Enhanced Agronomic Traits and Medicinal Constituents of Autotetraploids in Anoectochilus formosanus Hayata, a Top-Grade Medicinal Orchid
Abstract
:1. Introduction
2. Results
2.1. Induction of Polyploidy
2.2. The Stability of Polyploidy
2.3. Analysis of Agronomic Traits
2.4. Analysis of Stomata
2.5. Analysis of the Gastrodin Content
2.6. Analysis of the Flavonoid Content
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Subculture of the In Vitro–Grown Plants
4.3. Induction of Polyploidy
4.4. Flow Cytometric Analysis
4.5. Analysis of Stability of Polyploidy
4.6. Analysis of Stomata and Agronomic Traits
4.7. Acclimatization of Regenerated Plants
4.8. Determination of the Gastrodin Content
4.9. Determination of the Flavonoid Content
4.10. Statistical Analysis
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
BA | N-(Phenylmethyl)-7H-purin-6-amine, N6-benzyladenine |
IBA | 1 H-Indole-3-butanoic acid, Indole-3-butyric acid |
MS | medium Murashige and Skoog (1962) medium |
TDZ | 1-Phenyl-3-(1,2,3-thiadiazol-5-yl)-urea, thidiazuron |
References
- Hsu, C.C. Preliminary chromosome studies on the vascular plants of Taiwan (IV) Counts and systematic notes on some monocotyledons. Taiwania 1971, 16, 123–136. [Google Scholar]
- Mak, O.T.; Huang, D.D.; Law, R.C.S. Anoectochilus formosanus Hay. contains substances that affect arachidonic acid metabolism. Phytother. Res. 1990, 4, 45–48. [Google Scholar] [CrossRef]
- Lin, C.C.; Huang, P.C.; Lin, J.M. Antioxidant and hepatoprotective effects of Anoectochilus formosanus and Gynostemma pentaphyllum. Am. J. Chin. Med. 2000, 28, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Du, X.M.; Nobuto, I.; Norihiro, F.; Jun, H.; Yukihiro, S. Pharmacologically active compounds in the Anoectochilus and Goodyera species. J. Nat. Med. 2008, 62, 132–148. [Google Scholar] [CrossRef] [PubMed]
- Shiau, Y.J.; Sagare, A.P.; Chen, U.C.; Yang, S.R.; Tsay, H.S. Conservation of Anoectochilus formosanus Hayata by artificial cross-pollination and in vitro culture of seeds. Bot. Bull. Acad. Sin. 2002, 43, 123–130. [Google Scholar]
- Ket, N.V.; Hahn, E.J.; Park, S.Y.; Chakrabarty, D.; Paek, K.Y. Micropropagation of an endangered orchid Anoectochilus formosanus. Biol. Plant. 2004, 48, 339–344. [Google Scholar] [CrossRef]
- Jia, Y.; Shen, J.; Li, X.; Xie, H.; Wang, J.; Luo, J.; Wang, K.D.G.; Liu, Q.; Kong, L. Identification and analysis of gastrodin and its five metabolites using ultra fast liquid chromatography electrospray ionization tandem mass spectrometry to investigate influence of multiple-dose and food. J. Chromatogr. A 2014, 1358, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Fang, S.; Lv, G.; Mei, X. Gastrodin promotes the secretion of brain-derived neurotrophic factor in the injured spinal cord. Neural Regen. Res. 2013, 8, 1383–1389. [Google Scholar] [PubMed]
- Ferreyra, M.L.F.; Rius, S.P.; Paula, C. Flavonoids: biosynthesis, biological functions, and biotechnological applications. Front. Plant Sci. 2012, 3, 222. [Google Scholar]
