Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Stoichiometry Determination
2.2. Temperature Effects
2.3. Thermodynamics Analysis
2.4. pH Effects
2.5. 1H-NMR Analysis
2.6. Molecular Docking Studies
3. Materials and Methods
3.1. Materials
3.2. Methods
3.2.1. Fluorescence Spectroscopy
3.2.2. Study of the Stoichiometry
3.2.3. HPLC-DAD Analysis of Oxyresveratrol
3.2.4. Phase Solubility Study and Encapsulation Constant Determination
3.2.5. Determination of Thermodynamic Parameters
3.2.6. pH Effects
3.2.7. Nuclear Magnetic Resonance (NMR) Spectroscopy
3.2.8. Molecular Docking
3.2.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Szente, L.; Szejtli, J. Cyclodextrins as food ingredients. Trends Food Sci. Technol. 2004, 15, 137–142. [Google Scholar] [CrossRef]
- Del Valle, E.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- Venuti, V.; Cannavà, C.; Cristiano, M.C.; Fresta, M.; Majolino, D.; Paolino, D.; Stancaneli, R.; Tommasini, S.; Ventura, C.A. A characterization study of resveratrol/sulfobutyl ether-β-cyclodextrin inclusion complex and in vitro anticancer activity. Colloids Surf. B 2014, 115, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. Encapsulation of piceatannol, a naturally occurring hydroxylated analogue of resveratrol, by natural and modified cyclodextrins. Food Funct. 2016, 7, 2367–2373. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Guo, Q.X. The driving forces in the inclusion complexation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 42, 1–14. [Google Scholar] [CrossRef]
- López-Nicolás, J.M.; Bru, R.; Sánchez-Ferrer, A.; García-Carmona, F. Use of ‘soluble lipids’ for biochemical processes: Linoleic acid-cyclodextrin inclusion complexes in aqueous solutions. Biochem. J. 1995, 308, 151–154. [Google Scholar] [CrossRef] [PubMed]
- Sætern, A.M.; Nguyen, N.B.; Bauer-Brandl, A.; Brandl, M. Effect of hydroxypropyl-β-cyclodextrin-complexation and pH on solubility of camptothecin. Int. J. Pharm. 2004, 284, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Tang, Y.; Hu, W.; Tian, R.; Jia, Y.; Deng, P.; Zhang, L. Investigation of inclusion complex of honokiol with sulfobutyl ether-β-cyclodextrin. Carbohydr. Polym. 2014, 113, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Habon, I.; Fritsch, S.; Szejtli, J. Simulation of pharmacokinetic behaviour of drug-cyclodextrin complexes. Pharmazie 1984, 39, 830–834. [Google Scholar] [PubMed]
- Das, S.; Ng, K.Y. Physicochemical characterization, molecular modeling, and stability of the resveratrol-cyclodextrin inclusion complexes. Lat. Am. J. Pharm. 2011, 30, 874–881. [Google Scholar]
- Zhao, W.J.; Liu, G.Y.; Xia, Q. Preparation and characterization of resveratrol-loaded hydroxylpropyl-β-cyclodextrin. Adv. Mater. Res. 2012, 490–495, 3454–3458. [Google Scholar] [CrossRef]
- Lucas-Abellán, C.; Mercader-Ros, M.T.; Zafrilla, M.P.; Gabaldón, J.A.; Núñez-Delicado, E. Comparative study of different methods to measure antioxidant activity of resveratrol in the presence of cyclodextrins. Food Chem. Toxicol. 2011, 49, 1255–1260. [Google Scholar] [CrossRef] [PubMed]
