Lanthanide Photoluminescence in Heterometallic Polycyanidometallate-Based Coordination Networks
Abstract
:1. Introduction
2. Dicyanidometallates, [MI(CN)2]− (M = Ag, Au)
3. Tetracyanidometallates, [MII(CN)4]2− (M = Ni, Pd, Pt)
4. Hexacyanidometallates, [MIII(CN)6]3− (M = Cr, Co)
5. Octacyanidometallates, [MIV/V(CN)8]4−/3− (M = Mo, W)
6. Heteroligand Tetracyanidometallates, [MII(L)(CN)4]2− (M = Ru, Os)
7. Other Cyanide-Containing Building Blocks
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hwang, S.-H.; Moorefield, C.N.; Newkome, G.R. Dendritic macromolecules for organic light-emitting diodes. Chem. Soc. Rev. 2008, 37, 2543–2557. [Google Scholar] [CrossRef] [PubMed]
- Binnemans, K. Lanthanide-Based Luminescent Hybrid Materials. Chem. Rev. 2009, 109, 4283–4374. [Google Scholar] [CrossRef] [PubMed]
- Carlos, L.D.; Ferreira, R.A.S.; de Zea Bermudez, V.; Ribeiro, S.J.L. Lanthanide-Containing Light-Emitting Organic-Inorganic Hybrids: A Bet on the Future. Adv. Mater. 2009, 21, 509–534. [Google Scholar] [CrossRef] [PubMed]
- Eliseeva, S.V.; Bünzli, J.-C.G. Lanthanide luminescence for functional materials and bio-sciences. Chem. Soc. Rev. 2010, 39, 189–227. [Google Scholar] [CrossRef] [PubMed]
- Carlos, L.D.; Ferreira, R.A.S.; de Zea Bermudez, V.; Julian-Lopez, B.; Escribano, P. Progress on lanthanide-based organic-inorganic hybrid phosphors. Chem. Soc. Rev. 2011, 40, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yin, J.; Yoon, J. Recent Advances in Development of Chiral Fluorescent and Colorimetric Sensors. Chem. Rev. 2014, 114, 4918–4959. [Google Scholar] [CrossRef] [PubMed]
- Shang, M.; Li, C.; Jin, L. How to produce white light in a single-phase host? Chem. Soc. Rev. 2014, 43, 1372–1386. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Liu, H.; Zhang, S.; Huang, X.; Wang, Y.; Huang, G.; Sumer, B.D.; Gao, J. Multicolored pH-Tunable and Activable Florescence Nanoplatform Responsive to Physiologic pH Stimuli. J. Am. Chem. Soc. 2012, 134, 7803–7811. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Cheng, J.; Ma, X.; Zhou, X.; Chruma, J.J. Near-infrared phosphorescence: materials and applications. Chem. Soc. Rev. 2013, 42, 6128–6185. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, Q.; Feng, W.; Sun, Y.; Li, F. Upconversion Luminescent Materials: Advances and Applications. Chem. Rev. 2015, 115, 395–465. [Google Scholar] [CrossRef] [PubMed]
- Zucchi, G.; Maury, O.; Thuery, P.; Gumy, F.; Bünzli, J.-C.G.; Ephritikhine, M. 2,2’-Bipyrimidine as Efficient Sensitizer of the Solid-State Luminescence of Lanthanide and Uranyl Ions form Visible to Near-Infrared. Chem. Eur. J. 2009, 15, 9686–9696. [Google Scholar] [CrossRef] [PubMed]
- Rocha, J.; Carlos, L.D.; Almeida Paz, F.A.; Ananias, D. Luminescent multifunctional lanthanides-based metal-organic frameworks. Chem. Soc. Rev. 2011, 40, 926–940. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Yue, Y.; Qian, G.; Chen, B. Luminescent Functional Metal–Organic Frameworks. Chem. Rev. 2012, 112, 1126–1162. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [PubMed]
- Rowsell, J.L.C.; Yaghi, O.M. Strategies for Hydrogen Storage in Metal–Organic Frameworks. Angew. Chem. Int. Ed. 2005, 44, 4670–4679. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, B.; He, H.; Zhou, W.; Chen, B.; Qian, G. Metal–Organic Frameworks as Platforms for Functional Materials. Acc. Chem. Res. 2016, 49, 483–493. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.-W.; Zhang, F.-Q.; Zhang, X.-M. Single Component Lanthanide Hybrids Based on Metal–Organic Framework for Near-Ultraviolet White Light LED. ACS Appl. Mater. Interfaces 2016, 8, 24123–24130. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhu, Y.; Qiu, S.; Lercher, J.A.; Zhang, H. Coordination Modulation Induced Synthesis of Nanoscale Eu1-xTbx-Metal–Organic Frameworks for Luminescent Thin Films. Adv. Mater. 2010, 22, 4190–4192. [Google Scholar] [CrossRef] [PubMed]
- White, K.A.; Chengelis, D.A.; Zeller, M.; Geib, S.J.; Szakos, J.; Petoud, S.; Rosi, N.L. Near-infrared emitting ytterbium metal–organic frameworks with tunable excitation properties. Chem. Commun. 2009, 4506–4508. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yue, Q.; Li, G.-D.; Cao, J.-J.; Li, G.-H.; Chen, J.-S. Structures, Photoluminescence, Up-Conversion, and Magnetism of 2D and 3D Rare-Earth Coordination Polymers with Multicarboxylate Linkages. Inorg. Chem. 2006, 45, 2857–2865. [Google Scholar] [CrossRef] [PubMed]
- Ohba, M.; Okawa, H. Synthesis and magnetism of multi-dimensional cyanide-bridged bimetallic assemblies. Coord. Chem. Rev. 2000, 198, 313–328. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Avendano, C.; Dunbar, K.R. Molecular magnetic materials based on 4d and 5d transition metals. Chem. Soc. Rev. 2011, 40, 3213–3238. [Google Scholar] [CrossRef] [PubMed]
- Nowicka, B.; Korzeniak, T.; Stefańczyk, O.; Pinkowicz, D.; Chorazy, S.; Podgajny, R.; Sieklucka, B. The impact of ligands upon topology and functionality of octacyanidometallate-based assemblies. Coord. Chem. Rev. 2012, 256, 1946–1971. [Google Scholar] [CrossRef]
- Wang, S.; Ding, X.-H.; Li, Y.-H.; Huang, W. Dicyanometalate chemistry: A type of versatile building block for the construction of cyanide-bridged molecular architectures. Coord. Chem. Rev. 2012, 256, 439–464. [Google Scholar] [CrossRef]
- Hatlevik, O.; Buschmann, W.E.; Zhang, J.; Manson, J.L.; Miller, J.S. Enhancement of the Magnetic Ordering Temperature and Air Stability of a Mixed Valent Vanadium Hexacyanochromate(III) Magnet to 99 °C (372 K). Adv. Mater. 1999, 11, 914–918. [Google Scholar] [CrossRef]
