Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health
Abstract
:1. Introduction
2. Olive Fruits
2.1. Agronomic Features of Olives and Olive Oils: Effect on Composition and Quality
2.2. Cultivar
2.3. Maturation Stage
2.4. Irrigation Regime
2.5. Geographical Origin
2.6. Pathogen Attacks
3. Olive Oils
3.1. Non Phenolic Compounds of Olive Oil
3.2. Hydrocarbons
3.3. Aliphatic Alcohols
3.4. Sterols
3.5. Pigments
3.6. (Poly)phenolic Composition of Olive Oil
3.7. Benzoic and Cinnamic Acids
3.8. Phenolic Alcohols and Secoiridoids
3.9. Lignans
3.10. Hydroxy-Isochromans
3.11. Flavonoids
3.12. Lipophilic or Non-Polar Phenols
4. Chromatographic and Spectroscopic Methods for the Determination of Olive Oil Composition
4.1. High Performance Liquid Chromatography
4.2. Spectroscopic Methods: IR and Raman
5. Relationship between Molecular Structure and Biological Activity of Olive Oil Phenolics
6. Biological Activity of Olive Oil Compounds: In Vitro and In Vivo Evidence
6.1. Oxidative Stress
6.2. Cancer
6.3. Plasma Fatty Acids Composition and Cardiovascular Diseases
6.4. Metabolic Diseases
6.5. Inflammation
7. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Rotondi, A.; Alfei, B.; Magli, M.; Pannelli, G. Influence of genetic matrix and crop year on chemical and sensory profiles of Italian monovarietal extra-virgin olive oils. J. Sci. Food Agric. 2010, 90, 2641–2648. [Google Scholar] [CrossRef] [PubMed]
- International Olive Council. Designations and Definitions of Olive Oils. Available online: http://www.internationaloliveoil.org/ (accessed on 14 March 2017).
- Trade Standard Applying to Olive Oils and Olive-Pomace Oils; COI/T.15/NC No. 3/Rev.; International Olive Council: Madrid, Spain, 8 February 2015; pp. 1–17.
- Gómez-Romero, M.; García-Villalba, R.; Carrasco-Pancorbo, A.; Fernández-Gutiérrez, A. Metabolism and Bioavailability of Olive Oil Polyphenols. In Olive Oil—Constituents, Quality, Health Properties and Bioconversions; Dimitrios, B., Ed.; InTech: Rijeka, Croatia, 2012; pp. 333–356, Chapter No. 18; ISBN 978-953-307-921-9. Available online: http://www.intechopen.com/books/olive-oil-constituents-quality-health-properties-andbioconversions/metabolism-and-bioavailability-of-olive-oil-polyphenols (accessed on 5 May 2017).
- Frankel, E.N. Chemistry of autoxidation: Mechanism, products and flavor significance. In Flavor Chemistry of Fats and Oils; Min, D.B., Smouse, T.H., Eds.; AOCS Press: Champaign, IL, USA, 1985; pp. 1–37. [Google Scholar]
- Petrakis, C. Olive oil extraction. In Olive Oil: Chemistry and Technology; Boskou, D., Ed.; AOCS Press: Champaign, IL, USA, 2006; Volume 9, pp. 191–223. ISBN 189399788X. [Google Scholar]
- Nieto, L.; Hodaifa, G.; Peña, J. Changes in phenolic compounds and rancimat stability of olive oils from varieties of olives at different stages of ripeness. J. Sci. Food Agric. 2010, 90, 2393–2398. [Google Scholar] [CrossRef] [PubMed]
- Mella, J.I.F. Estudio de Parâmetros de Calidad en Frutos de três Cultivares de Olivo (Olea europaea L.) Durante la Maduración en la Región de Trás-os-Montes (Portugal). Relatório de Estágio; UTAD: Vila Real, Portugal, 2007; pp. 6–50. (In Spanish) [Google Scholar]
- Boskou, D.; Blekas, G.; Tsimidou, M. Olive oil composition. In Olive Oil: Chemistry and Technology; Boskou, D., Ed.; AOCS Press: Champaign, IL, USA, 2006; pp. 1–33. [Google Scholar]
- Simopoulos, A.P. The Mediterranean diets: What is so special about the diet of Greece? The scientific evidence. J. Nutr. 2001, 131, 3065S–3073S. [Google Scholar] [PubMed]
- Ryan, D.; Robards, K. Phenolic compounds in olives. Analyst 1998, 123, 31R–44R. [Google Scholar] [CrossRef]
- Boskou, D. Olive oil composition. In Olive Oil: Chemistry and Technology; Boskou, D., Ed.; AOCS Press: Champaign, IL, USA, 1996; Volume 44, pp. 52–83. [Google Scholar]
- Ryan, D.; Antolovich, M.; Herlt, T.; Prenzler, P.D.; Lavee, S.; Robards, K. Identification of phenolic compounds in tissues of the novel olive cultivar Hardy’s Mammoth. J. Agric. Food Chem. 2002, 50, 6716–6724. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Galli, C. Olive oil: More than just oleic acid. Am. J. Clinic Nutr. 2000, 72, 853–856. [Google Scholar]
- Waterman, E.; Lockwood, B. Active components and clinical applications of olive oil. Altern. Med. Rev. 2007, 12, 331–342. [Google Scholar] [PubMed]
- Omar, S.H. Cardioprotective and neuroprotective roles of oleuropein in olive. Saudi Pharm. J. 2010, 18, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Amiot, M.J.; Fleuriet, A.; Macheix, J.J. Importance and evolution of phenolic compounds in olive during growth and maturation. J. Agric. Food Chem. 1996, 34, 823–826. [Google Scholar] [CrossRef]
- Cerretani, L.; Bendini, A.; Rotondi, A.; Lercker, G.; Toschi, T.G. Analytical comparison of monovarietal virgin olive oils obtained by both a continuous industrial plant and low-scale mill. Eur. J. Lipid Sci. Technol. 2005, 107, 93–100. [Google Scholar] [CrossRef]
- Dabbou, S.; Gharbi, I.; Dabbou, S.; Brahmi, F.; Nakbi, A.; Hammami, M. Impact of packaging material and storage time on olive oil quality. Afr. J. Biotechnol. 2011, 10, 16937–16947. [Google Scholar]
- Bakhouche, A.; Sánchez, J.; Beltrán-Debón, R.; Joven, J.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Phenolic characterization and geographical classification of commercial Arbequina extra-virgin olive oils produced in southern Catalonia. Food Res. Int. 2013, 50, 401–408. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Salvador, M.D.; La Greca, M.; Fregapane, G. Phenolic and volatile compounds of extra virgin olive oil (Olea europaea L. Cv. Cornicabra) with regard to fruit ripening and irrigation management. J. Agric. Food Chem. 2006, 54, 7130–7136. [Google Scholar] [CrossRef] [PubMed]
- Vinha, A.F.; Ferreres, F.; Silva, B.M.; Valentão, P.; Gonçalves, A.; Pereira, J.A.; Oliveira, M.B.; Seabra, R.M.; Andrade, P.B. Phenolic profiles of Portuguese olive fruits (Olea europaea L.): Influences of cultivar and geographical origin. Food Chem. 2005, 89, 561–568. [Google Scholar] [CrossRef]
- Mailer, R.J.; Ayton, J. Comparison of olive oil (Olea europaea) quality extracted by stonemill and hammermill. N. Z. J. Crop Hort. Sci. 2004, 32, 325–330. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.F.; Morozzi, G. Health and sensory properties of virgin olive oil hydrophilic phenols: Agronomic and technological aspects of production that affect their occurrence in the oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef]
- Gallina-Toschi, T.; Cerretani, L.; Bendini, A.; Bonoli-Carbognin, M.; Lercker, G. Oxidative stability and phenolic content of virgin olive oil: An analytical approach by traditional and high resolution techniques. J. Sep. Sci. 2005, 28, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Chiacchierini, E.; Mele, G.; Restuccia, D.; Vinci, G. Impact evaluation of innovative and sustainable extraction technologies on olive oil quality. Trends Food Sci. Technol. 2007, 18, 299–305. [Google Scholar] [CrossRef]
- Servili, M.; Esposto, S.; Lodolini, E.M.; Selvaggini, R.; Taticchi, A.; Urbani, S.; Monte-doro, G.F.; Serravalle, M.; Gucci, R. Irrigation effects on quality, phenolic composition and selected volatiles of virgin olive oil Cv. Leccino. J. Agric. Food Chem. 2007, 55, 6609–6618. [Google Scholar] [CrossRef] [PubMed]
- Lozano-Sánchez, J.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Filtration process of extra virgin olive oil: Effect on minor components, oxidative stability and sensorial and physicochemical characteristics. Trends Food Sci. Technol. 2010, 21, 201–211. [Google Scholar] [CrossRef]
