2053. [Google Scholar] [CrossRef]
- Zucolotto, S.M.; Fagundes, C.; Reginatto, F.H.; Ramos, F.A.; Castellanos, L.; Duque, C.; Schenkel, E.P. Analysis of C-glycosyl flavonoids from South American Passiflora species by HPLC-DAD and HPLC-MS. Phytochem. Anal. 2012, 23, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Botero, M.I.; Ricaurte, S.C.; Monsalve, C.E.; Rojano, B. Capacidad reductora de 15 frutas tropicales. Sci. Tech. 2007, 33, 295–296. [Google Scholar]
- Zapata, S.; Piedrahita, A.M.; Rojano, B. Capacidad atrapadora de radicales oxígenos (ORAC) y fenoles totales de frutas y hortalizas de Colombia. Perspect. Nutr. Humana 2014, 16, 25–36. [Google Scholar]
- Gruszecki, W.I.; Strzalka, K. Carotenoids as modulators of lipid membrane physical properties. Biochim. Biophys. Acta 2005, 1740, 108–115. [Google Scholar] [CrossRef] [PubMed]
- Hughes, D.A. Dietary carotenoids and human immune function. Nutrition 2001, 17, 823–827. [Google Scholar] [CrossRef]
- Mein, J.R.; Lian, F.; Wang, X.D. Biological activity of lycopene metabolites: Implications for cancer prevention. Nutr. Rev. 2008, 66, 667–683. [Google Scholar] [CrossRef] [PubMed]
- Palozza, P. Carotenoids and modulation of cancer: Molecular targets. Curr. Pharmacogenom. 2004, 2, 35–45. [Google Scholar] [CrossRef]
- Sharoni, Y.; Linnewiel-Hermoni, K.; Khanin, M.; Salman, H.; Veprik, A.; Danilenko, M.; Levy, J. Carotenoids and apocarotenoids in cellular signaling related to cancer: A review. Mol. Nutr. Food Res. 2012, 56, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Munin, A.; Edwards-Lévy, F. Encapsulation of natural polyphenolic compounds; A review. Pharmaceutics 2011, 3, 793–829. [Google Scholar] [CrossRef] [PubMed]
- Desai, K.; Park, H. Recent development in microencapsulation of foods ingredients. Dry. Technol. 2005, 23, 1361–1394. [Google Scholar] [CrossRef]
- Vera Calle, E.; Ruales, J.; Dornier, M.; Sandeauxc, J.; Sandeauxc, R.; Pourcelly, G. Deacidification of the clarified passion fruit juice (P. edulis f. flavicarpa). Desalination 2002, 149, 357–361. [Google Scholar] [CrossRef]
- Navarro, M.; Núñez, O. Liquid Chromatography-Mass Spectrometry in the analysis and characterization of proanthocyanidins in natural products. In Proanthocyanidins: Food Sources, Antioxidant Properties and Health Benefits; Nova Science Publishers: Hauppauge, NY, USA, 2015; pp. 1–40. [Google Scholar]
- Lin, L.-Z.; Sun, J.; Chen, P.; Monagas, M.J.; Harnly, J.M. UHPLC-PDA-ESI/HRMSn profiling method to identify and quantify oligomeric proanthocyanidins in plant products. J. Agric. Food Chem. 2014, 62, 9387–9400. [Google Scholar] [CrossRef] [PubMed]
- Dhawan, K.; Dhawan, S.; Sharma, A. Passiflora: A review update. J. Ethnopharmacol. 2004, 94, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Friedrich, W.; Eberhardt, A.; Galensa, R. Investigation of proanthocyanidins by HPLC with electrospray ionization mass spectrometry. Eur. Food Res. Technol. 2000, 211, 56–64. [Google Scholar] [CrossRef]
- Ojwang, L.O.; Yang, L.; Dykes, L.; Awika, J. Proanthocyanidin profile of cowpea (Vigna unguiculata) reveals catechin-O-glucoside as the dominant compound. Food Chem. 2013, 139, 35–43. [Google Scholar] [CrossRef] [PubMed]
- Bendini, A.; Cerretani, L.; Pizzolante, L.; Gallina-Toschi, T.; Guzzo, F.; Ceoldo, S.; Marconi, A.M.; Andreetta, F.; Levi, M. Phenol content related to antioxidant and antimicrobial activities of Passiflora spp. extracts. Eur. Food Res. Technol. 2006, 223, 102–109. [Google Scholar] [CrossRef]