- Lucas-Abellán, C.; Mercader-Ros, M.T.; Zafrilla, M.P.; Fortea, M.I.; Gabaldón, J.A.; Núñez-Delicado, E. ORAC-fluorescein assay to determine the oxygen radical absorbance capacity of resveratrol complexed in cyclodextrins. J. Agric. Food Chem. 2008, 56, 2254–2259. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Bo, C.; Hu, Y.; Zhang, Y.; Zou, G. Complexation of resveratrol with cyclodextrins: Solubility and antioxidant activity. Food Chem. 2009, 113, 17–20. [Google Scholar]
- Silva, F.; Figueiras, A.; Gallardo, E.; Nerin, C.; Domingues, F.C. Strategies to improve the solubility and stability of stilbene antioxidants: A comparative study between cyclodextrins and bile acids. Food Chem. 2014, 145, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Jalali, E.; Afshoon, A. Spectrofluorimetric study and detection of ketoconazole in the presence of beta-cyclodextrin. J. Fluoresc. 2008, 18, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; García-Carmona, F.; López-Nicolás, J.M. The inclusion complex of oxyresveratrol in modified cyclodextrins: A thermodynamic, structural, physicochemical, fluorescent and computational study. Food Chem. 2017, 232, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Matencio, A.; Hernández-Gil, C.J.G.; García-Carmona, F.; López-Nicolás, J.M. Physicochemical, thermal and computational study of the encapsulation of rumenic acid by natural and modified cyclodextrins. Food Chem. 2017, 216, 289–295. [Google Scholar] [CrossRef] [PubMed]
- López-Nicolás, J.M.; Rodríguezbonilla, P.; Garcíacarmona, F. Complexation of pinosylvin, an analogue of resveratrol with high antifungal and antimicrobial activity, by different types of cyclodextrins. J. Agric. Food Chem. 2009, 57, 10175–10180. [Google Scholar] [CrossRef] [PubMed]
- López-Nicolás, J.M.; García-Carmona, F. Rapid, simple and sensitive determination of the apparent formation constants of trans-resveratrol complexes with natural cyclodextrins in aqueous medium using HPLC. Food Chem. 2008, 109, 868–875. [Google Scholar] [CrossRef] [PubMed]
- Rodríguezbonilla, P.; López-Nicolás, J.M.; Garcíacarmona, F. Use of reversed phase high pressure liquid cromatography for the physicochemical and thermodynamic characterization of oxyresveratrol/β-cyclodextrin complexes. J. Chromatogr. B 2010, 878, 1569–1575. [Google Scholar] [CrossRef] [PubMed]
- Duarte, A.; Martinho, A.; Luís, A.; Figueiras, A.; Oleastro, M.; Domingues, F.C.; Silva, F. Resveratrol encapsulation with methyl-β-cyclodextrin for antibacterial and antioxidant delivery applications. LWT-Food Sci. Technol. 2015, 63, 1254–1260. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M.; Chao, J.; Shuang, S. Preparation and characterization of the inclusion complex of Baicalin (BG) with beta-CD and HP-beta-CD in solution: An antioxidant ability study. Spectrochim. Acta A 2009, 73, 752–756. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.W.; Han, S.M.; Han, Y.I. Separation of optical isomers of scopolamine, cocaine, homatropine, and atropine. Anal. Biochem. 1987, 167, 261–264. [Google Scholar] [CrossRef]