- Dagdelen, A.; Tumen, G.; Ozcan, M.; Dundar, E. Phenolics profiles of olive fruits (Olea europaea L.) and oils from Ayvalık, Domat and Gemlik varieties at different ripening stages. Food Chem. 2013, 136, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Franco, M.N.; Galeano-Días, T.; López, Ó.; Fernández-Bolaños, J.G.; Sánchez, J.; De Miguel, C.; Gil, M.V.; Martín-Vertedor, D. Phenolic compounds and antioxidant capacity of virgin olive oil. Food Chem. 2014, 163, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Sousa, A.; Malheiro, L.; Casal, S.; Bento, A.; Pereira, J. Optimal harvesting period for cvs. Madural and Verdeal Transmontana, based on antioxidant potential and phenolic composition of olives. LWT Food Sci. Technol. 2015, 62, 1120–1126. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Domínguez-Perles, R.; Girónes-Vilaplana, A.; Carvalho, T.; Machado, N.; Barros, A. Kinetics of the polyphenolic content and radical scavenging capacity in olives through on-tree ripening. J. Chem. 2017, 2017, 5197613. [Google Scholar] [CrossRef]
- Menz, G.; Vriesekoop, F. Physical and chemical changes during the maturation of Gordal Sevillana Olives (Olea europea L., cultivar. Gordal sevillana). J. Agric. Food Chem. 2010, 58, 4934–4938. [Google Scholar] [CrossRef] [PubMed]
- Morelló, J.R.; Vuorela, S.; Romero, M.P.; Motilva, M.J.; Heinonen, M. Antioxidant activity of olive pulp and olive oil phenolic compounds of the arbequina cultivar. J. Agric. Food Chem. 2005, 53, 2002–2008. [Google Scholar] [CrossRef] [PubMed]
- Morelló, J.R.; Motilva, M.J.; Tovar, M.J.; Romero, M.P. Changes in commercial virgin olive oil (cultivar. Arbequina) during storage, with special emphasis on the phenolic fraction. Food Chem. 2004, 85, 357–364. [Google Scholar] [CrossRef]
- Uceda, M.; Hermoso, M. La calidad del aceite de oliva. In El Cultivo del Olivo; Barranco, D., Fernàndez-Escobar, R., Rallo, L., Eds.; Ediciones Mundi-Prensa, Junta de Andalucia: Madrid, Spain, 1998; pp. 547–572. (In Spanich) [Google Scholar]
- Stefanoudaki, E.; Williams, M.; Chartzoulakis, K.; Harwood, J. Effect of irrigation on quality attributes of olive oil. J. Agric. Food Chem. 2009, 57, 7048–7055. [Google Scholar] [CrossRef] [PubMed]
- Bucelli, P.; Costantini, E.A.C.; Barbetti, R.; Franchini, E. Soil water availability in rainfed cultivation affects more than cultivar some nutraceutical components and the sensory profile of virgin olive oil. J. Agric. Food Chem. 2011, 59, 8304–8313. [Google Scholar] [CrossRef] [PubMed]
- Machado, M.; Felizardo, C.; Fernandes-Silva, A.A.; Nunes, F.M.; Barros, A. Polyphenolic compounds, antioxidant activity and l-phenylalanine ammonia-lyase activity during ripening of olive cultivar. “cobrançosa” under different irrigation regimes. Food Res. Int. 2013, 51, 412–421. [Google Scholar] [CrossRef]
- Caruso, G.; Gucci, R.; Urbani, S.; Espostob, S.; Taticchi, A.; Di Maio, I.; Selvaggini, R.; Servili, M. Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cultivar. Frantoio. Agric. Water Manag. 2014, 134, 94–103. [Google Scholar] [CrossRef]
- Rufat, J.; Villar, J.M.; Pascual, M.; Falguera, V.; Arbones, A. Productive and vegetative response to different irrigation and fertilization strategies of an Arbequina olive orchard grown under super-intensive conditions. Agric. Water Manag. 2014, 144, 33–41. [Google Scholar] [CrossRef]
- Gucci, R.; Lodolini, E.; Rapoport, H.F. Productivity of olive tree with different water status and crop load. J. Hortic. Sci. Biotechnol. 2007, 82, 648–656. [Google Scholar] [CrossRef]
- Grattan, S.R.; Berenguer, M.J.; Connell, J.H.; Polito, V.S.; Vossen, P.M. Olive oil production as influenced by different quantities of applied water. Agric. Water Manag. 2006, 96, 1525–1531. [Google Scholar] [CrossRef]
- Motilva, M.J.; Tovar, M.J.; Romero, M.P.; Alegre, S.; Girona, J. Influence of reg-ulated deficit irrigation strategies applied to olive trees (Arbequina cultivar) on oil yield and oil composition during the fruit ripening period. J. Sci. Food Agric. 2000, 80, 2037–2043. [Google Scholar] [CrossRef]
- Servili, M.; Taticchi, A.; Esposto, S.; Urbani, S.; Selvaggini, R.; Montedoro, G.F. Effect of olive stoning on the volatile and phenolic composition of virgin olive oil. J. Agric. Food Chem. 2007, 55, 7028–7035. [Google Scholar] [CrossRef] [PubMed]
- Tognetti, R.; D’Andria, R.; Sacchi, R.; Lavini, A.; Morelli, G.; Alvino, A. Deficit irrigation affects seasonal changes in leaf physiology and oil quality of Olea europaea (cultivars Frantoio and Leccino). Ann. Appl. Biol. 2007, 150, 169–186. [Google Scholar] [CrossRef]
- Romero, M.P.; Tovar, M.J.; Girona, J.; Motilva, M.J. Changes in the HPLC phenolic profile of virgin olive oil from young trees (Olea europaea L. cultivar Arbequina) grown under different deficit irrigation strategies. J. Agric. Food Chem. 2002, 50, 5349–5354. [Google Scholar] [CrossRef] [PubMed]
- Berenguer, M.J.; Vossen, P.M.; Grattan, S.R.; Connell, J.H.; Polito, V.S. Tree irrigation level for optimum chemical and sensory properties of olive oil. Hort. Sci. 2006, 41, 427–432. [Google Scholar]
- Patumi, M.; D’Andria, R.; Fontanazza, G.; Morelli, G.; Giorio, P.; Sorrentino, G. Yield and oil quality of intensively trained trees of three cultivars of olive (Olea europaea L.) under different irrigation regimes. J. Hortic. Sci. Biotechnol. 1999, 74, 729–737. [Google Scholar] [CrossRef]
- Tovar, M.J.; Romero, M.P.; Girona, J.; Motilva, M.J. l-Phenylalanine ammnonia-lyase and concentration of phenolics in developing olive (Olea europaea L. cultivar Arbequina) fruit grown under different irrigation regimes. J. Sci. Food Agric. 2002, 82, 892–898. [Google Scholar] [CrossRef]
- Taamalli, A.; Gómez-Caravaca, A.M.; Zarrouk, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Determination of apolar and minor polar compounds and other chemical parameters for the discrimination of six different varieties of Tunisian extra-virgin olive oil cultivated in their traditional growing area. Eur. Food Res. Technol. 2010, 231, 965–975. [Google Scholar] [CrossRef]
- Alkan, D.; Tokatli, F.; Ozen, B. Phenolic characterization and geographical classification of commercial extra virgin olive oils produced in Turkey. J. Am. Oil Chem. Soc. 2012, 89, 261–268. [Google Scholar] [CrossRef]
- Abu-Reidah, I.M.; Yasin, M.; Urbani, S.; Servili, M.; Montedoro, G. Study and characterization of Palestinian monovarietal Nabali virgin olive oils from northern West Bank of Palestine. Food Res. Int. 2013, 54, 1959–1964. [Google Scholar] [CrossRef]
- Ouni, Y.; Taamalli, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Zarrouk, M. Characterization and quantification of phenolic compounds of extra-virgin olive oils according to their geographical origin by a rapid and resolutive LC-ESI-TOF MS method. Food Chem. 2011, 127, 1263–1267. [Google Scholar] [CrossRef] [PubMed]
- Ponti, L.; Cossu, Q.A.; Gutierrez, A.P. Climate warming effects on the Olea europaea-Bactrocera. oleae system in Mediterranean islands: Sardinia as an exemple. Glob. Chang. Biol. 2009, 15, 2874–2884. [Google Scholar] [CrossRef]
- Cacciola, S.O.; Faedda, R.; Sinatra, F.; Agosteo, G.E.; Schena, L.; Frisullo, S.; Magnano di San Lio, G. Olive Anthracnose. J. Plant Pathol. 2012, 94, 29–44. [Google Scholar]
- Jiménez-Díaz, R.M.; Cirulli, M.; Bubici, G.; Jiménez-Gasco, M.M.; Antoniou, P.P.; Tjamos, E.C. Verticillium wilt, a major threat to olive production: Current status and future prospects for its management. Plant Dis. 2012, 96, 304–329. [Google Scholar] [CrossRef]
- Martín, M.P.; García-Figueres, F. Colletotrichum acutatum and C. gloeosporioides cause anthracnose on olives. Eur. J. Plant Pathol. 1999, 105, 733–741. [Google Scholar] [CrossRef]