- Pinkowicz, D.; Southerland, H.; Wang, X.-Y.; Dunbar, K.R. Record Antiferromagnetic Coupling for a 3d/4d Cyanide-Bridged Compound. J. Am. Chem. Soc. 2014, 136, 9922–9924. [Google Scholar] [CrossRef] [PubMed]
- Nagasundaram, N.; Roper, G.; Biscoe, J.; Chai, J.W.; Patterson, H.H.; Blom, N.; Ludi, A. Single-Crystal Luminescence Study of the Layered Compound KAu(CN)2. Inorg. Chem. 1986, 25, 2947–2951. [Google Scholar] [CrossRef]
- Omary, M.A.; Patterson, H.H. Temperature-Dependent Photoluminescence Properties of Tl[Ag(CN)2]: Formation of Luminescent Metal–Metal-Bonded Inorganic Exciplexes in the Solid State. Inorg. Chem. 1998, 37, 1060–1066. [Google Scholar] [CrossRef]
- Yersin, H.; Gliemann, G.; Rössler, U. On the nature of energy bands in tetracyanoplatinates. Solid State Commun. 1977, 21, 915–918. [Google Scholar] [CrossRef]
- Dannöhl-Fickler, R.; Kelm, H.; Wasgestian, F. Solvent and temperature dependence of the phosphorescence decay time of hexacyanochromate(III). J. Lumin. 1975, 10, 103–112. [Google Scholar] [CrossRef]
- Viaene, L.; D’Olieslager, J. Luminescence from and absorption by the 3T1g level of the hexacyanocobaltate(III) ion. Inorg. Chem. 1987, 26, 960–962. [Google Scholar] [CrossRef]
- Isci, H.; Roy Mason, W. Electronic absorption and MCD spectra for octacyanometallate complexes M(CN)8n−, M = Mo(IV), W(IV), n = 4 and Mo(V), W(V), n = 3. Inorg. Chim. Acta 2004, 357, 4065–4072. [Google Scholar] [CrossRef]
- Timpson, C.J.; Bignozzi, C.A.; Sulliva, B.P.; Kober, E.M.; Meyer, T.J. Influence of Solvent on the Spectroscopic Properties of Cyano Complexes of Ruthenium(II). J. Phys. Chem. 1996, 100, 2915–2925. [Google Scholar] [CrossRef]
- Shiga, T.; Okawa, H.; Kitagawa, S.; Ohba, M. Stepwise Synthesis and Magnetic Control of Trimetallic Magnets [Co2Ln(L)2(H2O)4][Cr(CN)6]·nH2O (Ln = La, Gd; H2L = 2,6-Di(acetoacetyl)pyridine) with 3+D Pillared-Layer Structure. J. Am. Chem. Soc. 2006, 128, 16426–16427. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Liu, J.; Harris, T.D.; Hill, S.; Long, J.R. Slow Magnetic Relaxation Induced by a Large Transverse Zero-Field Splitting in a MnIIReIV(CN)2 Single-Chain Magnet. J. Am. Chem. Soc. 2012, 134, 7521–7529. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Podgajny, R.; Majcher, A.M.; Nitek, W.; Rams, M.; Suturina, E.A.; Ungur, L.; Chibotaru, L.D.; Sieklucka, B. Magnetic anisotropy of CoII–WV ferromagnet: single crystal and ab initio study. CrystEngComm 2013, 15, 2378–2385. [Google Scholar] [CrossRef]
- Dhers, S.; Costes, J.-P.; Guionneau, P.; Paulsen, C.; Vendier, L.; Sutter, J.-P. On the importance of ferromagnetic exchange between transition metals in field-free SMMs: examples of ring-shaped hetero-trimetallic [(LnNi2){W(CN)8}]2 compounds. Chem. Commun. 2015, 51, 7875–7878. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, N.; Iijima, F.; Newton, G.N.; Yoshida, N.; Shiga, T.; Nojiri, H.; Nakao, A.; Kumai, R.; Murakami, Y.; Oshio, H. Three-way switching in a cyanide-bridged [CoFe] chain. Nat. Chem. 2012, 4, 921–926. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, R.; Knobel, M.; Reguera, E. Modification of the magnetic properties in molecular magnets based on Prussian blue analogues through adsorbed species. J. Phys.: Condens. Matter 2006, 18, 11243–11254. [Google Scholar] [CrossRef]
- Aratani, Y.; Oyama, K.; Suenobu, T.; Yamada, Y.; Fukuzumi, S. Photocatalytic Hydroxylation of Benzene by Dioxygen to Phenol with a Cyano-Bridged Complex Containing FeII and RuII Incorporated in Mesoporous Silica–Alumina. Inorg. Chem. 2016, 55, 5780–5786. [Google Scholar] [CrossRef] [PubMed]
- Ohkoshi, S.; Tokoro, H.; Matsuda, T.; Takahashi, H.; Irie, H.; Hashimoto, K. Coexistence of ferroelectricity and ferromagnetism in a rubidium manganese hexacyanoferrate. Angew. Chem. Int. Ed. 2007, 46, 3238–3241. [Google Scholar] [CrossRef] [PubMed]
- Ohkoshi, S.; Nakagawa, S.; Tomono, K.; Imoto, K.; Tsunobuchi, Y.; Tokoro, H. High proton conductivity in Prussian blue analogs and the interference effect by magnetic ordering. J. Am. Chem. Soc. 2010, 132, 6620–6621. [Google Scholar] [CrossRef] [PubMed]
- Tokoro, H.; Ohkoshi, S. Novel magnetic functionalities on Prussian blue analogs. Dalton Trans. 2011, 40, 6825–6833. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wang, L.; Su, Y.-J.; Chen, Y.-C.; Tucek, J.; Zboril, R.; Ni, Z.-P.; Tong, M.-L. Hysteretic Spin Crossover in Two-Dimensional (2D) Hoffmann-Type Coordination Polymers. Inorg. Chem. 2015, 54, 8711–8716. [Google Scholar] [CrossRef] [PubMed]
- Qian, K.; Huang, X.-C.; Zhou, C.; You, X.-Z.; Wang, X.-Y.; Dunbar, K.R. A Single-Molecule Magnet Based on Heptacyanomolybdate with Highest Energy Barrier for a Cyanide Compound. Inorg. Chem. 2013, 135, 13302–13305. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Podgajny, R.; Nogaś, W.; Buda, S.; Nitek, W.; Mlynarski, J.; Rams, M.; Kozieł, M.; Juszyńska, E.; Vieru, V.; et al. Optical Activity and Dehydration-Driven Switching of Magnetic Properties in Enantiopure Cyanido-Bridged Trigonal Bipyramids. Inorg. Chem. 2015, 54, 5784–5794. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Podgajny, R.; Nakabayashi, K.; Stanek, J.; Rams, M.; Sieklucka, B.; Ohkoshi, S. FeII spin-crossover phenomenon in the pentadecanuclear {Fe9[Re(CN)8]6} spherical cluster. Angew. Chem. Int. Ed. 2015, 54, 5093–5097. [Google Scholar] [CrossRef] [PubMed]
- Alexandru, M.-G.; Visinescu, D.; Marino, N.; De Munno, G.; Vallejo, J.; Lloret, F.; Julve, M. Cyanido-Bearing Cobalt(II/III) Metalloligands – Synthesis, Crystal Structure, and Magnetic Properties. Eur. J. Inorg. Chem. 2014, 4564–4572. [Google Scholar] [CrossRef]