- Pierson, J.T.; Dietzgen, R.G.; Shaw, P.N.; Roberts-Thomson, S.J.; Monteith, G.R.; Gidley, M.J. Major Australian tropical fruits biodiversity: Bioactive compounds and their bioactivities. Mol. Nutr. Food Res. 2012, 56, 357–387. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.C.; Law, M.C.; Wong, M.S.; Chan, T.H. Development of a UPLC-MS/MS bioanalytical method for the pharmacokinetic study of (−)-epiafzelechin, a flavan-3-ol with osteoprotective activity, in C57BL/6J mice. J. Chromatogr. B 2014, 967, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Kelm, M.A.; Hammerstone, J.F.; Beecher, G.; Holden, J.; Haytowitz, D.; Prior, R.L. Screening of foods containing proanthocyanidins and their structural characterization using LC-MS/MS and thiolytic degradation. J. Agric. Food Chem. 2003, 51, 7513–7521. [Google Scholar] [CrossRef] [PubMed]
- Prior, R.L.; Gu, L. Occurrence and biological significance of proanthocyanidins in the American diet. Phytochemistry 2005, 66, 2264–2280. [Google Scholar] [CrossRef] [PubMed]
- Neilson, A.P.; O’Keefe, S.F.; Bolling, B.W. High-Molecular-Weight proanthocyanidins in foods: Overcoming analytical challenges in pursuit of novel dietary bioactive components. Annu. Rev. Food Sci. Technol. 2016, 7, 43–64. [Google Scholar] [CrossRef] [PubMed]
- Santos-Buelga, C.; Scalbert, A. Proanthocyanidins and tannin-like compounds—Nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80, 1094–1117. [Google Scholar] [CrossRef]
- Susantikarn, P.; Donlao, N. Optimization of green tea extracts spray drying as affected by temperature and maltodextrin content. Int. Food Res. J. 2016, 23, 1327–1331. [Google Scholar]
- Wondracek, D.C.; Faleiro, F.G.; Sano, S.M.; Vieira, R.F.; Agostini-Costa, T.S. Composição de carotenoides em passifloras do Cerrado. Rev. Bras. Frutic. 2011, 33, 1222–1228. [Google Scholar] [CrossRef]
- Rotili, M.C.C.; Vorpagel, J.A.; Braga, G.C.; Kuhn, O.J.; Salibe, A.B. Antioxidant activity, chemical composition and conservation of yellow passion fruit packed with PVC film. Rev. Bras. Frutic. 2013, 35, 942–952. [Google Scholar] [CrossRef]
- Borguini, R.G.; Bastos, D.H.M.; Moita-Neto, J.M.; Capasso, F.S.; Torres, E.A.F.S. Antioxidant potential of tomatoes cultivated in organic and conventional systems. Braz. Arch. Biol. Technol. 2013, 56, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Pertuzatti, P.B.; Sganzerla, M.; Jacques, A.C.; Barcia, M.T.; Zambiazi, R.C. Carotenoids, tocopherols and ascorbic acid content in yellow passion fruit (Passiflora edulis) grown under different cultivation systems. LWT Food Sci. Technol. 2015, 64, 259–263. [Google Scholar] [CrossRef]
- Da Silva, S.R.; Mercadante, A.Z. Composição de carotenóides de maracujá-amarelo (Passiflora edulis flavicarpa) in natura. Ciênc. Tecnol. Aliment. 2002, 22, 254–258. [Google Scholar] [CrossRef]
- Garzón, G.A.; Narváez-Cuenca, C.E.; Kopec, R.E.; Barry, A.M.; Riedl, K.M.; Schwartz, S.J. Determination of carotenoids, total phenolic content, and antioxidant activity of arazá (Eugenia stipitata McVaugh), an Amazonian fruit. J. Agric. Food Chem. 2012, 60, 4709–4717. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine, Food and Nutrition Board. Beta-carotene and other carotenoids. In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000; pp. 325–400. [Google Scholar]
- Pavia, S.A.; Russell, R.M. β-carotene and other carotenoids as antioxidants. J. Am. Coll. Nutr. 1999, 18, 426–433. [Google Scholar] [CrossRef]
- Murillo, E.; Meléndez-Martínez, A.J.; Portugal, F. Screening of vegetables and fruits from Panama for rich sources of lutein and zeaxanthin. Food Chem. 2010, 122, 167–172. [Google Scholar] [CrossRef]