- Moral, J.; de la Rosa, R.; León, L.; Barranco, D.; Michailides, T.J.; Trapero, A. High susceptibility of the olive cultivar FS-17 to Alternaria alternata in southern Spain. Plant Dis. 2008, 92, 1252. [Google Scholar] [CrossRef]
- Talhinhas, P.; Sreenivasaprasad, S.; Neves-Martin, J.; Oliveira, H. Molecular and phenotypic analyses reveal the association of diverse Colletotrichum acutatum groups and a low level of C. gloeosporioides with olive anthracnose. Appl. Environ. Microbiol. 2005, 71, 2987–2998. [Google Scholar] [CrossRef] [PubMed]
- García-Figueres, F. Micosis de las aceitunas y su incidencia en la calidad del aceite. Phytoma España 1998, 102, 171–175. (In Spanish) [Google Scholar]
- Mincione, A.; Valenzise, M.; Runcio, A.; Poiana, M.; Agosteo, G.E.; Taccone, P.L. Ricerche sugli oli di oliva vergini calabresi. Influenza delle fitopatie sulle caratteristiche qualitative degli oli. Nota I—Effetti diretti degli attacchi di Antracnosi. Riv. Ital. Sostanze Grasse 2004, 81, 9–17. (In Italian) [Google Scholar]
- Trapero, A.; Blanco-López, M.A. Enfermedades. In El cultivo de Olivo; Barranco, D., Fernández-Escobar, R., Rallo, L., Eds.; Coedición Junta de Andalucía/Mundi-Prensa: Madrid, Spain, 2008; Volume 17, pp. 557–614. (In Spanich) [Google Scholar]
- Gouvinhas, I.; Machado, N.; Girónes-Vilaplana, A.; Gomes, S.; Carvalho, T.; Domínguez-Perles, R.; Barros, A. Sorting out the value of spectroscopic tools to assess the Colletotrichum acutatum impact in olive cultivars with different susceptibilities. J. Chem. 2016, 30, 548–558. [Google Scholar]
- Servili, M.; Esposto, S.; Fabiani, R.; Urbani, S.; Taticchi, A.; Mariucci, F.; Selvaggini, R.; Montedoro, G.F. Phenolic compounds in olive oil: Antioxidant, health and organoleptic activities according to their chemical structure. Inflammopharmacology 2009, 17, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, F.; Ruano, J.; Perez-Martinez, P.; Lopez-Segura, F.; Lopez-Miranda, J. The influence of olive oil on human health: Not a question of fat alone. Mol. Nutr. Food Res. 2007, 51, 1199–1208. [Google Scholar]
- Vichi, S.; Romero, A.; Tous, J.; Tamames, E.L.; Buxaderas, S. Determination of volatile phenols in virgin olive oils and their sensory significance. J. Chromatogr. A 2008, 1211, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, W.; Ali, N.; Afridi, M.S.; Rahman, H.; Adnan, M.; Ullah, N.; Muhammad, U.; Ilyas, M.; Khan, H. Phytochemical profile, antimicrobial potential and GC-MS analysis of wild variety of Olea Europaea (Olive) cultivated in Pakistan. Pure Appl. Biol. 2017, 6, 337–345. [Google Scholar] [CrossRef]
- Cortesi, N.; Rovellini, P.; Fedeli, E. La qualità delle sostanze grasse. Nota II: Raporto fra qualità e concentrazione della frazione digliceridica. Riv. Ital. Sostanze Grasse 1992, 69, 305–310. (In Italian) [Google Scholar]
- Moreda, W.; Pérez-Camino, M.C. Cert Gas and liquid chromatography of hydrocarbons in edible vegetable oils. J. Chromatogr. A 2001, 936, 159–171. [Google Scholar] [CrossRef]
- Strandberg, T.E.; Tilvis, R.S.; Miettinen, T.A. Metabolic variables of cholesterol during squalene feeding in humans: Comparison with cholestyramine treatment. J. Lipid Res. 1990, 31, 1637. [Google Scholar] [PubMed]
- Irmak, S.; Jonnala, R.S.; MacRitchie, F. Effect of genetic variation on phenolic acid and policosanol contents of Pegaso wheat lines. Lines. J. Cereal Sci. 2008, 48, 20–26. [Google Scholar] [CrossRef]
- Reiter, B.; Lorbeer, E. Analysis of the wax ester fraction of olive oil and sunflower oil by gas chromatography and gas chromatography-mass spectrometry. J. Am. Oil Chem. Soc. 2001, 78, 881–888. [Google Scholar] [CrossRef]
- Jackson, M.A.; Eller, F.J. Isolation of long-chain aliphatic alcohols from beeswax using lipase-catalyzed methanolysis in supercritical carbon dioxide. J. Supercrit. Fluids 2006, 37, 173–177. [Google Scholar] [CrossRef]
- Alves, M.R.; Cunha, S.C.; Amaral, J.S.; Pereira, J.A.; Oliveira, M.B. Clasification of PDO olive oils on the basis of their sterol composition by multivariate analysis. Anal. Chim. Acta 2005, 549, 166–178. [Google Scholar] [CrossRef]
- Natella, F.; Nardini, M.; Felice, M.D.; Scaccini, C. Benzoic and cinnamic acid derivatives as antioxidants: Structure–activity relation. J. Agric. Food Chem. 1999, 47, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Criado, M.N.; Romero, M.P.; Motilva, M.J. Effect of the technological and agronomical factors on pigment transfer during olive oil extraction. J. Agric. Food Chem. 2007, 55, 5681–5688. [Google Scholar] [CrossRef] [PubMed]
- Britton, G. Structure and properties of carotenoids in relation to function. FASEB. J. 1995, 9, 1551–1558. [Google Scholar] [PubMed]
- Melendez-Martínez, A.J.; Vicario, I.M.; Heredia, F.J. Carotenoid pigments: Structural and physicochemical considerations. Arch. Latinoam. Nutr. 2007, 57, 109–117. [Google Scholar] [PubMed]
- Cheeke, P.R. Phenolics. In Toxicants of Plant Origin; CRC Press: Boca Raton, FL, USA, 1989; Volume 4. [Google Scholar]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Seguro-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic molecules in virgin olive oils: A survey of their sensory properties, health effects, antioxidant activity and analytical methods. An overview of the last decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasundram, N.; Sundram, K.; Samman, S. Phenolic compounds in plants and agri-industrial by-products: Antioxidant activity, occurrence, and potential uses. Food Chem. 2006, 99, 191–203. [Google Scholar] [CrossRef]
- Boskou, D.; Tsimidou, M.; Blekas, G. Polar phenolic compounds. In Olive Oil: Chemistry and Technology, 2nd ed.; Boskou, D., Ed.; AOCS Press: Champaign, IL, USA, 2006; pp. 73–92. [Google Scholar]
- Shahidi, F.; Naczk, M. Food Phenolics: Sources, Chemistry, Effects, Applications; Technomic Publishing Company Inc.: Lancaster, UK, 1995. [Google Scholar]
- Kalogeropoulos, N.; Mylona, A.; Chiou, A.; Ioannou, M.S.; Andrikopoulos, N.K. Retention and distribution of natural antioxidants (alfa-tocopherol, polyphenols and terpenic acids) after shallow frying of vegetables in virgin olive oil. LWT–Food Sci. Technol. 2007, 40, 1008–1017. [Google Scholar] [CrossRef]
- Liberatore, L.; Procida, G.; D’Alessandro, N.; Cichelli, A. Solid-phase extraction and gas chromatographic analysis og phenolic compounds in virgin olive oil. Food Chem. 2001, 73, 119–124. [Google Scholar] [CrossRef]
- Carrasco Pancorbo, A.; Cruces-Blanco, C.; Carretero, S.A.; Fernandez-Gutiérrez, A. Sensitive determination of phenolic acids in extra-virgin olive oil by capillary zone electrophoresis. J. Agric. Food Chem. 2004, 52, 6687–6693. [Google Scholar] [CrossRef] [PubMed]
- Bianco, A.; Buiarelli, F.; Cartoni, G.; Coccioli, F.; Jasionowska, R.; Margherita, P. Analysis by liquid chromatography-tandem mass spectrometry of biophenolic compounds in virgin olive oil, part II. J. Sep. Sci. 2003, 26, 417–424. [Google Scholar] [CrossRef]
- Krichene, D.; Taamalli, W.; Daoud, D.; Salvador, M.D.; Fregapane, G.; Zarrouk, M. Phenolic compounds, tocopherols and other minor componentes in virgin olive oils of some Tunisian varieties. J. Food Biochem. 2007, 31, 179–194. [Google Scholar] [CrossRef]
- Tura, D.; Gigliotti, C.; Pedo, S.; Failla, O.; Bassi, D.; Serraiocco, A. Influence of cultivar and the site of cultivation on levels of lipophilic and hydrophilic antioxidants in virgin olive oils (Olea europaea L.) and correlations with oxidative stability. Sci. Hortic. 2007, 112, 108–119. [Google Scholar] [CrossRef]