- Wang, L.L.; Li, S.S.; Tang, P.X.; Yan, J.; Xu, K.L.; Li, H. Characterization and evaluation of synthetic riluzole with β-cyclodextrin and 2,6-di-O-methyl-β-cyclodextrin inclusion complexes. Carbohydr. Polym. 2015, 129, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Zhang, X.; Li, C.; Huang, Y.; Ming, L.; Yan, M.; Zhou, Y.; Zhao, C. Inclusion complexes of HP-β-cyclodextrin with agomelatine: Preparation, characterization, mechanism study and in vivo, evaluation. Carbohydr. Polym. 2016, 147, 415–425. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, Q.; Deng, P.; Chen, Q.; Yu, M.; Shang, J.; Li, W. The formation of a host-guest inclusion complex system between β-cyclodextrin and baicalin and its dissolution characteristics. J. Pharm. Pharmacol. 2017, 69, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Desai, C.; Prabhakar, B. Nano-amorphous composites of cilostazol-HP-β-CD inclusion complexes: Physicochemical characterization, structure elucidation, thermodynamic studies and in vitro evaluation. J. Incl. Phenom. Macrocycl. Chem. 2015, 81, 1–17. [Google Scholar] [CrossRef]
- Matsui, Y.; Mochida, K. Binding forces contributing to the association of cyclodextrin with alcohol in an aqueous solution. Bull. Chem. Soc. Jpn. 1979, 52, 2808–2814. [Google Scholar] [CrossRef]
- Paul, S.; Heng, P.W.; Chan, L.W. pH-dependent complexation of hydroxypropyl-beta-cyclodextrin with chlorin e6: Effect on solubility and aggregation in relation to photodynamic efficacy. J. Pharm. Pharmacol. 2016, 68, 439–449. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Bharti, N.; Madan, J.; Hiremath, S.N. Characterization of cyclodextrin inclusion complexes—A review. J. Pharmaceut. Sci. Technol. 2010, 2, 171–183. [Google Scholar]
- Butkus, E.; Martins, J.C.; Berg, U. 1H-NMR spectroscopic study of the interaction between cyclodextrins and bicyclo[3.3.1]nonanes. J. Incl. Phenom. Macrocycl. Chem. 1996, 26, 209–218. [Google Scholar] [CrossRef]
- Raza, A.; Sun, H.; Bano, S.; Zhao, Y.; Xu, X.; Tang, J. Preparation, characterization, and invitro, anti-inflammatory evaluation of novel water soluble kamebakaurin/hydroxypropyl-β-cyclodextrin inclusion complex. J. Mol. Struct. 2017, 1130, 319–326. [Google Scholar] [CrossRef]
- Berninia, A.; Ciutti, A.; Scarselli, M.; Bottoni, G.; Mascagni, P.; Niccolai, N. NMR studies of the inclusion complex between β-cyclodextrin and paroxetine. Eur. J. Pharm. Sci. 2004, 22, 445–450. [Google Scholar] [CrossRef] [PubMed]
- Schneider, H.; Hacket, F.; Rüdiger, V.; Ikeda, H. NMR studies of cyclodextrins and cyclodextrin complexes. Chem. Rev. 1998, 98, 1755–1786. [Google Scholar] [CrossRef] [PubMed]
- Greatbanks, D.; Pickford, R. Cyclodextrins as chiral complexing agents in water, and their application to optical purity measurements. Magn. Reson. Chem. 1987, 25, 208–215. [Google Scholar] [CrossRef]
- Rekharsky, M.V.; Goldberg, R.N.; Schwarz, F.P.; Tewari, Y.B.; Ross, P.D.; Yamashoji, Y.; Inoue, Y. Thermodynamic and nuclear magnetic resonance study of the interactions of α- and β-cyclodextrin with model substances: Phenethylamine, ephedrines, and related substances. J. Am. Chem. Soc. 1995, 117, 8830–8840. [Google Scholar] [CrossRef]