- Bone, R.A.; Landrum, J.T.; Fernandez, L.; Tarsist, S.L. Analysis of the macular pigment by HPLC: Retinal distribution and age study. Investig. Ophthalmol. Vis. Sci. 1988, 29, 843–849. [Google Scholar]
- Moeller, S.M.; Jacques, P.F.; Blumberg, J.B. The potential role of dietary xanthophylls in cataract and age-related macular degeneration. J. Am. Coll. Nutr. 2000, 19, 522S–527S. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J.; Vishwanathan, R.; Schalch, W.; Poon, L.W.; Wittwer, J.; Johnson, M.A.; Hausman, D.; Davey, A.; Green, R.C.; Gearing, M. Brain levels of lutein (L) and zeaxanthin (Z) are related to cognitive function in centenarians. FASEB J. 2011, 25, 975. [Google Scholar]
- Gancel, A.-L.; Alter, P.; Dhuique-Mayer, C.; Ruales, J.; Vaillant, F. Identifying carotenoids and phenolic compounds in naranjilla (Solanum quitoense Lam. Var. Puyo Hybrid), an Andean fruit. J. Agric. Food Chem. 2008, 56, 11890–11899. [Google Scholar] [CrossRef] [PubMed]
- Wall, M.M. Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. J. Food Compos. Anal. 2006, 19, 434–445. [Google Scholar] [CrossRef]
- Frankel, E.N.; Meyer, A.S. The problems of using one-dimensional methods to evaluate multifunctional food and biological antioxidants. J. Agric. Food Chem. 2000, 80, 1925–1941. [Google Scholar] [CrossRef]
- Gil, M.; Restrepo, A.; Millán, L.; Alzate, L.; Rojano, B. Microencapsulation of banana passion fruit (Passiflora tripartita var. Mollissima): A new alternative as a natural additive as antioxidant. Food Nutr. Sci. 2014, 5, 671–682. [Google Scholar] [CrossRef]
- Chaparro, R.D.C.; Maldonado, C.M.E.; Urango, M.L.A.; Rojano, B.A. Propiedades quimiopreventivas de Passiflora mollissima (Kunth) L.H. Bailey (curuba larga) contra cáncer colorrectal. Rev. Cuba. Plantas Med. 2015, 20, 62–74. [Google Scholar]
- Rojano, B.A.; Zapata, K.; Cortes, F.B. Capacidad atrapadora de radicales libres de Passiflora mollissima (Kunth) L.H. Bailey (curuba). Rev Cuba. Plantas Med. 2012, 17, 408–419. [Google Scholar]
- Gironés-Vilaplana, A.; Baenas, N.; Villaño, D.; Speisky, H.; García-Viguera, C.; Moreno, D.A. Evaluation of Latin-American fruits rich in phytochemicals with biological effects. J. Funct. Foods 2014, 7, 599–608. [Google Scholar] [CrossRef]
- Vasco, C.; Ruales, J.; Kamai-Eidin, A. Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. Food Chem. 2008, 111, 816–823. [Google Scholar] [CrossRef]
- Almeida, M.M.B.; de Sousa, P.H.M.; Arriaga, Â.M.C.; do Prado, G.M.; Magalhães, C.E.D.C.; Maia, G.A.; de Lemos, T.L.G. Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Res. Int. 2011, 44, 2155–2159. [Google Scholar] [CrossRef]
- Meléndez-Martínez, A.J.; Britton, G.; Vicario, I.M.; Heredia, F.J. Relationship between the colour and the chemical structure of carotenoid pigments. Food Chem. 2006, 101, 1145–1150. [Google Scholar] [CrossRef]
- Stinco, C.M.; Benítez-González, A.M.; Hernanz, D.; Vicario, I.M.; Meléndez-Martínez, A.J. Development and validation of a rapid resolution liquid chromatography method for the screening of dietary plant isoprenoids: Carotenoids, tocopherols and chlorophylls. J. Chromatogr. A 2014, 1370, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; García-Viguera, C.; Navarro-Rico, J.; Moreno, D.A.; Bartual, J.; Saura, D.; Martí, N. Phytochemical characterisation for industrial use of pomegranate (Punica granatum L.) cultivars grown in Spain. J. Sci. Food Agric. 2011, 91, 1893–1906. [Google Scholar] [CrossRef] [PubMed]
- Ou, B.; Hampsch-Woodill, M.; Prior, R.L. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 2001, 49, 4619–4626. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Samples of the phenolic and carotenoid compounds are available from the authors.