- Garcia-González, D.L.; Tena, N.; Aparicio, R. Quality characterization of the new virgin olive oil var. Sikitita by phenols and volatile compounds. J. Agric. Food Chem. 2010, 58, 8357–8364. [Google Scholar] [CrossRef] [PubMed]
- Carrasco-Pancorbo, A.; Cerretani, L.; Bendini, A.; Segura-Carretero, A.; del Carlo, M.; Gallina-Toschi, T.; Lercker, G.; Compagnone, D.; Fernández-Gutiérrez, A. Evaluation of the antioxidant capacity of individual phenolic compounds in virgin olive oil. J. Agric. Food Chem. 2005, 53, 8918–8925. [Google Scholar] [CrossRef] [PubMed]
- Kachouri, F.; Hamdi, M. Use Lactobacillus plantarum in olive oil process and improvement of phenolic compounds content. J. Food Eng. 2006, 77, 746–752. [Google Scholar] [CrossRef]
- Caponio, F.; Alloggio, V.; Gomes, T. Phenolic compounds of virgin olive oil: Influence of paste preparation techniques. Food Chem. 1999, 64, 203–209. [Google Scholar] [CrossRef]
- Cinar, A.; Cansev, A.; Sahan, Y. Phenolic compounds of olive by-products and their function in the development of cancer cells. Bilimsel Araştırma Dergisi 2011, 4, 55–58. [Google Scholar]
- Artajo, L.; Romero, M.P.; Tovar, M.J.; Motilva, M.J. Effect of irrigation applied to olive trees (Olea europaea L.) on phenolic compound transfer during olive oil extraction. Eur. J. Lipid Sci. Technol. 2006, 108, 19–27. [Google Scholar] [CrossRef]
- Medina, E.; DeCastro, A.; Romero, C.; Brenes, m. Comparison of the concentrations of phenolic compounds in olive oils and other plant oils: Correlation with antimicrobial activity. J. Agric. Food Chem. 2006, 54, 4954–4961. [Google Scholar] [CrossRef] [PubMed]
- Montedoro, G.F.; Servili, M.; Baldioli, M.; Miniati, E. Simple and hydrolyzable phenolic compounds in virgin olive oil. 2. Initial characterization of the hydrolyzable fraction. J. Agric. Food Chem. 1992, 40, 1577–1580. [Google Scholar] [CrossRef]
- Bravo, L. Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutr. Rev. 1998, 56, 317–333. [Google Scholar] [CrossRef] [PubMed]
- Vermerris, W.; Nicholson, R. Byosynthesis of phenolic compounds. In Phenolic Compound Biochemistry, 1st ed.; Springer: Dordrecht, The Netherlands, 2006; pp. 63–134. ISBN 978-1-4020-5164-7. [Google Scholar]
- Doughari, J.H. Phytochemicals: Extraction methods, basic structures and mode of action as potential chemotherapeutic agents. In Phytochemicals—A Global Perspective of Their Role in Nutrition and Health; Venketeshwer, R., Ed.; InTech: Rijeka, Croatia, 2012; ISBN 978-953-51-0296-0. [Google Scholar]
- Brenes, M.; Hidalgo, F.J.; García, A.; Rios, J.J.; García, P.; Zamora, R.; Garrido, A. Pinoresinol and 1-acetoxypinoresinol, two new phenolic compounds identified in olive oil. J. Am. Oil Chem. Soc. 2000, 77, 715–720. [Google Scholar] [CrossRef]
- Owen, R.W.; Mier, W.; Giacosa, A.; Hule, W.E.; Spiegelhalder, B.; Bartsch, H. Phenolic compounds and squalene in olive oils: The concentration and antioxidant potential of total phenols, simple phenols, secoroids, lignans and squalene. Food Chem. Toxicol. 2000, 38, 647–659. [Google Scholar] [CrossRef]
- Montedoro, G.F.; Servili, M.; Baldioli, M. The use of biotechnology means during oil mechanical extraction process: Relationship with sensory and nutritional parameters of virgin olive oil quality. Acta Hortic. 2002, 586, 557–560. [Google Scholar]
- Morelló, J.R.; Romero, M.P.; Ramo, T.; Motilva, M.J. Evaluation of L-phenylalanine ammonia-lyase activity and phenolic profile in olive drupe (Olea europaea L.) from fruit setting period to harvesting time. Plant Sci. 2005, 168, 65–72. [Google Scholar] [CrossRef]
- Bianco, A.; Coccioli, F.; Guiso, M.; Marra, C. The occurrence in olive oil of a new class of phenolic compounds: hydroxy-isochromans. Food Chem. 2001, 77, 405–411. [Google Scholar] [CrossRef]
- Rovellini, P.; Cortesi, N.; Fedeli, E. Analysis of flavonoids from Olea europaea by HPLC-UV and HPLC-electrospray-MS. Riv. Ital. Sost. Gras 1997, 74, 273–279. [Google Scholar]
- Bohm, B.A. Introduction to flavonoids; Harwood Academic Publishers: Amsterdam, The Netherlands, 1998. [Google Scholar]
- Kiokias, S.; Varzakas, T.; Oreopoulou, V. In vitro activity of vitamins, flavonoids, and natural phenolic antioxidants against the oxidative deterioration of oil-based systems. Crit. Rev. Food Sci. Nutr. 2008, 48, 78–93. [Google Scholar] [CrossRef] [PubMed]
- Beltrán, G.; Aguilera, M.P.; Del Rio, C.; Sanchez, S.; Martinez, L. Influence of fruit ripening process on the natural antioxidant content of Hojiblanca virgin olive oils. Food Chem. 2005, 89, 207–215. [Google Scholar] [CrossRef]
- Bell, J.R.; Gillatt, P.N. Standards to Ensure the Authenticity of Edible Oils and Fats. 2001. Available online: http://www.fao.org/docrep/t4660t/t4660t0e.htm (accessed on 2 May 2017).
- Kalua, C.M.; Bedgood, D.R.; Bishop, A.G.; Prenzler, P.D. Changes in volatile and phenolic compounds with malaxation time and temperature during virgin olive oil production. J. Agric. Food Chem. 2006, 54, 7641–7651. [Google Scholar] [CrossRef] [PubMed]
- Selvaggini, R.; Servili, M.; Urbani, S.; Esposto, S.; Taticchi, A.; Montedoro, G. Evaluation of phenolic compounds in virgin olive oil by direct injection in high-performance liquid chromatography with fluorometric detection. J. Agric. Food Chem. 2006, 54, 2832–2838. [Google Scholar] [CrossRef] [PubMed]
- Yousfi, K.; Cert, R.M.; Garcia, J.M. Changes in quality and phenolic compounds of virgin olive oils during objectively described fruit maturation. Eur. Food Res. Technol. 2006, 223, 117–124. [Google Scholar] [CrossRef]
- Gómez-Rico, A.; Fregapane, G.; Salvador, M.D. Effect of cultivar and ripening on minor componentes in Spanish olive fruits and their corresponding virgin olive oils. Food Res. Int. 2008, 41, 433–440. [Google Scholar] [CrossRef]
- Wang, P.; Sun, J.; Zhang, T.; Liu, W. Vibrational spectroscopic approaches for the quality evaluation and authentication of virgin olive oil. Appl. Spectr. Rev. 2016, 51, 763–790. [Google Scholar] [CrossRef]
- Amorati, R.; Valgimigli, L. Advantages and limitations of common testing methods for antioxidants. Free Radic. Res. 2015, 49, 633–649. [Google Scholar] [CrossRef] [PubMed]
- Tripoli, E.; Giammanco, M.; Tabacchi, G.; Di Majo, D.; Giammanco, S.; La Guardia, M. The phenolic compounds of olive oil: Structure, biological activity and beneficial effects on human health. Nutr. Res. Rev. 2005, 18, 98–112. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; De Marco, C.; Visioli, F.; Cannella, C. Enzymatic assay for the determination of olive oil polyphenol contant: Assay conditions and validation of the method. J. Agric. Food Chem. 2000, 48, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Becerra-Herrera, M.; Sánchez-Astudillo, M.; Beltrán, R.; Sayago, A. Determination of phenolic compounds in olive oil: New method based on liquid-liquid micro extraction and ultra high performance liquid chromatography-triple-quadrupole mass spectrometry. LWT-Food Sci. Technol. 2014, 57, 49–57. [Google Scholar] [CrossRef]
- Kumar, B.R. Application of HPLC and ESI-MS techniques in the analysis of phenolics acids and flavonoids from green leafy vegetables (GLVs). J. Pharm. Anal. 2017. [Google Scholar] [CrossRef]
- García-Villalba, R.; Pacchiarotta, T.; Carrasco-Pancorbo, A.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Deelder, A.M.; Mayboroda, O.A. Gas chromatography–atmospheric pressure chemical ionization-time of flight mass spectrometry for profiling of phenolic compounds in extra virgin olive oil. J. Chromatogr. A 2011, 1218, 959–971. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Caballero, M.P.; Acedo-Valenzuela, M.I.; Galeano-Díaz, T. Simple quantification of phenolic compounds present in the minor fraction of virgin olive oil by LC–DAD–FLD. Talanta 2012, 101, 479–487. [Google Scholar] [CrossRef] [PubMed]