- Michalska, P.; Wojnicz, A.; Ruiz-Nuño, A.; Abril, S.; Buendia, I.; León, R. Inclusion complex of ITH12674 with 2-hydroxypropyl-β-cyclodextrin: Preparation, physical characterization and pharmacological effect. Carbohydr. Polym. 2017, 157, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, X. Preparation and characterization of the inclusion complex of Ofloxacin with β-CD and HP-β-CD. J. Incl. Phenom. Macrocycl. Chem. 2011, 69, 173–179. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are available from the authors. |
ΔG0 (KJ/mol) | ΔS0 (J/mol·K) | ΔH0 (KJ/mol) | ||||
---|---|---|---|---|---|---|
T (°C) | β-CD | HP-β-CD | β-CD | HP-β-CD | β-CD | HP-β-CD |
20 | −18.70 ± 0.10 | −25.98 ± 0.27 | −85.25 ± 0.37 | −192.07 ± 0.94 | −47.60 ± 2.38 | −91.53 ± 7.86 |
30 | −17.30 ± 0.28 | −22.89 ± 1.20 | −90.02 ± 0.97 | −202.63 ± 4.09 | ||
40 | −15.85 ± 0.61 | −20.17 ± 0.78 | −94.99 ± 2.10 | −211.91 ± 3.49 | ||
50 | −13.97 ± 0.91 | −16.90 ± 0.51 | −101.38 ± 3.04 | −223.07 ± 3.37 | ||
60 | −13.01 ± 0.83 | −15.23 ± 0.21 | −104.37 ± 2.82 | −228.78 ± 0.73 |
Substance | Proton | Free (δ, ppm) | Oxyresveratrol-β-CD (δ, ppm) | Δδ a (ppm) | Oxyresveratrol-HP-β-CD (δ, ppm) | Δδ a (ppm) |
---|---|---|---|---|---|---|
Oxyresveratrol | H-α | 7.006 | 6.893 | −0.113 | 6.870 | −0.136 |
H-β | 7.361 | 7.366 | 0.005 | 7.325 | −0.036 | |
H-1 | - | - | - | - | - | |
H-2 | 6.690 | 6.607 | −0.083 | 6.544 | −0.146 | |
H-3 | - | - | - | - | - | |
H-4 | 6.275 | 6.415 | 0.140 | 6.319 | 0.044 | |
H-5 | - | - | - | - | - | |
H-6 | 6.690 | 6.607 | −0.083 | 6.544 | −0.146 | |
H-1’ | - | - | - | - | - | |
H-2’ | - | - | - | - | - | |
H-3’ | 6.486 | 6.551 | 0.065 | 6.492 | 0.006 | |
H-4’ | - | - | - | - | - | |
H-5’ | 6.547 | 6.548 | 0.001 | 6.482 | −0.065 | |
H-6’ | 7.540 | 7.469 | −0.071 | 7.424 | −0.116 | |
β-CD | H-3 | 4.052 | 3.997 | −0.055 | - | - |
H-5 | 3.951 | 3.906 | −0.045 | - | - | |
HP-β-CD | H-3 | 4.035 | - | - | 4.014 | −0.021 |
H-5 | 3.750 | - | - | 3.746 | −0.004 |
Intermolecular Energy (kcal/mol) | Internal Energy (kcal/mol) | Torsional Energy (kcal/mol) | Unbound Energy (kcal/mol) | Binding Energy a (kcal/mol) | |
---|---|---|---|---|---|
β-CD | −8.57 | −0.16 | 1.79 | −0.16 | −6.78 |
HP-β-CD | −9.27 | −0.26 | 1.79 | −0.26 | −7.48 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, J.; Zheng, Z.-P.; Zhu, Q.; Guo, F.; Chen, J. Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis. Molecules 2017, 22, 1801. https://doi.org/10.3390/molecules22111801
He J, Zheng Z-P, Zhu Q, Guo F, Chen J. Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis. Molecules. 2017; 22(11):1801. https://doi.org/10.3390/molecules22111801
Chicago/Turabian StyleHe, Jianfei, Zong-Ping Zheng, Qin Zhu, Fengxian Guo, and Jie Chen. 2017. "Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis" Molecules 22, no. 11: 1801. https://doi.org/10.3390/molecules22111801
APA StyleHe, J., Zheng, Z. -P., Zhu, Q., Guo, F., & Chen, J. (2017). Encapsulation Mechanism of Oxyresveratrol by β-Cyclodextrin and Hydroxypropyl-β-Cyclodextrin and Computational Analysis. Molecules, 22(11), 1801. https://doi.org/10.3390/molecules22111801