- Alexandru, M.-G.; Visinescu, D.; Shova, S.; Andruh, M.; Lloret, F.; Julve, M. Synthesis, Crystal Structures, and Magnetic Properties of Two Novel Cyanido-Bridged Heterotrimetallic {CuIIMnIICrIII} Complexes. Inorg. Chem. 2017, 56, 2258–2269. [Google Scholar] [CrossRef] [PubMed]
- Ohkoshi, S.; Takano, S.; Imoto, K.; Yoshikiyo, M.; Namai, A.; Tokoro, H. 90-degree optical switching of output second harmonic light in chiral photomagnet. Nat. Photonics 2014, 8, 65–71. [Google Scholar] [CrossRef]
- Tsunobuchi, Y.; Kosaka, W.; Nuida, T.; Ohkoshi, S. Magnetization-induced second harmonic generation in a three dimensional manganese octacyanoniobate-based pyroelectric ferrimagnet. CrystEngComm 2009, 11, 2051–2053. [Google Scholar] [CrossRef]
- Koumousi, E.S.; Jeon, I.-R.; Gao, Q.; Dechambenoit, P.; Woodruff, D.N.; Merzeau, P.; Buisson, L.; Jia, X.; Li, D.; Volatron, F.; et al. Metal-to-Metal Electron Transfer in Co/Fe Prussian Blue Molecular Analogues: The Ultimate Miniaturization. J. Am. Chem. Soc. 2014, 136, 15461–15464. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Podgajny, R.; Nitek, W.; Fic, T.; Görlich, E.; Rams, M.; Sieklucka, B. Natural and magnetic optical activity of 2-D chiral cyanido-bridged MnII-NbIV molecular ferrimagnets. Chem. Commun. 2013, 49, 6731–6733. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Reczyński, M.; Podgajny, R.; Nogaś, W.; Buda, S.; Rams, M.; Nitek, W.; Nowicka, B.; Mlynarski, J.; Ohkoshi, S.; et al. Implementation of Chirality into High-Spin Ferromagnetic CoII9WV6 and NiII9WV6 Cyanido-Bridged Clusters. Cryst. Growth Des. 2015, 15, 3573–3581. [Google Scholar] [CrossRef]
- Assefa, Z.; Shankle, G.; Patterson, H.H.; Reynolds, R. Photoluminescence Studies of Lanthanide Ion Complexes of Gold and Silver Dicyanides: A New Low-Dimensional Solid-State Class for Nonradiative Excited-State Energy Transfer. Inorg. Chem. 1994, 33, 2187–2195. [Google Scholar] [CrossRef]
- Assefa, Z.; Patterson, H.H. Photoluminescence Studies of Lanthanide Ion Complexes of Gold and Silver Dicyanides. 2. A New Low-Dimensional Solid-State Class for Nonradiative Excited-State Energy Transfer. Inorg. Chem. 1994, 33, 6194–6200. [Google Scholar] [CrossRef]
- Yersin, H.; Trümbach, D.; Strasser, J.; Patterson, H.H.; Assefa, Z. Tunable Radiationless Energy Transfer in Eu[Au(CN)2]3·3H2O by High Pressure. Inorg. Chem. 1998, 37, 3209–3216. [Google Scholar] [CrossRef]
- Rawashdeh-Omary, M.A.; Larochelle, C.L.; Patterson, H.H. Tunable Energy Transfer from Dicyanoaurate(I) and Dicyanoargenate(I) Donor Ions to Terbium(III) Acceptor Ions in Pure Crystals. Inorg. Chem. 2000, 39, 4527–4534. [Google Scholar] [CrossRef]
- Colis, J.C.F.; Staples, R.; Tripp, C.; Labrecque, D.; Patterson, H.H. Metallophilic Interactions in Closed-Shell d1° Metal–Metal Dicyanide Bonded Luminescent Systems Eu[AgxAu1–x(CN)2]3 and Their Tunability for Excited State Energy Transfer. J. Phys. Chem. B 2005, 109, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Colis, J.C.F.; Larochelle, C.; Staples, R.; Herbst-Irmer, R.; Patterson, H. Structural studies of lanthanide ion complexes of pure gold, pure silver and mixed metal (gold–silver) dicyanides. Dalton Trans. 2005, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Tanner, P.A.; Zhou, X.; Wong, W.-T.; Kratzer, C.; Yersin, H. Structure and Spectroscopy of Tb[Au(CN)2]3·3H2O. J. Phys. Chem. B 2005, 109, 13083–13090. [Google Scholar] [CrossRef] [PubMed]
- Larochelle, C.L.; Patterson, H.H. Tunable photoluminescence for a novel silver–gold mixed metal system. Chem. Phys. Lett. 2006, 429, 440–444. [Google Scholar] [CrossRef]
- Lu, H.; Yson, R.; Ford, J.; Tracy, H.J.; Carrier, A.B.; Keller, A.; Mullin, J.L.; Poissan, M.J.; Sawan, S.; Patterson, H.H. Tunable energy transfer from d1° heterobimetallic dicyanide(I) dono ions to terbium(III) acceptor ions in luminescent Tb[AgxAu1–x(CN)2]3 (x = 0 → 1). Chem. Phys. Lett. 2007, 443, 55–60. [Google Scholar] [CrossRef]
- Assefa, Z.; Kalachnikova, K.; Haire, R.G.; Sykora, R.E. Hydrothermal synthesis, structural, Raman, and luminescence studies of Am[M(CN)2]3·3H2O and Nd[M.(CN)2]3·3H2O (M = Ag, Au): Bimetallic coordination polymers containing both trans-plutonium and transition metal elements. J. Solid State Chem. 2007, 180, 3121–3129. [Google Scholar] [CrossRef]
- Assefa, Z.; Haire, R.G.; Sykora, R.E. Hydrothermal synthesis, structural, Raman, and luminescence studies of Cm[M(CN)2]3·3H2O and Pr[M.(CN)2]3·3H2O (M = Ag, Au) 2. Bimetallic coordination polymers containing both trans-plutonium and transition metal elements. J. Solid State Chem. 2008, 181, 382–391. [Google Scholar] [CrossRef]
- Larochelle, C.L.; Krebs, J.K. Synthesis and spectral properties of Ce[Ag(CN)2]3. Opt. Mater. 2008, 30, 1446–1450. [Google Scholar] [CrossRef]
- Ahern, J.C.; Roberts, R.J.; Follansbee, P.; McLaughlin, J.; Leznoff, D.B.; Patterson, H.H. Structure and Emissive Properties of Heterobimetallic Ln–Au Coordination Polymers: Role of Tb and Eu in Non-aurophilic [nBu4N]2[Ln(NO3)4Au(CN)2] versus Aurophilic Ln[Au(CN)2]3·3H2O/3D2O Chains. Inorg. Chem. 2014, 53, 7571–7579. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.J.; Ahern, J.C.; Patterson, H.H.; Leznoff, D.B. Ce/Au(CN)2−-Based Coordination Polymers Containing and Lacking Aurophilic Interactions. Eur. J. Inorg. Chem. 2016, 2082–2087. [Google Scholar] [CrossRef]
- Roberts, R.J.; Le, D.; Leznoff, D.B. Color-Tunable and White-Light Luminescence in Lanthanide–Dicyanoaurate Coordination Polymers. Inorg. Chem. 2017, 56, 7948–7959. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.J.; Li, X.; Lacey, T.F.; Pan, Z.; Patterson, H.H.; Leznoff, D.B. Heterobimetallic lanthanide–gold coordination polymers: structure and emissive properties of isomorphous [nBu4N]2[Ln(NO3)4Au(CN)2] 1-D chains. Dalton Trans. 2012, 41, 6992–6997. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.B.; Smith, P.A.; Jaleel, A.; Vogel, P.; Crawford, C.; Assefa, Z.; Sykora, R.E. Synthesis, Structural, and Photoluminescence Studies of Gd(terpy)(H2O)(NO3)2M(CN)2 (M = Au, Ag) Complexes: Multiple Emissions from Intra- and Intermolecular Excimers and Exciplexes. Inorg. Chem. 2012, 51, 3399–3408. [Google Scholar] [CrossRef] [PubMed]