- García-Villalba, R.; Carrasco-Pancorbo, A.; Oliveras-Ferraros, C.; Vázquez-Martín, A.; Menéndez, J.A.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Characterization and quantification of phenolic compounds of extra-virgin olive oils with anticancer properties by a rapid and resolutive LC-ESI-TOF MS method. J. Pharm. Biomed. Anal. 2010, 51, 416–429. [Google Scholar] [CrossRef] [PubMed]
- Li-Chan, E.C.Y.; Griffiths, P.R.; Chalmers, J.M. Applications of vibrational pectroscopy in food science. In Analysis of Food, Drink and Related Materials; John Wiley and Sons: Chichester, UK, 2010; Volume 2. [Google Scholar]
- Gouvinhas, I.; Almeida, J.M.M.M.; Carvalho, T.; Machado, N.; Barros, A.I.R.N.A. Discrimination and characterization of extra virgin olive oils from three cultivars in different maturation stages using Fourier transform infrared spectroscopy in tandem with chemometrics. Food Chem. 2015, 174, 226–232. [Google Scholar] [CrossRef] [PubMed]
- Gouvinhas, I.; Machado, N.; Carvalho, T.; Almeida, J.M.M.M.; Barros, A.I.R.N.A. Short wavelength Raman spectroscopy applied to the discrimination and characterization of three cultivars of extra virgin olive oils in different maturation stages. Talanta 2015, 132, 829–835. [Google Scholar] [CrossRef] [PubMed]
- Reboredo-Rodríguez, P.; Rey-Salgueiro, L.; Regueiro, J.; González-Barreiro, C.; Cancho-Grande, B.; Simal-Gándara, J. Ultrasound-assisted emulsification–microextraction for the determination of phenolic compounds in olive oils. Food Chem. 2014, 150, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Bayram, B.; Ozcelik, B.; Schultheiss, G.; Frank, J.; Rimbach, G. A validated method for the determination of selected phenolics in olive oil using high-performance liquid chromatography with coulometric electrochemical detection and a fused-core column. Food Chem. 2013, 138, 1663–1669. [Google Scholar] [CrossRef] [PubMed]
- Del Monaco, G.; Officioso, A.; D’Angelo, S.; La Cara, F.; Ionata, E.; Marcolongo, L.; Squillaci, G.; Maurelli, L.; Morana, A. Characterization of extra virgin olive oils produced with typical Italian varieties by their phenolic profile. Food Chem. 2015, 184, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Arslan, D.; Karabekir, Y.; Schreiner, M. Variations of phenolic compounds, fatty acids and some qualitative characteristics of Sarıulak olive oil as induced by growing area. Food Res. Int. 2013, 54, 1897–1906. [Google Scholar] [CrossRef]
- Cecchi, L.; Migliorini, M.; Cherubini, C.; Giusti, M.; Zanoni, B.; Innocenti, M.; Mulinacci, N. Phenolic profiles, oil amount and sugar content during olive ripening of three typical Tuscan cultivars to detect the best harvesting time for oil production. Food Res. Int. 2013, 54, 1876–1884. [Google Scholar] [CrossRef]
- Manai-Djebali, H.; Krichène, D.; Ouni, Y.; Gallardo, L.; Sánchez, J.; Osorio Daoud, E.D.; Guido, F.; Zarrouk, M. Chemical profiles of five minor olive oil varieties grown in central Tunisia. J. Food Compos. Anal. 2012, 27, 109–119. [Google Scholar] [CrossRef]
- Li-Chan, E.C.Y. Developments in the detection of adulteration of olive oil. Trends Food Sci. Technol. 1994, 5, 3–11. [Google Scholar] [CrossRef]
- Inarejos-Carcía, A.M.; Gómez-Alonso, A.; Fregapane, G.; Salvador, M.D. Evaluation of minor components, sensory characteristics and quality of virgin olive oil by near infrared (NIR) spectroscopy. Food Res. Int. 2013, 50, 250–258. [Google Scholar]
- Uncu, O.; Ozen, B. Prediction of various chemical parameters of olive oils with Fourier transform infrared spectroscopy. LWT-Food Sci. Technol. 2015, 63, 978–984. [Google Scholar] [CrossRef]
- Uttara, B.; Singh, A.V.; Zamboni, P.; Mahajan, R.T. Oxidative stress and neurodegenerative diseases: A review of upstream and downstream antioxidant therapeutic options. Curr. Neuropharmacol. 2009, 7, 65–74. [Google Scholar] [CrossRef] [PubMed]
- Wiesman, Z. Non-conventional olive oil industries: Products and biotechnologies. In Desert Olive Oil Cultivation: Advanced Biotechnologies, 1st ed.; Academic Press: Burlington, MA, USA, 2009; Chapter 12; pp. 303–327. ISBN 9780123742575. [Google Scholar]
- Hashmi, M.A.; Khan, A.; Hanif, M.; Farroq, U.; Perveen, S. Traditional uses, phytochemistry, and pharmacology of Olea europaea (Olive). Evid. Based Complement. Alternat. Med. 2015, 2015, 541591. [Google Scholar] [CrossRef] [PubMed]
- Gutfinger, T. Phenols in olive oil. J. Am. Oil Chem. Soc. 1981, 68, 966–968. [Google Scholar] [CrossRef]
- Halliwell, B.; Aeschbach, R.; Loliger, J.; Aruoma, O.I. The characterization of antioxidants. Food Chem. Toxicol. 1995, 33, 601–617. [Google Scholar] [CrossRef]
- Vieira, O.; Laranjinha, J.; Madeira, V.; Almeida, L. Cholesteryl ester hydroperoxide formation in myoglobin-catalyzed low density lipoprotein oxidation: Concerted antioxidant activity of caffeic and p-coumaric acids with ascorbate. Biochem. Pharmacol. 1998, 55, 333–340. [Google Scholar] [CrossRef]
- Visioli, F.; Galli, C. Olive oil polyphenols and their potential effects on human health. J. Agric. Food Chem. 1998, 46, 4292–4296. [Google Scholar] [CrossRef]
- Fabiani, R.; Rosignoli, P.; De Bartolomeo, A.; Fuccelli, R.; Servili, M.; Montedoro, G.F.; Morozzi, G. Oxidative DNA damage is prevented by extracts of olive oil, hydroxytyrosol, and other phenolic compounds in human blood mononuclear cells and HL60 cells. J. Nutr. 2008, 138, 1411–1416. [Google Scholar] [PubMed]
- Torres de Pinedo, A.; Peñalver, P.; Morales, J.C. Synthesis and evaluation of new phenolic-based antioxidants: Structure-activity relationship. Food Chem. 2007, 103, 55–61. [Google Scholar] [CrossRef]
- Bouaziz, M.; Grayer, R.J.; Simmonds, M.S.; Damak, M.; Sayadi, S. Identification and antioxidant potential of flavonoids and low molecular weight phenols in olive cultivar chemlali growing in Tunisia. J. Agric. Food Chem. 2005, 53, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Ranalli, A.; Lucera, L.; Contento, S. Antioxidizing potency of phenol compounds in olive oil mill wastewater. J. Agric. Food Chem. 2003, 51, 7636–7641. [Google Scholar] [CrossRef] [PubMed]
- Finotti, E.; Di Majo, D. Influence of solvents on the antioxidant property of flavonoids. Nahrung Food. 2003, 47, 186–187. [Google Scholar] [CrossRef] [PubMed]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationship of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Visioli, F.; Bogani, P.; Galli, C. Healthful properties of olive oil minor components. In Olive oil: Chemistry and Technology; Boskou, D., Ed.; AOCS Press: Champaign, IL, USA, 2006; Volume 8, pp. 173–190. [Google Scholar]
- Dziedzic, S.Z.; Hudson, G.J.F. Polyhydrochalcones and flavanones as antioxidants for edible oils. Food Chem. 1983, 12, 205–212. [Google Scholar] [CrossRef]
- Cai, Y.Z.; Sun, M.; Xing, J.; Luo, Q.; Corke, H. Structure–radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci. 2006, 78, 2872–2888. [Google Scholar] [CrossRef] [PubMed]
- Bors, W.; Hellers, W.; Michel, C.; Saran, M. Radical chemistry of Flavonoid antioxidants. In Emerit, Antioxidants in Therapy and Preventive Medicine; Plenum Press: New York, NY, USA, 1990; Volume 1, pp. 165–170. [Google Scholar]
- Rice-Evans, C.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 1995, 22, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Chan, P.T.; Ho, K.Y.; Fung, K.P.; Wang, J. Antioxidant activity of natural flavonoids is governed by number and location of their aromatic hydroxyl groups. Chem. Phys. Lipids 1996, 79, 157–163. [Google Scholar] [CrossRef]