- Wang, S.Y.; Kuo, Y.H.; Chang, H.N.; Kang, P.L.; Tsay, H.S.; Lin, K.F.; Yang, N.S.; Shyur, L.F. Profiling and characterization antioxidant activities in Anoectochilus formosanus Hayata. J. Agric. Food Chem. 2002, 50, 1859–1865. [Google Scholar] [CrossRef] [PubMed]
- Du, X.M.; Sun, N.Y.; Hayashi, J.; Chen, Y.; Sugiura, M.; Shoyama, Y. Hepatoprotective and antihyperliposis activities of in vitro cultured Anoectochilus formosanus. Phytother. Res. 2003, 17, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Hu, C.G.; Yao, J.L. Tetraploidization of diploid Dioscorea results in activation of the antioxidant defense system and increased heat tolerance. J. Plant Physiol. 2010, 167, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Dhooghe, E.; Van Laere, K.; Eeckhaut, T.; Leus, L.; Van Huylenbroeck, J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult. 2011, 104, 359–373. [Google Scholar] [CrossRef]
- Lavania, U. Genomic and ploidy manipulation for enhanced production of phyto-pharmaceuticals. Plant Genet. Resour. 2005, 3, 170–177. [Google Scholar] [CrossRef]
- Dehghan, E.; Reed, D.W.; Covello, P.S.; Hasanpour, Z.; Palazon, J.; Oksman-Caldentey, K.M.; Ahmadi, F.S. Genetically engineered hairy root cultures of Hyoscyamus senecionis and H. muticus: ploidy as a promising parameter in the metabolic engineering of tropane alkaloids. Plant Cell Rep. 2017, 36, 1615. [Google Scholar] [CrossRef] [PubMed]
- Adaniya, S.; Shirai, D. In vitro induction of tetraploid ginger (Zingiber officinale Roscoe) and its pollen fertility and germinability. Sci. Hortic. 2001, 88, 277–287. [Google Scholar] [CrossRef]
- De Carvalho, J.F.R.P.; de Carvalho, C.R.; Otoni, W.C. In vitro induction of polyploidy in annatto (Bixa orellana). Plant Cell Tissue Organ Cult. 2005, 80, 69–75. [Google Scholar] [CrossRef]
- Rubuluza, T.; Nikolova, R.V.; Smith, M.T.; Hannweg, K. In vitro induction of tetraploids in Colophospermum mopane by colchicine. S. Afr. J. Bot. 2007, 73, 259–261. [Google Scholar] [CrossRef]
- Murthy, B.N.S.; Murch, S.J.; Saxena, P.K. Thidiazuron: A potent regulator of in vitro plant morphogenesis. In Vitro Cell. Dev. Biol. Plant 1998, 34, 267–275. [Google Scholar] [CrossRef]
- Guo, B.; Abbasi, B.H.; Zeb, A.; Xu, L.L.; Wei, Y.H. Thidiazuron: a multi-dimensional plant growth regulator. Afr. J. Biotechnol. 2011, 10, 8984–9000. [Google Scholar]
- Chen, J.T. Induction of petal-bearing embryos from root-derived callus of Oncidium ‘Gower Ramsey’. Acta Physiol. Plant. 2012, 34, 1337–1343. [Google Scholar] [CrossRef]
- Lee, P.L.; Chen, J.T. Plant regeneration via callus culture and subsequent in vitro flowering of Dendrobium huoshanense. Acta Physiol. Plant. 2014, 36, 2619–2625. [Google Scholar] [CrossRef]
- Tsai, K.L.; Chen, E.G.; Chen, J.T. Thidiazuron-induced efficient propagation of Salvia miltiorrhiza through in vitro organogenesis and medicinal constituents of regenerated plants. Acta Physiol. Plant. 2016, 38, 29. [Google Scholar] [CrossRef]
- Roy, A.; Leggett, G.; Koutoulis, A. In vitro tetraploid induction and generation of tetraploids from mixoploids in hop (Humulus lupulus L.). Plant Cell Rep. 2001, 20, 489–495. [Google Scholar]