Peak | Rt (min) | [M − H]− | MS/MS Fragments (m/z) | Proposed Identification |
---|---|---|---|---|
1 | 6.7 | 609 | 441, 435, 273 | (E)-Afzelechin glucoside derivative |
2 | 7.4 | 593 | 425, 407, 289 | Prodelphinidin dimer |
3 | 8.0 | 897 | 711, 543, 407, 289 | Procyanidin trimer (B-type) |
4 | 8.6 | 593 | 425, 407, 289 | Prodelphinidin dimer |
5 | 9.4 | 593 | 425, 407, 289 | Prodelphinidin dimer |
6 | 10.4 | 593 | 425, 407, 289 | Prodelphinidin dimer |
7 | 11.3 | 881 | 711, 593, 425, 407, 289 | (E)CG-(E)CG or (E)CG-(E)GC |
8 | 13.5 | 593 | 425, 289 | Prodelphinidin dimer |
9 | 14.5 | 577 | 425, 289 | Procyanidin dimer B-type (e.g., (E)C-(E)C) |
10 | 16.5 | 451 | 289 | Catechin glucoside |
11 | 21.3 | 435 | 273 | (E)-Afzelechin glucoside |
12 | 22.5 | 485 | 449, 289 | Catechin derivative (unidentified) |
13 | 23.8 | 567 | 435, 273 | (E)-Afzelechin glucoside derivative |
14 | 27.8 | 435 | 273 | (E)-Afzelechin glucoside |
15 | 30.3 | 561 | 543, 289 | Propelargonidin dimer |
16 | 31.9 | 435 | 273 | (E)-Afzelechin glucoside |
17 | 34.8 | 435 | 273 | (E)-Afzelechin glucoside |
18 | 37.1 | 548 | 463, 273 | (E)-Afzelechin glucoside derivative |
Peak | Compounds | Concentration (mg/100 g DW) | |
---|---|---|---|
Proanthocyanidins | Freeze Dried | Microencapsulated | |
2 | Prodelphinidin dimer | <LOQ | <LOQ |
3 | Procyanidin trimer (B-type) | 46.2 a ± 3.8 | 14.3 b ± 3.1 |
4 | Prodelphinidin dimer | <LOQ | <LOQ |
5 | Prodelphinidin dimer | 49.1 a ± 1.1 | 16.9 b ± 3.6 |
6 | Prodelphinidin dimer | 23.6 ± 2.0 | 23.9 ± 4.9 |
7 | (E)CG-(E)CG or (E)CG-(E)GC | 32.9 a ± 2.6 | 22.9 b ± 0.8 |
8 | Prodelphinidin dimer | 15.2 b ± 0.7 | 43.4 a ± 3.3 |
9 | Procyanidin dimer B-type (e.g., (E)C-(E)C) | <LOQ | 32.3 ± 1.2 |
15 | Propelargonidin dimer | 27.5 ± 4.2 | 15.9 ± 0.1 |
Σ Proanthocyanidins | 194.5 ± 14.4 | 169.6 ± 17.0 | |
Flavan-3-ol monomers | |||
1 | (E)-Afzelechin glucoside derivative | 20.2 a ± 1.1 | 7.3 b ± 1.0 |
10 | Catechin glucoside | 91.1 ± 8.4 | 110.2 ± 1.4 |
11 | (E)-Afzelechin glucoside | 30.5 a ± 0.4 | 22.5 b ± 0.4 |
12 | Catechin derivative (unidentified) | 23.6 b ± 1.0 | 29.6 a ± 0.6 |
13 | (E)-Afzelechin glucoside derivative | 64.4 ± 2.6 | 66.9 ± 0.7 |
14 | (E)-Afzelechin glucoside | 25.9 ± 1.6 | 24.6 ± 0.0 |
16 | (E)-Afzelechin glucoside | 22.5 ± 4.8 | 10.7 ± 1.1 |
17 | (E)-Afzelechin glucoside | <LOQ | <LOQ |
18 | (E)-Afzelechin glucoside derivative | 6.2 ± 1.2 | 26.0 ± 7.7 |