- White, F.; Pham, L.N.; Xiang, K.R.; Thomas, R.; Vogel, P.; Crawford, C.; Assefa, Z.; Sykora, R.E. Synthesis, structures, and photoluminescence properties of lanthanide dicyanoaurates containing dimeric aurophilic interactions. Inorg. Chim. Acta 2014, 414, 240–249. [Google Scholar] [CrossRef]
- Thompson, J.R.; Roberts, R.J.; Williams, V.; Leznoff, D.B. Birefrigent, emissive coordination polymers incorporating bis(benzimidazole)pyridine as an anisotropic building block. CrystEngComm 2013, 15, 9387–9393. [Google Scholar] [CrossRef]
- Loosli, A.; Wermuth, M.; Güdel, H.-U.; Capelli, S.; Hauser, J.; Bürgi, H.-B. Crystal Structure and Optical Spectroscopy of Er2[Pt(CN)4]3·21H2O and Er2[Pt(CN)4]2·SO4·11.5H2O. Inorg. Chem. 2000, 39, 2289–2293. [Google Scholar] [CrossRef] [PubMed]
- Von Ammon, W.; Gliemann, G. The influence of CT states and energy transfer on the luminescence of Ln2[Pt(CN)4]3·yH2O single crystals. J. Chem. Phys. 1982, 77, 2266–2272. [Google Scholar] [CrossRef]
- Von Ammon, W.; Hidvegi, I.; Gliemann, G. Magnetic field effects on the luminescence of Ln2[Pt(CN)4]3·yH2O single crystals. J. Chem. Phys. 1982, 80, 2837–2844. [Google Scholar] [CrossRef]
- Yersin, H. Energy transfer from linear stacks of tetracyanoplatinates(II) to rare earth ions. J. Chem. Phys. 1978, 68, 4707–4713. [Google Scholar] [CrossRef]
- Yersin, H.; von Ammon, W.; Stock, M.; Gliemann, G. Non-radiative energy transfer from tunable donor states to Eu3+ ions. J. Lumin. 1979, 18/19, 774–778. [Google Scholar] [CrossRef]
- Yersin, H.; Stock, M. Donor and acceptor state selectivity in resonant energy transfer. J. Chem. Phys. 1982, 76, 2136–2138. [Google Scholar] [CrossRef]
- Zhu, X.; Wong, W.-K.; Guo, J.; Wong, W.-Y.; Zhang, J.-P. Reactivity of Cationic Lanthanide(III) Monoporphyrinates towards Anionic Cyanometallates – Preparation, Crystal Structure, and Luminescence Properties of Cyanido-Bridged Di- and Trinuclear d–f Complexes. Eur. J. Inorg. Chem. 2008, 3515–3523. [Google Scholar] [CrossRef]
- Maynard, B.A.; Kalachnikova, K.; Whitehead, K.; Assefa, Z.; Sykora, R.E. Intramolecular Energy Transfer in a One-Dimensional Europium Tetracyanoplatinate. Inorg. Chem. 2008, 47, 1895–1897. [Google Scholar] [CrossRef] [PubMed]
- Maynard, B.A.; Smith, P.A.; Ladner, L.; Jaleel, A.; Beedoe, N.; Crawford, C.; Assefa, Z.; Sykora, R.E. Emission Enhancement through Dual Donor Sensitization: Modulation of Structural and Spectroscopic Properties in a Series of Europium Tetracyanoplatinates. Inorg. Chem. 2009, 48, 6425–6435. [Google Scholar] [CrossRef] [PubMed]
- Stojanovic, M.; Robinson, N.J.; Chen, X.; Smith, P.A.; Sykora, R.E. Synthesis, structures, and photoluminescence properties of novel lanthanide tetracyanoplatinates lacking Pt–Pt interactions. J. Solid State Chem. 2010, 183, 933–939. [Google Scholar] [CrossRef]
- Stojanovic, M.; Robinson, N.J.; Assefa, Z.; Sykora, R.E. Structural analysis and photoluminescence properties of low dimensional lanthanide tetracyanometallates. Inorg. Chim. Acta 2011, 376, 414–421. [Google Scholar] [CrossRef]
- Stojanovic, M.; Robinson, N.J.; Chen, X.; Sykora, R.E. Reduction of structural dimensionality through incorporation of auxillary ligands in lanthanide tetracyanoplatinates. Inorg. Chim. Acta 2011, 370, 513–518. [Google Scholar] [CrossRef]
- Ladner, L.; Ngo, T.; Crawford, C.; Assefa, Z.; Sykora, R.E. Solid-State Photoluminescence Sensitization of Tb3+ by Novel Au2Pt2 and Au2Pt4 Cyanide Clusters. Inorg. Chem. 2011, 50, 2199–2206. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.A.; Crawford, C.; Beedoe, N.; Assefa, Z.; Sykora, R.E. Synthesis, Crystal Structures, and Dual Donor Luminescence Sensitization in Novel Terbium Tetracyanoplatinates. Inorg. Chem. 2012, 51, 12230–12241. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N.J.; Smith, P.A.; Grant, S.; Whitehead, K.; Crawford, C.; Assefa, Z.; Sykora, R.E. Novel tetracyanoplatinates with the larger Ln3+ ions: Synthesis, structures, and photoluminescence properties of KLn[Pt(CN)4]2·8.75H2O (Ln = La, Pr, Nd). Inorg. Chim. Acta 2013, 394, 459–465. [Google Scholar] [CrossRef]
- Hulliger, F.; Landolt, M.; Vetsch, H. Rare-Earth Ferricyanides and Chromicyanides LnT(CN)6·nH2O. J. Solid State Chem. 1976, 18, 283–291. [Google Scholar] [CrossRef]
- Hulliger, F.; Landolt, M.; Vetsch, H. Rare-Earth Cobalticyanides LnCo(CN)6·nH2O. J. Solid State Chem. 1976, 18, 307–312. [Google Scholar] [CrossRef]
- Kunkely, H.; Vogler, A. Optical properties of GdIII[MIII(CN)6] with M=Cr and Co. Phosphorescence from ligand-field states of [M(CN)6]3− under ambient conditions. Inorg. Chem. Commun. 2004, 7, 770–772. [Google Scholar] [CrossRef]
- Kondo, N.; Yokoyama, A.; Kurihara, M.; Sakamoto, M.; Yamada, M.; Miyake, M.; Ohsuma, T.; Aono, H.; Sadaoka, Y. Florescent Property of Bulk- and Nanocrystals of Cyanide-bridged Eu(III)Co(III) Heteronuclear Coordination Polymer. Chem. Lett. 2004, 33, 1182–1183. [Google Scholar] [CrossRef]
- Zhou, X.; Duan, C.-K.; Tanner, P.A. Luminescence and crystal field analysis of Eu3+ in Eu[Co(CN)6]·4H2O. J. Phys. Chem. Solids 2007, 68, 1921–1925. [Google Scholar] [CrossRef]