- Niemeyer, H.; Metzler, M. Differences in the antioxidant activity of plant and mammalian lignans. J. Food Eng. 2003, 56, 255–256. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Hu, FB.; Martínez-González, M.A.; Fitó, M.; Bulló, M.; Estruch, R.; Ros, E.; Corella, D.; Recondo, J.; Gómez-Gracia, E.; et al. Olive oil intake and risk of cardiovascular disease and mortality in the PREDIMED study. BMC Med. 2014, 12, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scoditti, E.; Calabriso, N.; Massaro, M.; Pellegrino, M.; Storelli, C.; Martines, G.; de Caterina, R.; Carluccio, M.A. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: A potentially protective mechanism in atherosclerotic vascular disease and cancer. Arch. Biochem. Biophys. 2012, 527, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Bellomo, G.; Montedoro, G.; Galli, C. Low density lipoprotein oxidation is inhibited in vitro by olive oil constituents. Atherosclerosis 1995, 117, 25–32. [Google Scholar] [CrossRef]
- Quiles, J.L.; Farquharson, A.J.; Simpson, D.K.; Grant, I.; Wahle, K.W.J. Olive oil phenolics: Effects on DNA oxidation and redox enzyme mRNA in prostate cells. Br. J. Nutr. 2002, 88, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, G.K.; Keast, R.S.J.; Morel, D.; Lin, J.; Pika, J.; Han, Q.; Lee, C.H.; Smith, A.B.; Breslin, P.A.S. Ibuprofen-like activity in extra-virgin olive oil. Nature 2005, 437, 45–46. [Google Scholar] [CrossRef] [PubMed]
- Al-Azzawie, H.F.; Alhamdani, M.S.S. Hypoglycemic and antioxidant effect of oleuropein in alloxan-diabetic rabbits. Life Sci. 2006, 78, 1371–1377. [Google Scholar] [CrossRef] [PubMed]
- Visioli, F.; Caruso, D.; Galli, C.; Viappiani, S.; Galli, G.; Sala, A. Olive oils rich in natural catecholic phenols decrease isoprostane excretion in humans. Biochem. Biophys. Res. Commun. 2000, 278, 797–799. [Google Scholar] [CrossRef] [PubMed]
- Kimura, Y.; Sumiyoshi, M. Olive leaf extract and its main component oleuropein prevent chronic ultraviolet B radiation-induced skin damage and carcinogenesis in hairless mice. J. Nutr. 2009, 139, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Coni, E.; di Benedetto, R.; di Pasquale, M.; Masella, R.; Modesti, D.; Mattei, R.; Carlini, E.A. Protective effect of oleuropein, an olive oil biophenol, on low density lipoprotein oxidizability in rabbits. Lipids 2000, 35, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Manna, C.; Migliardi, V.; Golino, P.; Scognamiglio, A.; Galletti, P.; Chiariello, M.; Zappia, V. Oleuropein prevents oxidative myocardial injury induced by ischemia and reperfusion. J. Nutr. Biochem. 2004, 15, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bai, H.; Zhang, X.; Liu, J.; Cao, P.; Liao, N.; Zhang, W.; Wang, Z.; Hai, C. Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK-p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis 2013, 34, 1323–1330. [Google Scholar] [CrossRef] [PubMed]
- Khanal, P.; Oh, W.K.; Yun, H.J.; Namgoong, G.M.; Ahn, S.G.; Kwon, S.M.; Choi, H.K.; Choi, H.S. p-HPEA-EDA, a phenolic compound of virgin olive oil, activates AMP-activated protein kinase to inhibit carcinogenesis. Carcinogenesis 2011, 32, 545–553. [Google Scholar] [CrossRef] [PubMed]
- Bogani, P.; Galli, C.; Villa, M.; Visioli, F. Postprandial anti-inflammatory and antioxidant effects of extra virgin olive oil. Atherosclerosis 2007, 190, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Gorinstein, S.; Leontowicz, H.; Lojek, A.; Leontowicz, M.; Ciz, M.; Krzeminski, R.; Gralak, M.; Czerwinski, J.; Jastrzebski, Z.; Trakhtenberg, S.; et al. Olive oils improve lipid metabolismo and increase antioxidant potential in rats fed diets containing cholesterol. J. Agric. Food Chem. 2002, 5, 6102–6108. [Google Scholar] [CrossRef]
- Carluccio, M.A.; Siculella, L.; Ancora, M.A.; Massaro, M.; Scoditti, E.; Storelli, C.; Visioli, F.; Distante, A.; De Caterina, R. Olive oil and red wine antioxidant polyphenols inhibit endothelial activation: antiatherogenic properties of Mediterranean diet phytochemicals. Arterioscler. Thromb. Vasc. Biol. 2003, 23, 622–629. [Google Scholar] [CrossRef] [PubMed]
- De la Puerta, R.; Martínez Domínguez, M.E.; Ruíz-Gutíerrez, V.; Flavill, J.A.; Houl, J.R. Effects of virgin olive oil phenolics on scavenging of reactive nitrogen species and upon nitrergic neurotransmission. Life Sci. 2001, 69, 1213–1222. [Google Scholar] [CrossRef]
- Visioli, F.; Bellomo, G.; Galli, C. Free radical-scavenging properties of olive oil polyphenols. Biochem. Biophys. Res. Commun. 1998, 247, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Elnagar, A.Y.; Sylvester, P.W.; el Sayed, K.A. (−)-Oleocanthal as a c-Met inhibitor for the control of metastatic breast and prostate cancers. Planta Med. 2011, 77, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Lee, O.H.; Lee, B.Y.; Kim, Y.C.; Shetty, K.; Kim, Y.C. Radical scavenging-linked antioxidant activity of ethanolic extracts of diverse types of extra virgin olive oils. J. Food Sci 2008, 73, C519–C525. [Google Scholar] [CrossRef] [PubMed]
- Paiva-Martins, F.; Fernandes, J.; Rocha, S.; Nascimento, H.; Vitorino, R.; Amado, F.; Borges, F.; Belo, L.; Santos-Silva, A. Effects of olive oil polyphenols on erythrocyte oxidative damage. Mol. Nutr. Food Res. 2009, 53, 609–616. [Google Scholar] [CrossRef] [PubMed]
- Juan, M.E.; Wenzel, U.; Daniel, H.; Planas, J.M. Erythrodiol, a natural triterpenoid from olives, has antiproliferative and apoptotic activity in HT-29 human adenocarcinoma cells. Mol. Nutr. Food Res. 2008, 52, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Allouche, Y.; Warleta, F.; Campos, M.; Sánchez-Quesada, C.; Uceda, M.; Beltrán, G.; Gaforio, J.J. Antioxidant, antiproliferative, and pro-apoptotic capacities of pentacyclic triterpenes found in the skin of olives on MCF-7 human breast cancer cells and their effects on DNA damage. J. Agric. Food Chem. 2011, 59, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Goulas, V.; Exarchou, V.; Troganis, A.N.; Psomiadou, E.; Fotsis, T.; Briasoulis, E.; Gerothanassis, I.P. Phytochemicals in olive-leaf extracts and their antiproliferative activity against cancer and endothelial cells. Mol. Nutr. Food Res. 2009, 53, 600–608. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Zurita, F.J.; Rufino-Palomares, E.E.; Lupiáñez, J.A.; Cascante, M. Maslinic acid, a natural triterpene from Olea europaea L., induces apoptosis in HT29 human colon-cancer cells via the mitochondrial apoptotic pathway. Cancer Lett. 2009, 273, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Warleta, F.; Campos, M.; Allouche, Y.; Sanchez-Quesada, C.; Ruiz-Mora, J.; Beltran, G.; Gaforio, J.J. Squalene protects against oxidative DNA damage in MCF10A human mammary epithelial cells but not in MCF7 and MDA-MB-231 human breast cancer cells. Food Chem. Toxicol. 2010, 48, 1092–1100. [Google Scholar] [CrossRef] [PubMed]
- Scotece, M.; Gómez, R.; Conde, J.; Lopez, V.; Gómez-Reino, J.; Lago, F.; Smith, I.; Gualillo, O. Oleocanthal inhibits proliferation and MIP-1 expression in human multiple myeloma cells. Curr. Med. Chem. 2013, 20, 2467–2475. [Google Scholar] [CrossRef] [PubMed]
- Scotece, M.; Gómez, R.; Conde, J.; Lopez, V.; Gómez-Reino, J.J.; Lago, F.; Smith, A.B.; Gualillo, O. Further evidence for the anti-inflammatory activity of oleocanthal: Inhibition of MIP-1α and IL-6 in J774 macrophages and in ATDC5 chondrocytes. Life Sci. 2012, 91, 1229–1235. [Google Scholar] [CrossRef] [PubMed]
- Kamat, J.P.; Boloor, K.K.; Devasagayam, T.P.A. Chlorophyllin as an effective antioxidant against membrane damage in vitro and ex vivo. BBA-Mol. Cell Biol. Lipids 2000, 1487, 113–127. [Google Scholar] [CrossRef]