Σ Flavan-3-ol monomers | 284.4 ± 21.1 | 297.8 ± 22.5 | |
Σ Flavonoids | 478.9 ± 35.5 | 467.4 ± 39.5 |
Compounds | Concentration (μg/g DW) | |
---|---|---|
Freeze Dried | Microencapsulated | |
α-carotene | 1.64 b ± 0.50 | 4.71 a ± 1.66 |
β-carotene | 79.74 ± 30.38 | 69.43 ± 12.85 |
Zeaxanthin | 1.86 ± 0.49 | 1.56 ± 0.36 |
Σ carotenoids | 81.6 ± 31.37 | 75.7 ± 14.87 |
Antioxidant Capacity (mmol Trolox/100 g DW) | ||
---|---|---|
Freeze Dried | Microencapsulated | |
DPPH | 50.12 ± 1.78 | 48.34 ± 1.64 |
ORAC | 105.22 ± 3.05 | 103.59 ± 4.55 |
Fruit | Antioxidant Capacity (mmol Trolox/100 g DW) | |
---|---|---|
DPPH | ORAC | |
Passiflora mollissima | 0.09–60.84 [46,47] | 0.42–207.85 [10,46,47,48] |
Passiflora spp. | 0.20–6.20 [24] | 2.15–8.67 [10] |
Morinda citrifolia | 3.71 [49] | 15.08 [49] |
Physalis peruviana | 1.60–4.94 [49] | 3.29–24.29 [49] |
Euterpe oleracea | 4.80–6.38 [49] | 12.21–43.80 [10,49] |
Carica papaya | 4.41 [10,49] | 1.39–8.71 [10,49] |
Samples | DPPH | ORAC |
---|---|---|
Bioactive compounds freeze dried BPFP | 0.52 | 1.00 |
Bioactive compounds microencapsulated BPFP | 0.75 | 1.00 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ruiz, A.; Girones-Vilaplana, A.; León, P.; Moreno, D.A.; Stinco, C.M.; Meléndez-Martínez, A.J.; Ruales, J. Banana Passion Fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, Phytochemical Composition and Antioxidant Capacity. Molecules 2017, 22, 85. https://doi.org/10.3390/molecules22010085
García-Ruiz A, Girones-Vilaplana A, León P, Moreno DA, Stinco CM, Meléndez-Martínez AJ, Ruales J. Banana Passion Fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, Phytochemical Composition and Antioxidant Capacity. Molecules. 2017; 22(1):85. https://doi.org/10.3390/molecules22010085
Chicago/Turabian StyleGarcía-Ruiz, Almudena, Amadeo Girones-Vilaplana, Paola León, Diego A. Moreno, Carla M. Stinco, Antonio J. Meléndez-Martínez, and Jenny Ruales. 2017. "Banana Passion Fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, Phytochemical Composition and Antioxidant Capacity" Molecules 22, no. 1: 85. https://doi.org/10.3390/molecules22010085
APA StyleGarcía-Ruiz, A., Girones-Vilaplana, A., León, P., Moreno, D. A., Stinco, C. M., Meléndez-Martínez, A. J., & Ruales, J. (2017). Banana Passion Fruit (Passiflora mollissima (Kunth) L.H. Bailey): Microencapsulation, Phytochemical Composition and Antioxidant Capacity. Molecules, 22(1), 85. https://doi.org/10.3390/molecules22010085