- Lazarides, T.; Davies, G.M.; Adams, H.; Sabatini, C.; Barigelletti, F.; Barbieri, A.; Pope, S.J.A.; Faulkner, S.; Ward, M.D. Ligand-field excited states of hexacyanochromate and hexacyanocobaltate as sensitizers for near-infrared luminescence from Nd(III) and Yb(III) in cyanide-bridged d–f assemblies. Photochem. Photobiol. Sci. 2007, 6, 1152–1157. [Google Scholar] [CrossRef] [PubMed]
- Figuerola, A.; Diaz, C.; Ribas, J.; Tangoulis, V.; Granell, J.; Lloret, F.; Mahia, J.; Maestro, M. Synthesis and Characterization of Heterodinuclear Ln3+–Fe3+ and Ln3+–Co3+ Complexes, Bridged by Cyanide Ligand (Ln3+ = Lanthanide Ions). Nature of the Magnetic Interaction in the Ln3+–Fe3+ Complexes. Inorg. Chem. 2003, 42, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Rams, M.; Nakabayashi, K.; Sieklucka, B.; Ohkoshi, S. White Light Emissive DyIII Single-Molecule Magnets Sensititized by Diamagnetic [CoIII(CN)6]3− Linkers. Chem. Eur. J. 2016, 22, 7371–7375. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Kumar, K.; Nakabayashi, K.; Sieklucka, B.; Ohkoshi, S. Fine Tuning of Multicolored Photoluminescence in Crystalline Magnetic Materials Constructed of Trimetallic EuxTb1-x[Co(CN)6] Cyanido-Bridged Chains. Inorg. Chem. 2017, 56, 5239–5252. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Wang, J.; Ohkoshi, S. Yellow to greenish-blue colour-tunable photoluminescence and 4f-centered slow magnetic relaxation in a cyanido-bridged DyIII(4-hydroxypyridine)–CoIII layered material. Chem. Commun. 2016, 52, 10795–10798. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Sieklucka, B.; Ohkoshi, S. Near-Infrared Photoluminescence in Hexacyanido-Bridged Nd–Cr Layered Ferromagnet. Cryst. Growth Des. 2016, 16, 4918–4925. [Google Scholar] [CrossRef]
- Chorazy, S.; Rams, M.; Wang, J.; Sieklucka, B.; Ohkoshi, S. Octahedral Yb(III) complexes embedded in [CoIII(CN)6]-bridged coordination chains: combining sensitized near-infrared fluorescence with slow magnetic relaxation. Dalton Trans. 2017, 46, 13668–13672. [Google Scholar] [CrossRef] [PubMed]
- Chelebaeva, E.; Larionova, J.; Guari, Y.; Ferreira, R.A.S.; Carlos, L.D.; Almeida Paz, F.A.; Trifonov, A.; Guerin, C. Luminescent and Magnetic Cyano-Bridged Coordination Polymers Containing 4d–4f Ions: Toward Multifunctional Materials. Inorg. Chem. 2009, 48, 5983–5995. [Google Scholar] [CrossRef] [PubMed]
- Chelebaeva, E.; Larionova, J.; Guari, Y.; Ferreira, R.A.S.; Carlos, L.D.; Almeida Paz, F.A.; Trifonov, A.; Guerin, C. A Luminescent and Magnetic Cyano-Bridged Tb3+–Mo5+ Coordination Polymer: toward Multifunctional Materials. Inorg. Chem. 2008, 47, 775–777. [Google Scholar] [CrossRef] [PubMed]
- Chelebaeva, E.; Long, J.; Larionova, J.; Ferreira, R.A.S.; Carlos, L.D.; Almeida Paz, F.A.; Gomes, J.B.R.; Trifonov, A.; Guerin, C.; Guari, Y. Bifunctional Mixed-Lanthanide Cyano-Bridged Coordination Polymers Ln0.5Ln’0.5(H2O)5[W(CN)8] (Ln/Ln’ = Eu3+/Tb3+, Eu3+/Gd3+, Tb3+/Sm3+). Inorg. Chem. 2012, 51, 9005–9016. [Google Scholar] [CrossRef] [PubMed]
- Long, J.; Chelebaeva, E.; Larionova, J.; Guari, Y.; Ferreira, R.A.S.; Carlos, L.D.; Almeida Paz, F.A.; Trifonov, A.; Guerin, C. Near-Infrared Luminescent and Magnetic Cyano-Bridged Coordination Polymers Nd(phen)n(DMF)m[M(CN)8] (M = Mo, W). Inorg. Chem. 2011, 50, 9924–9926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanase, S.; Mittelmeijer-Hazeleger, M.C.; Rothenberg, G.; Mathoniere, C.; Jubera, V.; Smits, J.M.M.; de Gelder, R. A facile building-block synthesis of multifunctional lanthanide MOFs. J. Mater. Chem. 2011, 21, 15544–15551. [Google Scholar] [CrossRef]
- Gao, Y.; Jing, P.; Yan, N.; Hilbers, M.; Zhang, H.; Rothenberg, G.; Tanase, S. Dual-mode humidity detection using a lanthanide-based metal-organic framework: towards multifunctional humidity sensors. Chem. Commun. 2017, 53, 4465–4468. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Nakabayashi, K.; Ozaki, N.; Pełka, R.; Fic, T.; Mlynarski, J.; Sieklucka, B.; Ohkoshi, S. Thermal switching between blue and red luminescence in magnetic chiral cyanido-bridged EuIII–WV coordination helices. RSC Adv. 2013, 3, 1065–1068. [Google Scholar] [CrossRef]
- Chorazy, S.; Nakabayashi, K.; Arczynski, M.; Pełka, R.; Ohkoshi, S.; Sieklucka, B. Multifunctionality in Bimetallic LnIII[WV(CN)8]3− (Ln = Gd, Nd) Coordination Helices: Optical Activity, Luminescence, and Magnetic Coupling. Chem. Eur. J. 2014, 20, 7144–7159. [Google Scholar] [CrossRef] [PubMed]
- Chorazy, S.; Nakabayashi, K.; Ohkoshi, S.; Sieklucka, B. Green to Red Luminescence Switchable by Excitation Light in Cyanido-Bridged TbIII–WV Ferromagnet. Chem. Mater. 2014, 26, 4072–4075. [Google Scholar] [CrossRef]
- Chorazy, S.; Arczynski, M.; Nakabayashi, K.; Sieklucka, B.; Ohkoshi, S. Visible to Near-Infrared Emission from LnIII(Bis-oxazoline)–[MoV(CN)8] (Ln = Ce–Yb) Magnetic Coordination Polymers Showing Unusual Lanthanide-Dependent Sliding of Cyanido-Bridged Layers. Inorg. Chem. 2015, 54, 4724–4736. [Google Scholar] [CrossRef] [PubMed]
- Miller, T.A.; Jeffery, J.C.; Ward, M.D.; Adams, H.; Pope, S.J.A.; Faulkner, S. Photoinduced Ru–Yb energy transfer and sensitized near-IR luminescence in a coordination polymer containing co-crystallised [Ru(bipy)(CN)4]2− and Yb(III) units. Dalton Trans. 2004, 10, 1524–1526. [Google Scholar] [CrossRef] [PubMed]
- Davies, G.M.; Pope, S.J.A.; Adams, H.; Faulkner, S.; Ward, M.D. Structural and Photphysical Properties of Coordination Networks Combining [Ru(bipy)(CN)4]2− Anions and Lanthanide(III) Cations: Rates of Photoinduced Ru-to-Lanthanide Energy Transfer and Sensitized Near-Infrared Luminescence. Inorg. Chem. 2005, 44, 4656–4665. [Google Scholar] [CrossRef] [PubMed]