- Rey, H.; Sansberro, B.; Collavino, M.; Davina, J.; Gonzalez, A.; Mroginski, L. Colchicine, trifluralin and oryzalin promoted development of somatic embryos in Ilex paraguariensis (Aquifoliaceae). Euphytica 2002, 123, 49–56. [Google Scholar] [CrossRef]
- Petersen, K.K.; Hagberg, P.; Kristiansen, K. Colchicine and oryzalin mediated chromosome doubling in different genotypes of Miscanthus sinensis. Plant Cell Tissue Organ Cult. 2003, 73, 137–146. [Google Scholar] [CrossRef]
- Nilanthi, D.; Chen, X.L.; Zhao, F.C.; Yang, Y.S.; Wu, H. Induction of tetraploids from petiole explants through colchicine treatments in Echinacea purpurea L. J. Biomed. Biotechnol. 2009, 2009, 343485. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Hahn, E.J.; Murthy, H.N.; Paek, K.Y. Effect of polyploidy induction on biomass and ginsenoside accumulations in adventitious roots of ginseng. J. Plant Biol. 2004, 47, 356. [Google Scholar] [CrossRef]
- Miller, M.; Zhang, C.; Chen, Z.J. Ploidy and hybridity effects on growth vigor and gene expression in Arabidopsis thaliana hybrids and their parents. G3 Genes Genomes Genet. 2012, 2, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Gantait, S.; Mandal, N.; Bhattacharyya, S.; Das, P.K. Induction and identification of tetrapolids using in vitro colchicine treatment of Gerbera jamesonii Bolus cv. Sciella. Plant Cell Tissue Organ Cult. 2011, 106, 485–493. [Google Scholar] [CrossRef]
- Sugiyama, S.I. Polyploidy and cellular mechanisms changing leaf size: comparison of diploid and autotetraploid populations in two species of Lolium. Ann. Bot. 2005, 96, 931–938. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, V.M.; Forni-Martins, E.R.; Magalhães, P.M.; Alves, M.N. Chromosomal and morphological studies of diploid and polyploid cytotypes of Stevia rebaudiana (Bertoni) (Eupatorieae, Asteraceae). Genet. Mol. Biol. 2004, 27, 215.33–222.33. [Google Scholar] [CrossRef]
- Thorpe, T.A. Morphogenesis and regeneration. In Plant Cell and Tissue Culture; Vasil, I.K., Thorpe, T.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994; pp. 17–36. [Google Scholar]
- Tierno, R.; de Galarreta, J.I.R. Heritability of target bioactive compounds and hydrophilic antioxidant capacity in purple- and red-fleshed tetraploid potatoes. Crop Pasture Sci. 2016, 67, 1309–1317. [Google Scholar] [CrossRef]
- Letchamo, W. Developmental and seasonal variations in flavonoids of diploid and tetraploid Camomile liqulate florets. J. Plant Physiol. 1996, 148, 645–651. [Google Scholar] [CrossRef]
- Zahedi, A.A.; Hosseini, B.; Fattahi, M.; Dehghan, E.; Parastar, H.; Madani, H. Overproduction of valuable methoxylated flavones in induced tetraploid plants of Dracocephalum kotschyi Boiss. Bot. Stud. 2014, 55, 22. [Google Scholar] [CrossRef] [PubMed]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Ramamoorthy, P.K.; Bono, A. Antioxidant activity, total phenolic and flavonoid content of Morinda citrifolia fruit extracts from various extraction processes. J. Eng. Sci. Technol. 2007, 2, 70–80. [Google Scholar]
- Duncan, D.B. Multiple range and multiple F test. Biometrics 1955, 11, 1–42. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available. |
Colchicine (mg/L) | 0.5 mg/L BA-Containing Medium | 0.5 mg/L TDZ-Containing Medium | ||