- Bouayed, J.; Bojn, T. Exogenous Antioxidants-Double-Edged swords in cellular redox state: Health bebeficial effects at physiologic doses versus deleterous effects at high doses. Oxid. Med. Cell. Longev. 2010, 3, 228–237. [Google Scholar] [CrossRef] [PubMed]
- Krinsky, N.I. Carotenoids as antioxidants. Nutrition 2001, 17, 815–817. [Google Scholar] [CrossRef]
- Olson, J.A. Vitamin A and carotenoids as antioxidants in a physiological context. J. Nutr. Sci. Vitam. 1993, 39, S57–S65. [Google Scholar] [CrossRef]
- Lowe, G.M.; Vlismas, K.; Young, A.J. Carotenoids as prooxidants? Mol. Asp. Med. 2003, 24, 363–369. [Google Scholar] [CrossRef]
- Palozza, P.; Serini, S.; Di Nicuolo, F.; Piccioni, E.; Calviello, G. Prooxidant effects of β-carotene in cultured cells. Mol. Asp. Med. 2003, 24, 353–362. [Google Scholar] [CrossRef]
- Barbaro, B.; Toietta, G.; Maggio, R.; Arciello, M.; Tarocchi, M.; Galli, A.; Balsano, C. Effects of the olive-derived polyphenol oleuropein on human health. Int. J. Mol. Sci. 2014, 15, 18508–18524. [Google Scholar] [CrossRef] [PubMed]
- De Lorgeril, M.; Salen, P.; Martin, J.L.; Monjaud, I.; Boucher, P.; Mamelle, N. Mediterranean dietary pattern in a randomized trial: Prolonged survival and possible reduced cancer rate. Arch. Intern. Med. 1998, 158, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Owen, R.W.; Giacosa, A.; Hull, W.E.; Haubner, R.; Würtele, G.; Spiegelhalder, B.; Bartsch, H. Olive-oil consumption and health: The possible role of antioxidants. Lancet Oncol. 2000, 1, 107–112. [Google Scholar] [CrossRef]
- Escrich, E.; Moral, R.; Grau, L.; Costa, I.; Solanas, M. Molecular mechanisms of the effects of olive oil and other dietary lipids on cancer. Mol. Nutr. Food. Res. 2007, 51, 1279–1292. [Google Scholar] [CrossRef] [PubMed]
- Rufino-Palomares, E.E.; Reyes-Zurita, F.J.; García-Salguero, F.J.; Mokhtari, K.; Medina, P.P.; Lupiáñez, J.A.; Peragón, J. Maslinic acid, a triterpenic anti-tumoural agent, interferes with cytoskeleton protein expression in HT29 human coloncancer cells. J. Proteom. 2013, 83, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Caramia, G.; Gori, A.; Valli, E.; Cerretani, L. Virgin olive oil in preventive medicine: From legend to epigenetics. Eur. J. Lipid Sci. Technol. 2006, 114, 375–388. [Google Scholar] [CrossRef]
- Parkinson, L.; Keast, R. Oleocanthal, a phenolic derived from virgin olive oil: A review of the beneficial effects on inflammatory disease. Int. J. Mol. Sci. 2014, 15, 12323–12334. [Google Scholar] [CrossRef] [PubMed]
- Mayneris-Perxachs, J.; Aleix Sala-Vila, A.; Chisaguano, M.; Castellote, A.I.; Estruch, R.; Covas, M.I.; Fito, M.; Salas-Salvado, J.; Martínez-González, M.A.; Lamuela-Raventós, R.; et al. Effects of 1-year intervention with a mediterranean diet on plasma fatty acid composition and metabolic syndrome in a population at high cardiovascular risk. PLoS ONE 2014, 9, e85202. [Google Scholar] [CrossRef] [PubMed]
- Colette, C.; Percheron, C.; Pares-Herbute, N.; Michel, F.; Pham, T.C.; Brillant, L.; Descomps, B.; Monnier, L. Exchanging carbohydrates for monounsaturated fats in energy-restricted diets: Effects on metabolic profile and other cardiovascular risk factors. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 648–656. [Google Scholar] [CrossRef] [PubMed]
- Erkkilä, A.; de Mello, V.D.; Risérus, U.; Laaksonen, D.E. Dietary fatty acids and cardiovascular disease: An epidemiological approach. Prog. Lipid Res. 2008, 47, 172–187. [Google Scholar] [CrossRef] [PubMed]
- Samarji1, R.; Balbaa, M. Anti-diabetic activity of different oils through their effect on arylsulfatases. J. Diabetes Metab. Disord. 2014, 13, 116. [Google Scholar] [CrossRef] [PubMed]
- Jemai, H.; Feki, A.E.L.; Sayadi, S. Antidiabetic and antioxidant effects of hydroxytyrosol and oleuropein from olive leaves in alloxan-diabetic rats. J. Agric. Food Chem. 2009, 57, 8798–8804. [Google Scholar] [CrossRef] [PubMed]
- Murase, T.; Kume, N.; Hase, T.; Shibuya, Y.; Nishizawa, Y.; Tokimitsu, I.; Kita, T. Gallates inhibit cytokine-induced nuclear translocation of NF-kappaB and expression of leukocyte adhesion molecules in vascular endothelial cells. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 1412–1420. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Koga, T.; Martin, K.R.; Meydani, M. Effect of vitamin E on human aortic endothelial cell production of chemokines and adhesion to monocytes. Atherosclerosis 1999, 147, 297–307. [Google Scholar] [CrossRef]
- Estruch, R.; Martínez-González, M.A.; Corella, D.; Salas-Salvadó, J.; Ruiz-Gutiérrez, V.; Covas, M.I.; Fiol, M.; Gómez-Gracía, E.; López-Sabater, M.C.; Vinyoles, E.; et al. PREDIMED Study Investigators. Effects of a Mediterranean-style diet on cardiovascular risk factors: A randomized trial. Ann. Int. Med. 2006, 145, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Fitó, M.; Cladellas, M.; de la Torre, R.; Martí, J.; Muñoz, D.; Schröder, H.; Alcántara, M.; Pujadas-Bastardes, M.; Marrugat, J.; López-Sabater, M.C.; et al. the members of the SOLOS Investigators. Anti-inflammatory effect of virgin olive oil in stable coronary disease patients: A randomized, crossover, controlled trial. Eur. J. Clin. Nutr. 2008, 62, 570–574. [Google Scholar]
- Tsimikas, S.; Philis-Tsimikas, A.; Alexopoulos, S.; Sigari, F.; Lee, C.; Reaven, P.D. LDL isolated from Greek subjects on a typical diet or from American subjects on an oleate-supplemented diet induces less monocyte chemotaxis and adhesion when exposed to oxidative stress. Arterioscler. Thromb. Vascr. Biol. 1999, 19, 122–130. [Google Scholar] [CrossRef]
Phenolic Class | Compound | Substituent | Reference | ||||
---|---|---|---|---|---|---|---|
R2 | R3 | R4 | R5 | R6 | |||
Benzoic acids | 3-Hydroxybenzoic acid | -H | -OH | -H | -H | -H | [81] |
4-Hydroxybenzoic acid | -H | -H | -OH | -H | -H | [85] | |
Protocatechuic acid | -H | -OH | -OH | -H | -H | [7,86,87] | |
2,4-Dihydroxybenzoic acid | -OH | -H | -OH | -H | -H | [88] | |
2,6-Dihydroxybenzoic acid | -OH | -H | -H | -H | -OH | [88] | |
Gallic acid | -H | -OH | -OH | -OH | -H | [87] | |
Gentisic acid | -OH | -H | -H | -OH | -H | [89] | |
Vanillic acid | -H | -OCH3 | -OH | -H | -H | [89,90,91] | |
Syringic acid | -H | -OCH3 | -OH | -OCH3 | -H | [92] | |
Cinnamic acids | o-Coumaric acid | -OH | -H | -H | -H | -H | [87] |
m-Coumaric acid | -H | -OH | -H | -H | -H | [93] | |
p-Coumaric acid | -H | -H | -OH | -H | -H | [85,89] | |
Caffeic acid | -H | -OH | -OH | -H | -H | [85,87] | |
Hydroxycaffeic acid | -OH | -OH | -OH | -H | -H | [94] | |
Ferulic acid | -H | -OCH3 | -OH | -H | -H | [85,89,90] | |
Sinapic acid | -H | -OCH3 | -OH | -OCH3 | -H | [8] | |
Chlorogenic acid | -H | -H | -H | -H | -H | [85] | |
Hydroxycinnamic acid derivatives | Verbascoside | - | - | - | - | - | [95] |
Phenylacetic acids | p-Hydroxyphenilacetic acid | -H | -H | -OH | -H | -H | [85] |
3,4-Dihydroxyphenylacetic acid | -H | -OH | -OH | -H | -H | [88] | |
Homovanillic acid | -H | -OCH3 | -OH | -H | -H | [85,96] | |
Other phenolic acid | 3-(3,4-Dihydroxyphenyl)propanoic acid | - | - | - | - | - | [92] |
Phenolic alcohols | Tyrosol (A) | -H | -H | -OH | -H | -H | [91] |
Hydroxytyrosol (A) | -H | -OH | -OH | -H | -H | [91] | |
3,4-Dihydroxyphenyl)ethanol-glucoside (B) | -H | -H | -H | -H | -H | [92] | |
Hydroxytyrosol acetate (C) | -H | -OH | -OH | -H | -H | [89,91,97] | |
Tyrosol acetate (C) | -H | -H | -OH | -H | -H | [89,93] |
Phenolic Class | Compound | Substituent | Reference | |||||
---|---|---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | R5 | R6 | |||