- Herrera, J.-M.; Pope, S.J.A.; Adams, H.; Faulkner, S.; Ward, M.D. Structural and Photophysical Properties of Coordination Networks Combining [Ru(Bpym)(CN)4]2− or [{Ru(CN)4}2(μ-bpym)]4− Anions (bpym = 2,2’-Bipyrimidine) with Lanthanide(III) Cations: Sensitized Near-Infrared Luminescence from Yb(III), Nd(III), and Er(III) Following Ru-to-Lanthanide Energy Transfer. Inorg. Chem. 2006, 45, 3895–3904. [Google Scholar] [PubMed]
- Baca, S.G.; Adams, H.; Sykes, D.; Faulkner, S.; Ward, M.D. Three-component coordination networks based on [Ru(phen)(CN)4]2− anions, near-infrared luminescent lanthanide(III) cations, and ancillary oligopyridine ligands: structures and photophysical properties. Dalton Trans. 2007, 2419–2430. [Google Scholar] [CrossRef]
- Herrera, J.-M.; Ward, M.D.; Adams, H.; Poper, S.J.A.; Faulkner, S. Polynuclear cyanoruthenate chromophores based on hexaazatriphenylene containing up to twelve cyanides: photophysical and structural properties. Chem. Commun. 2006, 1851–1853. [Google Scholar] [CrossRef] [PubMed]
- Herrera, J.-M.; Pope, S.J.A.; Meijer, A.J.H.M.; Easun, T.L.; Adams, H.; Alsindi, W.Z.; Sun, X.-Z.; George, M.W.; Faulkner, S.; Ward, M.D. Photophysical and Structural Properties of Cyanoruthenate Complexes of Hexaazatriphenylene. J. Am. Chem. Soc. 2007, 129, 11491–11504. [Google Scholar] [CrossRef] [PubMed]
- Baca, S.G.; Pope, S.J.A.; Adams, H.; Ward, M.D. Cyanide-Bridged Os(II)/Ln(III) Coordination Networks Containing [Os(phen)(CN)4]2− as an Energy Donor: Structural and Photophysical Properties. Inorg. Chem. 2008, 47, 3736–3747. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.-F.; Kong, H.-K.; Leung, S.-W.; Chiu, B.K.W.; Koo, C.-K.; Lei, E.N.Y.; Lam, M.H.W.; Wong, W.-T.; Wong, W.-Y. Heterobimetallic Ru(II)–Eu(III) Complex as Chemodosimeter for Selective Biogenic Amine Odorants Detection in Fish Sample. Anal. Chem. 2011, 83, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.-F.; Lam, M.H.W.; Wong, W.-Y. Design and Synthesis of Heterobimetallic Ru(II)–Ln(III) Complexes as Chemodosimetric Ensembles for the Detection of Biogenic Amine Odorants. Anal. Chem. 2013, 85, 8246–8253. [Google Scholar] [CrossRef] [PubMed]
- Shu, Y.-B.; Liu, W.-S. A lanthanide salen “square prism” and a wrapped exo-lanthanide salen “double-decker”. Dalton Trans. 2015, 44, 6353–6357. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.M.; MacLeod, V.L.; Jennison, P.; Sazanovich, I.V.; Hunter, C.A.; Weinstein, J.A.; Ward, M.D. Luminescent cyanometallates based on phenylpyridine-Ir(III) units: solvatochromism, metallochromism, and energy transfer in Ir/Ln and Ir/Re complexes. Dalton Trans. 2012, 41, 2408–2419. [Google Scholar] [CrossRef] [PubMed]
- Falk, F.; Hackbarth, L.; Lochbrunner, S.; Marciniak, H.; Köckerling, M. Rare-Earth Tetracyanidoborate Salts – Structural Features and Properties Including Luminescence of [RE(H2O)8][B(CN)4]3·nH2O and [RE(H2O)7{κ1-N-B(CN)4}][B(CN)4]2 (RE = Y, Tb, Dy, Ho, Er, Tm, Yb, Lu; n ≤ 3). Eur. J. Inorg. Chem. 2016, 2016, 469–476. [Google Scholar] [CrossRef]
- Ribbeck, T.; Zottnick, S.H.; Kerpen, C.; Landmann, J.; Ignat’ev, N.V.; Müller-Buschbaum, K.; Finze, M. Anhydrous, Homoleptic Lanthanide Frameworks with the Pentafluoroethyltricyanoborate Anion. Inorg. Chem. 2017, 56, 2278–2286. [Google Scholar] [CrossRef] [PubMed]
Compound | Structural Type 1 | Luminescent Property | Ref. |
---|---|---|---|
[LnIII(H2O)3][MI(CN)2]3 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy; M = Ag, Au) | 3D network | Visible Ln3+ (Pr, Eu, Tb, Dy) emission with pressure- and temperature-dependent [M(CN)2]− -to-Ln3+ ET.2 UV-Vis pressure- and temperature- tunable emission of [M(CN)2]− (MLCT) 3 for LnM (Ln = La, Nd, Gd). UV-Vis mixed Ln3+ (Ce, Sm) and [Au(CN)2]− emission. | [55,56,57,58,59,60,61,62,63,64,65,66,67,68,69] |
(nBu4N)2[LnIII(NO3)4][AuI(CN)2] (Ln = Ce, Nd, Sm, Gd, Eu, Tb, Dy) | 1D zig-zag chain | UV-violet [Au(CN)2]− emission for NdAu and GdAu. Excitation- and composition- tunable visible [Au(CN)2]− and Ln3+ (Sm, Eu, Tb, Dy) emission in LnAu. UV-violet Ce3+ emission in CeAu. | [67,68,69,70] |
[LnIII(terpy)(H2O)(NO3)2][AuI(CN)2] 4 (Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) | 0D dinuclear molecule | Visible Ln3+ (Sm, Eu, Tb, Dy) and green [AuI(CN)2]− emission with terpy-to-Ln3+ and partial [Au(CN)2]− -to-Ln3+ ET. Mixed green [Au(CN)2]− and red terpy-based emission in GdAu. | [71,72] |
[LnIII(bbp)2][AuI(CN)2]3·2MeCN 5 (Ln = Eu, Gd) | 0D tetranuclear molecule | Red Eu3+ (EuAu) emission with bbp-to-Ln3+ ET. Mixed violet [Au(CN)2]− and green bbp emission in GdAu. | [73] |
[LnIII(bbp)(NO3)2][AuI(CN)2]·MeCN (Ln = Eu, Gd, Tb) | 1D linear chain | Green Tb3+ (GdAu) or red Eu3+ (EuAu) emission with bbp-to-Ln3+ ET. Green bbp-based emission in GdAu. | [73] |
Compound | Structural Type 1 | Luminescent Property | Ref. |
---|---|---|---|
[LnIII(H2O)6]2[PtII(CN)4]·2{PtII(CN)4}·9H2O (Ln = La–Lu) | 2D 6-membered metal rings | Visible polarization-dependent emission from 1D [Pt(CN)4]2− stacks (MMLCT) 2. | [74,75,76] |
[LnIII2(H2O)11][PtII(CN)4]·2{PtII(CN)4}·10H2O (Ln = Sm, Eu) | 2D 6-membered metal rings | Polarization-dependent green to orange emission from 1D [Pt(CN)4]2− stacks. Red Eu3+ (EuPt) or Sm3+ (SmPt) emission with temperature- and pressure-dependent [Pt(CN)4]2−-to-Ln3+ ET.3 | [74,77,78,79] |
[ErIII(H2O)5(SO4)]2[PtII(CN)4]·{PtII(CN)4}·1.5H2O | 2D 6-membered metal rings | Polarization-dependent green to orange emission from 1D [Pt(CN)4]2− stacks. | [74] |
[LnIII(tpp)(dmf)n]2[MII(CN)4] 4 (Ln = Er, Yb; M = Ni, Pd, Pt) | 0D trinuclear molecule | Red tpp, and NIR Er3+ (ErM) or Yb3+ (YbM) emission. | [80] |
[EuIII(terpy)(H2O)2(NO3)][PtII(CN)4]·MeCN 5 | 1D zig-zag chain | Red Eu3+ emission with terpy-to-Eu3+ and [Pt(CN)4]2−-to-Eu3+ ET. | [81,82] |
[EuIII(terpy)(H2O)3]2[PtII(CN)4]3·2H2O | 1D ladder chain | Red Eu3+ emission with terpy-to-Eu3+ and [Pt(CN)4]2−-to-Eu3+ ET. | [82] |