---|---|---|---|---|
* Number of Survival Shoots | ** Percentage of Polyploids (%) | Number of Survival Shoots | Percentage of Polyploids (%) | |
0 (control) | 11.0 ± 1.2a *** | 0 | 14.5 ± 0.6a | 0 |
100 | 5.3 ± 0.5b | 10 | 8.3 ± 1.3b | 50 |
250 | 2.5 ± 1.0c | 20 | 3.0 ± 1.4c | 20 |
500 | 1.5 ± 0.6cd | 20 | 1.8 ± 0.5cd | 20 |
1000 | 1.0 ± 0.0d | 10 | 1.3 ± 0.5d | 10 |
Characteristics | Tenth Generation Vegetative Clonal 4x Plants Obtained from Nodal Stem Segments | Seed-Derived 4x Plants Obtained Via Self-Pollination |
---|---|---|
Ploidy level (cytometric patterns of young leaves, lateral shoots and root tips) | 4x (all present 4C + 8C) | 4x (all present 4C + 8C) |
Stomata frequency (numbers/500 × 500 μm2) | 28.8 ± 1.5a * | 28.5 ± 1.7a |
Length of stomata (μm) | 30.5 ± 1.3a | 31.5 ± 1.3a |
Width of stomata (μm) | 26.5 ± 1.0a | 26.3 ± 1.0a |
Leaf shape | Cordate | Cordate |
Agronomic Traits | Ploidy Level | |
---|---|---|
Diploid | Tetraploid | |
Dry weight (g) | 0.41 ± 0.04b * | 0.76 ± 0.07a |
Fresh weight (g) | 0.97 ± 0.38b | 1.73 ± 0.66a |
Shoot length (cm) | 2.85 ± 0.68b | 3.76 ± 0.79a |
Shoot diameter (cm) | 0.30 ± 0.06a | 0.31 ± 0.07a |
Root length (cm) | 1.22 ± 0.32b | 2.96 ± 0.65a |
Root diameter (cm) | 0.16 ± 0.03a | 0.21 ± 0.06a |
Leaf length (cm) | 1.87 ± 0.38a | 1.76 ± 0.48a |
Leaf width (cm) | 1.35 ± 0.22b | 1.88 ± 0.47a |
Length/width ratio of leave | 1.38 ± 0.21a | 0.95 ± 0.13b |
Leaf Shape | Ovate | Cordate |
Characteristics | Ploidy Level | |
---|---|---|
Diploid | Tetraploid | |
Stomatal density (no./500 × 500 μm2) | 62.6 ± 3.6a * | 28.4 ± 3.3b |
Stoma length (μm) | 24.8 ± 1.4b | 30.6 ± 0.6a |
Stoma width (μm) | 16.8 ± 1.4b | 24.6 ± 0.6a |
Length/width ratio of stoma | 1.48 ± 0.09a | 1.23 ± 0.01b |
No. of chloroplasts per stoma | 24.6 ± 2.0b | 57.4 ± 1.7a |
Analyte | Precursor Ion (m/z) | Cone Voltage (V) | Product Ion (m/z) | Collision Energy (eV) |
---|---|---|---|---|
Gastrodin | 285.1 | 10 | 105 | 20 |
123 * | 15 | |||
161 | 5 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, H.-H.; Shi, S.-K.; Huang, B.; Chen, J.-T. Enhanced Agronomic Traits and Medicinal Constituents of Autotetraploids in Anoectochilus formosanus Hayata, a Top-Grade Medicinal Orchid. Molecules 2017, 22, 1907. https://doi.org/10.3390/molecules22111907
Chung H-H, Shi S-K, Huang B, Chen J-T. Enhanced Agronomic Traits and Medicinal Constituents of Autotetraploids in Anoectochilus formosanus Hayata, a Top-Grade Medicinal Orchid. Molecules. 2017; 22(11):1907. https://doi.org/10.3390/molecules22111907
Chicago/Turabian StyleChung, Hsiao-Hang, Shu-Kai Shi, Bin Huang, and Jen-Tsung Chen. 2017. "Enhanced Agronomic Traits and Medicinal Constituents of Autotetraploids in Anoectochilus formosanus Hayata, a Top-Grade Medicinal Orchid" Molecules 22, no. 11: 1907. https://doi.org/10.3390/molecules22111907
APA StyleChung, H. -H., Shi, S. -K., Huang, B., & Chen, J. -T. (2017). Enhanced Agronomic Traits and Medicinal Constituents of Autotetraploids in Anoectochilus formosanus Hayata, a Top-Grade Medicinal Orchid. Molecules, 22(11), 1907. https://doi.org/10.3390/molecules22111907