[EuIII(terpy)(H2O)2(CH3COO)2]2·{PtII(CN)4}·3H2O | 0D ionic salt | Red Eu3+ emission with terpy-to-Eu3+ ET; additional emission from [Pt(CN)4]2−. | [82] |
[EuIII(dmf)2(terpy)(H2O)2(NO3)]·{PtII(CN)4} 6 | 0D ionic salt | Red Eu3+ emission with terpy-to-Eu3+ ET; additional emission from [Pt(CN)4]2−. | [83] |
[LnIII(dmso)4(H2O)3][MII(CN)4]·0.5{MII(CN)4}·2H2O 7 (Ln = Eu, Tb; M = Pd, Pt) | 0D ionic salt | Red Eu3+ (EuM) or green Tb3+ (TbM) emission with direct f-f excitation. | [84] |
[LnIII(dmso)2(phen)(H2O)3]2[PtII(CN)4]·2{PtII(CN)4}·2(phen)·4H2O 8 (Ln = Eu, Tb, Yb) | 0D trinuclear molecule | Red Eu3+ (EuPt) or green Tb3+ (TbPt) emission with phen-to-Ln3+ ET. | [85] |
[LnIII(dmf)3(phen)(H2O)2(NO3)]·{PtII(CN)4} (Ln = La, Eu, Tb) | 0D ionic salt | Red Eu3+ (EuPt) or green Tb3+ (TbPt) emission with phen-to-Ln3+ ET. | [85] |
[LnIII(dmf)3(2,2’-bpy)(H2O)2(NO3)]·{PtII(CN)4} 9 (Ln = La, Sm, Eu, Tb) | 0D ionic salt | Red Eu3+ (EuPt) or green Tb3+ (TbPt) emission with 2,2’-bpy-to-Ln3+ ET. | [85] |
K2[TbIII(H2O)4][PtII(CN)4]2·{AuI(CN)2}·2H2O | 2D 8-membered metal rings | Green Tb3+ emission with {Au2Pt4}-to-Tb3+ ET; additional weak blue {Au2Pt4} emission. | [86] |
[TbIII(2,2’-bpy)(H2O)4][PtII(CN)4][AuI(CN)2]·1.5(2,2’-bpy)·2H2O | 0D trinuclear molecule | Green Tb3+ emission with {Au2Pt2}-to-Tb3+ ET; additional weak violet 2,2’-bpy emission. | [86] |
[TbIII(terpy)(H2O)2(NO3)][PtII(CN)4]·n(solvent) | 1D zig-zag chain | Green Tb3+ emission with terpy-to-Tb3+ ET; additional blue [Pt(CN)4]2− emission. | [87] |
[TbIII(terpyCl)(H2O)2(NO3)][PtII(CN)4]·2.5H2O 10 | 1D zig-zag chain | Green Tb3+ emission with terpyCl-to-Tb3+ ET; additional blue [Pt(CN)4]2− emission. | [87] |
[TbIII(terpy)(H2O)2(CH3COO)2]2·{PtII(CN)4}·4H2O | 0D ionic salt | Green Tb3+ emission with terpy-to-Tb3+ and CH3COO−-to-Tb3+ ET. | [87] |
[TbIII2(terpy)2(H2O)2(CH3COO)5]·{PtII(CN)4}·7H2O | 0D ionic salt | Green Tb3+ emission with terpy-to-Tb3+ and CH3COO−-to-Tb3+ ET. | [87] |
K[LnIII(H2O)6]2[PtII(CN)4]3·{PtII(CN)4}·5.5H2O (Ln = La, Pr, Nd) | 2D honeycomb | Green emission from 1D [Pt(CN)4]2− stacks (MMLCT). | [88] |
Compound | Structural Type | Luminescent Property | Ref. |
---|---|---|---|
[GdIII(H2O)2][MIII(CN)6]·2H2O (M = Cr, Co) | 3D network | Red Co3+(GdCo) or NIR Cr3+ (GdCr) emission. | [89,90,91] |
[EuIII(H2O)2][CoIII(CN)6]·2H2O | 3D network | Red Eu3+ emission with Co3+-to-Eu3+ ET 1. | [92,93] |
[LnIII(dmf)4(H2O)2][CrIII(CN)6]·nH2O (Ln = Nd, Gd, Yb) 2 | 1D chain | NIR Nd3+ (NdCr) or Yb3+ (YbCr) emission with Cr3+-to-Nd3+ and Cr3+-to-Yb3+ ET; NIR Cr3+ emission (GdCr). | [94] |
[LnIII(dmf)4(H2O)3][CoIII(CN)6]·nH2O (Ln = Nd, Gd, Yb)2 | 0D dinuclear molecule | NIR Nd3+ (NdCo) or Yb3+ (YbCo) emission with Co3+-to-Nd3+ and Co3+-to-Yb3+ ET; red Co3+ emission (GdCo). | [94,95] |
[DyIII(3-OHpy)2(H2O)4][CoIII(CN)6]·H2O 3 | 1D zig-zag chain | White light Dy3+ emission with direct f-f excitation, Co3+-to-Dy3+ and 3-OHpy-to-Dy3+ ET. | [96] |
[EuIIIxTbIII1-x(3-OHpy)2(H2O)4][CoIII(CN)6]·H2O3 | 1D zig-zag chain | Excitation and Eu/Tb ratio switching from red Eu3+ to green Tb3+ emission with Co3+-to-Ln3+ ET. | [97] |
[DyIII(4-OHpy)2(H2O)3][CoIII(CN)6]·0.5H2O 4 | 2D 6-membered metal rings | Excitation switching from yellow Dy3+ emission with Co3+-to-Dy3+ ET, to greenish- blue 4-OHpy emission. | [98] |
[NdIII(pmmo)2(H2O)3][CrIII(CN)6] 5 | 2D square grid | NIR Nd3+ emission with Cr3+-to-Nd3+ and pmmo-to-Nd3+ ET. | [99] |
[YbIII(3-pyone)2(H2O)2][CoIII(CN)6] 6 | 1D chain | NIR Yb3+ emission with Co3+-to-Yb3+ and 3-pyone-to-Yb3+ ET. | [100] |
Compound | Structural type | Luminescent property | Ref. |
---|---|---|---|
[EuIII(H2O)5][MV(CN)8] (M = Mo, W) | 2D square grid | Red Eu3+ emission with O-Eu (EuMo) or O-W (EuW) LMCT1 and direct f-f excitation. | [101] |
[TbIII(H2O)5][MV(CN)8] (M = Mo, W) | 2D square grid | Green Tb3+ emission with Tb-based f-d and f-f excitation. | [101,102] |
[EuIII0.5GdIII0.5(H2O)5][WV(CN)8] | 2D square grid | Red Eu3+ emission with dominant LMCT (O-Eu or W-related) excitation. | [103] |
[EuIII0.5TbIII0.5(H2O)5][WV(CN)8] | 2D square grid | Red Eu3+ and green Tb3+ emission with LMCT (O-Eu or W-related) excitation and additional Tb3+-to-Eu3+ ET.2 | [103] |
[SmIII0.5TbIII0.5(H2O)5][WV(CN)8] | 2D square grid | Green Tb3+ emission with Tb-based f-d and f-f excitation. | [103] |
[NdIII(phen)2(dmf)2(H2O)][MoV(CN)8]·2H2O3,4 | 1D chain | NIR Nd3+ emission with phen-to-Nd3+ ET. | [104] |
[NdIII(phen)(dmf)5][MV(CN)8]·xH2O (M = Mo, W) | 1D chain | NIR Nd3+ emission with direct f-f excitation, phen-to-Nd3+ ET. | [104] |
[LnIII2(mpca)2(MeOH)2(H2O)6][MoIV(CN)8]·xMeOH5 (Ln = Nd, Eu, Tb) | 3D hybrid I2O1 network | Red Eu3+ (EuMo), green Tb3+ (TbMo) and NIR Nd3+ emission with mpca-to-Ln3+ ET, and humidity-dependent intensity of Eu3+ emission. | [105,106] |
[EuIII(iPr-pybox)(dmf)4][WV(CN)8]·dmf·8H2O6 | 1D helical chain | Thermal switching between red Eu3+ and blue iPr-pybox emission. | [107] |
[LnIII(iPr-pybox)(dmf)4][WV(CN)8]·dmf·4H2O (Ln = Nd, Gd) | 1D helical chain | NIR Nd3+ emission with pybox-to-Nd3+ ET(NdW); red iPr-pybox emission (GdW). | [108] |
[LnIII(ind-pybox)(dmf)4][WV(CN)8]·5MeCN·4MeOH7 (Ln = Nd, Gd) | 1D helical chain | NIR Nd3+ emission with direct f-f excitation and pybox-to-Nd3+ ET (NdW); red ind-pybox emission (GdW). | [109] |
[TbIII(box)2(dmf)2][WV(CN)8]·H2O8 | 2D mixed 4- and 8-membered metal rings | Excitation switching between green Tb3+ and red box emission. | [109] |
[LnIII(box)n(dmf)m][MoV(CN)8]·x(solvent) (Ln = Ce–Dy, n = 2, m = 2; Ln = Ho–Yb, n = 1, m = 3) | 2D mixed 4- and 8-membered metal rings | Visible Ln3+(Pr, Sm, Eu, Ho) or NIR Ln3+ (Pr, Nd, Sm, Ho, Yb) emission with direct f-f excitation and box-to-Ln3+ ET. | [110] |
Compound | Structural type | Luminescent property | Ref. |
---|---|---|---|
K[LnIII(H2O)n][RuII(2,2’-bpy)(CN)4]2·9H2O1 (n = 7, Ln = Pr; n = 6, Ln = Er, Yb) | 0D trinuclear molecule | NIR Ln3+ (Ln = Pr, Er, Yb) emission with Ru2+-to-Ln3+ ET.2 | [111,112] |
[LnIII(H2O)4]2[RuII(2,2’-bpy)(CN)4]3·nH2O (Ln = Gd, Nd) | 2D mixed 4- and 12-membered metal rings | NIR Nd3+ emission (NdRu) with Ru2+-to-Nd3+ ET. Yellow [Ru(2,2’-bpy)(CN)4]2− emission in GdRu (MLCT).3 | [112] |
[LnIII(H2O)5(NO3)][RuII(bpym)(CN)4]5 (Ln = Nd, Sm, Gd) | 1D helical chain | NIR Nd3+ emission (NdRu) with Ru2+-to-Nd3+ ET. Red [Ru(bpym)(CN)4]2− emission in GdRu (MLCT). | [113] |
[LnIII2(H2O)7.5(NO3)1.5][RuII(bpym)(CN)4]2·5.5H2O (Ln = Er, Yb) | 2D cross-linked square-based chains | NIR Ln3+ (Ln = Er, Yb) emission with Ru2+-to-Ln3+ ET. | [113] |
[LnIII(H2O)5(NO3)]2[{RuII(CN)4}2 (bpym)]·3H2O (Ln = Nd, Sm) | 1D hybrid ladder chain | NIR Nd3+ emission in NdRu with Ru2+-to-Nd3+ ET. | [113] |
[LnIII1.5(H2O)7][{RuII(CN)4}2(bpym)]·(NO3)·nH2O (Ln = Eu, Gd, Yb) | 3D hybrid I2O1 network | NIR Yb3+ emission (YbRu) with Ru2+-to-Yb3+ ET. Red [{RuII(CN)4}2(bpym)]4− emission in GdRu (MLCT). | [113] |
K2[LnIII(phen)2(H2O)]2[RuII(phen)(CN)4]4·n(solvent)6 (Ln = Pr, Nd, Er, Yb) | 0D hexanuclear | NIR Ln3+ (Ln = Nd, Er, Yb) emission with Ru2+-to-Ln3+ ET. | [114] |
[LnIII(phen)(H2O)3]2[RuII(phen)(CN)4]·14H2O (Ln = Nd, Gd, Er, Yb) | 2D honeycomb | NIR Ln3+ (Ln = Nd, Er, Yb) emission with Ru2+-to-Ln3+ ET. Red [Ru(phen)(CN)4]2− emission in GdRu (MLCT). | [114] |
[LnIII(terpy)(H2O)3]2[RuII(phen)(CN)4]3·nH2O7 (Ln = Pr, Nd, Er, Yb) | 1D ladder chain | NIR Ln3+ (Ln = Nd, Er, Yb) emission with Ru2+-to-Ln3+ ET. | [114] |
[LnIII2(bpym)(H2O)7][RuII(phen)(CN)4]3·nsolvent (Ln = Nd, Er, Yb) | 1D hybrid chain of squares | NIR Ln3+ (Ln = Nd, Er, Yb) emission with Ru2+-to-Ln3+ ET. | [114] |
[NdIII(H2O)5]2[{RuII(CN)4}3(HAT)]·13H2O4 | 3D pillared network | NIR Nd3+ emission with Ru2+-to-Nd3+ ET. | [115] |
[LnIII(H2O)5]2[RuII(HAT)(CN)4]·nH2O (Ln = Nd, Sm, Eu, Gd) | 2D hybrid of 12-membered metal rings | NIR Nd3+ emission (NdRu) with Ru2+-to-Nd3+ ET. Red [Ru(bpym)(CN)4]2− emission in GdRu (MLCT). | [116] |
[YbIII2(H2O)9(NO3)2][RuII(HAT)(CN)4]·2(NO3)·6.5H2O | 1D ladder chain | NIR Yb3+ emission with Ru2+-to-Yb3+ ET. | [116] |
[YbIII3(H2O)2(NO3)][{RuII(CN)4}2(HAT)]2·20H2O | 2D hybrid 6-membered metal rings | NIR Yb3+ emission with Ru2+-to-Yb3+ ET. | [116] |
[LnIII(H2O)4]2[{RuII(CN)4}3(HAT)]·13H2O4 (Ln = Nd, Gd, Yb) | 3D pillared network | NIR Ln3+ (Ln = Nd, Yb) emission with Ru2+-to-Ln3+ ET. | [116] |
[GdIII(H2O)4(MeOH)][OsII(phen)(CN)4]1.5·4H2O | 2D 12-membered metal rings | Red [Os(phen)(CN)4]2− emission (MLCT). | [117] |
Na2[LnIII(phen)2(H2O)]2[OsII(phen)(CN)4]4·4MeOH·17H2O (Ln = Pr, Nd, Er, Yb) | 0D hexanuclear | NIR Ln3+ (Ln = Nd, Er, Yb) emission with Os2+-to-Ln3+ ET. | [117] |
[LnIII2(bpym)(H2O)7][OsII(phen)(CN)4]3·MeOH·13H2O (Ln = Er, Yb) | 1D hybrid chain of squares | NIR Ln3+ (Ln = Er, Yb) emission with Os2+-to-Ln3+ ET. | [117] |
[NdIII4(bpym)2(H2O)12(MeOH)] [OsII(phen)(CN)4]6·6MeOH·19.5H2O | 2D mixed 3-, 4-, 6-, and 14-membered metal rings | NIR Nd3+ emission with Os2+-to-Nd3+ ET. Red | [117] |
K[LnIII(H2O)4][RuII(tBubpy)(CN)4]2·8H2O8 (Ln = Pr, Nd, Sm, Eu) | 1D chain of squares | Orange [Ru(tBubpy)(CN)4]2− emission (MLCT); selective sensitization by gaseous amine molecules. | [118,119] |
Compound | Structural type | Luminescent property | Ref. |
---|---|---|---|
[ErIIICuII2(L1)2(Cl)2][CuI4(CN)5(MeCN)4]1 | 2D Cu-cyanide 10-membered metal rings, and trinuclear {ErCu2}+ counterions | NIR Er3+ emission under the visible excitation. | [120] |
[LnIII(H2O)2(MeCN)(NO3)2]2[IrIII(ppy)2(CN)2]2·4MeCN2 (Ln = La, Pr, Nd) | 0D tetranuclear molecule | Green [IrIII(ppy)2(CN)2]− emission in NdIr, weakened by partial Ir3+-to-Nd3+ ET.3 | [121] |
{N(PPh3)2}2[EuIII2(H2O)(NO3)6][IrIII(ppy)2(CN)2]2·5MeCN | 0D tetranuclear molecule | Green [IrIII(ppy)2(CN)2]− emission, weakened by partial Ir3+-to-Eu3+ ET.3 | [121] |
[GdIII(NO3)2(H2O)2]2[IrIII(ppy)2(CN)2]2 | 0D tetranuclear molecule | Green [IrIII(ppy)2(CN)2]− emission. | [121] |
[LnIII(H2O)7][B(CN)4]·2{B(CN)4} (Ln = Tb, Dy) | 0D dinuclear molecule | Green Tb3+ (TbB) or yellow Dy3+ (DyB) emission under direct f-f, and f-d excitations. | [122] |
[LnIII{C2F5B(CN)3}3(H2O)3] (Ln = La, Eu, Ho) | 2D cross-linked square-based chains | Red Eu3+ emission in EuB with [C2F5B(CN)3]−-to-Eu3+ energy transfer. | [123] |
[LnIII{C2F5B(CN)3}] (Ln = La, Eu, Ho) | 3D network | Greenish-blue [C2F5B(CN)3]− emission in LaB and HoB with reabsorption effect in HoB. Red Eu3+ emission in EuB EuB with [C2F5B(CN)3]−-to-Eu3+ energy transfer. | [123] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chorazy, S.; Wyczesany, M.; Sieklucka, B. Lanthanide Photoluminescence in Heterometallic Polycyanidometallate-Based Coordination Networks. Molecules 2017, 22, 1902. https://doi.org/10.3390/molecules22111902
Chorazy S, Wyczesany M, Sieklucka B. Lanthanide Photoluminescence in Heterometallic Polycyanidometallate-Based Coordination Networks. Molecules. 2017; 22(11):1902. https://doi.org/10.3390/molecules22111902
Chicago/Turabian StyleChorazy, Szymon, Maciej Wyczesany, and Barbara Sieklucka. 2017. "Lanthanide Photoluminescence in Heterometallic Polycyanidometallate-Based Coordination Networks" Molecules 22, no. 11: 1902. https://doi.org/10.3390/molecules22111902
APA StyleChorazy, S., Wyczesany, M., & Sieklucka, B. (2017). Lanthanide Photoluminescence in Heterometallic Polycyanidometallate-Based Coordination Networks. Molecules, 22(11), 1902. https://doi.org/10.3390/molecules22111902