Seicoiridoids | Decarboxymethyloleuropein aglycon | -OH | - | - | - | - | - | [89,112,113] |
Oleocanthal | -H | - | - | - | - | - | [89] | |
Oleuropein aglycon | -OH | -OH | - | - | - | - | [89,97] | |
Ligstroside aglycon | -H | -OH | [90,97] | |||||
Aldehydic form of oleuropein aglycon | -OH | -OH | - | - | - | - | [81] | |
Aldehydic form of ligstroside aglycon | -H | -OH | - | - | - | - | [81] | |
Oleuropein | -OH | -O-Glc | - | - | - | - | [7,88,96] | |
Lignans | (+)-Pinoresinol | -H | - | - | - | - | - | [93] |
(+)-1-Acetoxypinoresinol | -OCOCH3 | - | - | - | - | - | [89,97,112] | |
(+)-1-Hydroxypinoresinol | -OH | - | - | - | - | - | [92] | |
Hydroxy-isochromans | 1-Phenyl-6,7-dihydroxyisochroman | -H | -H | - | - | - | - | [88,92] |
1-(3’-Methoxy-4’-hydroxy)phenyl-6,7-dihydroxyisochroman | -OH | -OCH3 | - | - | - | - | [88,92] | |
Luteolin-5-glucoside | -OH | -H | -Glc | |||||
Flavones | Apigenin | -H | -H | -H | - | - | - | [91,97,114] |
Apigenin-7-glucoside | -H | -Glc | -H | |||||
Apigenin-7-rutinoside | -H | -Rut | -H | |||||
Luteolin | -OH | -H | -H | - | - | - | [95,114] | |
Luteolin-7-glucoside | -OH | -Glc | -H | |||||
Luteolin-5-glucoside | -OH | -H | -Glc | |||||
Flavonols | Quercetin | - | - | -OH | - | - | - | [7] |
Quercetin-3-rutinoside | - | - | -Rut | - | - | - | [7,115] | |
(+)-Taxifolin | - | - | - | - | - | - | [87] | |
Other phenolic compounds | 3,4-Dihydroxyphenylglycol | - | - | - | - | - | [97,114] |
Stationary Phase | Mobile Phase | T (°C) | Flow Rate (mL/min) | λ (nm) | Compounds Identified | Reference | ||
---|---|---|---|---|---|---|---|---|
A | B | C | ||||||
Luna C18 150 × 2 mm, 5.0 µm | 0.1% Formic acid 99.9% Water | 95% MeCN 4.9% Water 0.1% Formic acid | - | 30 | 0.40 | 210–600 | Phenolic acids; Phenolic alcohols; Secoiridoids; Lignans; Flavonoids. | [128] |
Kinetex C18 100 × 4.6 mm, 2.6 µm | 100% Water | 100% Acetonitrile | 100% Methanol | 40 | 1.25 | - | Phenolic acids; Phenolic alcohols; Secoiridoids; Lignans. | [129] |
Luna C18 250 × 4.6 mm, 5.0 µm | 0.1% Acetic acid 99.9% Water | 100% Acetonitrile | - | - | 0.60 | 275 | Phenolic acids; Phenolic alcohols; Secoiridoids. | [130] |
Zorbax Eclipse Plus RP-C18 150 × 4.6 mm, 1.8 µm | 0.25% Acetic acid 99.75% Water | 100% Methanol | - | RT Z | 0.80 | - | Secoiridoids; Lignans; Flavonoids. | [20] |
Inertsil ODS-3 250 × 4.6 mm, 5 µm | 2% Formic acid 98% Water | 100% Methanol | - | 22 | 0.85 | 240, 280, 320 | Phenolic acids; Phenolic alcohols; Flavonoids. | [131] |
Zorbax SB-C18 250 × 4.6 mm, 5 µm | 5% Acetic acid 95% Water | 100% Methanol | 100% Acetonitrile | 30 | 1.00 | 240, 280, 335 | Phenolic acids; Phenolic alcohols; Flavonoids. | [30] |
Hypersil Gold QRP-18 250 × 4.6 mm, 3 µm | 100% Formic acid | 100% Acetonitrile | 100% Methanol | 30 | 0.80 | 240, 280, 330 | Phenolic acids; Phenolic alcohols; Flavonoids; Secoiridoids. | [132] |
Spherisorb S3 ODS2 250 × 4.6 mm, 5 µm | 5% Acetic acid 95% Water | 100% Methanol | 100% Acetonitrile | 30 | 1.00 | 280 | Phenolic acids; Phenolic alcohols; Secoiridoids; Lignans; Flavonoids. | [133] |
Zorbax SB-C18 2.1 × 50 mm, 1.8 µm | 0.2% Acetic acid 99.8% Water | 100% Acetonitrile | - | 30 | 0.40 | - | Phenolic acids; Phenolic alcohols; Secoiridoids; Lignans. | [120] |
XDB-C18 4.6 × 50 mm, 1.8 µm | 0.5% Acetic acid 1% Acetonitrile 98.5% Water | 99.5% Acetonitrile 0.5% Acetic acid | - | 15 | 0.60 | 254, 280, 310, 350 | Phenolic acids; Phenolic alcohols; Secoiridoids; Flavonoids | [123] |
Zorbax C18 4.6 × 150 mm, 1.8 µm | 0.5% Acetic acid 99.5% Water | 100% Acetonitrile | - | 30 | 1.50 | 240, 280 | Phenolic alcohols; Secoiridoids; Flavonoids; Lignans. | [54,124] |
Hypersil MOS 2.1 × 100 mm, 5 µm | 0.5% Acetic acid 1% Acetonitrile 98.5% Water | 99.5% Acetonitrile 0.5% Acetic acid | - | 25 | 0.50 | 255, 260, 275, 280, 310, 320, 325, 340, 350 | Phenolic acids; Phenolic alcohols; Flavonoids | [123] |
Compound/Matrix | Activity | Model and Dosis/Intake | Significant Effects | Reference |
---|---|---|---|---|
Hydroxytyrosol | Reduction of oxidative stress | Humans, intake of 50.0 mL of oil with 4.2 mg of hydroxytyrosol and 39.5 mg of oleuropein | ~35% reduction in the urinary excretion of 8-iso-PGF2α | [163] |
Oleuropein | ||||
Anti-tumour activity; prevention of skin and breast cancer | Hairless Mice, intake of oleuropein extract (10 mg kg−1 of body weight) | Significantly reduced the incidence and growth of tumours | [164] | |
Reduction of plasmatic levels of free cholesterol | Rabbits, standard food supplemented with olive oil 10% (w/w) and 7 mg kg−1 oleuropein | Observed oleuropein aglycone plasmatic levels of 0.892 µM, and LDL increase of 90% | [165] | |
Protection against heart damage | Ischemia reperfusion in rats, pre-treatment with 20 µg g−1 before ischemia | Significant time-dependent decrease in creatine kinase and reduction of glutathione release | [166] | |
Hypoglycemic and antioxidant effect | New Zealand male rabbits, diabetes induced, 20 mg kg−1 body weight of oleuropein | Significant decline in plasma and erythrocyte MDA reached at week 10 | [162] | |
Oleanolic acid | Inhibition of cancer proliferation | Mice, HepG2 cells subcutaneously implanted in mice, intraperitoneal injection of OA | 75 or 150mg/kg/day led to tumour inhibitory ratios of 31.72% and 57.24%, respectively | [167] |
Oleocanthal | Suppression of tumorigenicity | Chicken embryos, implantation of HT29 tumoral cells | ~50% reduction of tumour area by treatment with 50 µg/mL | [168] |
EVOO | Inhibition of the atherosclerosis process | Humans, daily consumption of 50.0 mL of olive oil | Significant decrease in the inflammatory markers TXB2 and LTB4 | [169] |
EVOO | Improve lipid metabolism | Male Wistar rats, cholesterol-free or 1% cholesterol diets, 10 g/100 g EVOO | Reduction of increase in plasma lipids: TC (23.6%), LDL-C (39.3%), TG (19.3%), and TC in liver (36.0%) | [170] |
Increase plasma antioxidant potential | 20.6% increase in TRAP, and 23.2% decrease in MDA |
Compound | Activity | Model | Effective Concentration | Reference |
---|---|---|---|---|
Oleuropein | Scavenge hypochlorous acid in neutrophils | Xantine-xantine oxidase | 14.3 µM (EC50) | [173] |
Hydroxytyrosol | 9.1 µM (EC50) | |||
Oleuropein | 1 PMN ± PMA | 29.3 µM (EC50) | ||
Hydroxytyrosol | 3.2 µM (EC50) | |||
Oleuropein | Scavenge nitric oxide | Scavenging of nitric oxide generated from 5 mm sodium nitroprusside | ~75 µM (EC50) | [172] |
Caffeic acid | ||||
Hydroxytyrosol | ||||
Oleuropein | α1-antiproteinase inactivation assay | (67.2–92.4%) at 1.0 mm | ||
Caffeic acid | ||||
Hydroxytyrosol | ||||
Avoiding low-density lipoprotein (LDL) oxidation | Inhibition of LDL copper-induced oxidation | ~70% inhibition by 10.0 µM | [159] | |
Oleuropein | Atheroprotection | Inhibition of VCAM-1 | 15.0 µM (IC50) | [171] |
VCAM-1 mRNA levels | 60% reduction by 30 µM | |||
Hydroxytyrosol | 25% reduction by 30 µM | |||
Erythrodiol | Anti-proliferative | HT-29 (colon adenocarcinoma) | 48.8 ± 3.7 µM (EC50) | [178] |
Apoptotic activity | HT-29, Caspase-3-like activity | 50, 100, and 150 µM—3.2, 4.8 and 5.2 × increase, respectively | ||
Anti-proliferative | MCF-7 (human breast cancer cells) | ~90% inhibition by 100 µM (24 h) | [179] | |
Uvaol | ~60% inhibition by 100 µM (24 h) | |||
Oleanolic acid | ~85% inhibition by 100 µM (24 h) | |||
Inducing apoptotic cell death | HCC (hepatocellular carcinoma) HepG2 | Proliferation decrease of 46.5% by 40 μM (24 h) | [167] | |
Luteolin-7-O-glucoside | Anti-proliferative | MCF-7 (human breast cancer cells) | 40.85 ± 5.01 µM (IC50) | [180] |
Oleuropein | 12.00 ± 0.62 µM (IC50) | |||
Hydroxytyrosol | 24.86 ± 8.15 µM (IC50) | |||
Hydroxytyrosol acetate | 28.67 ± 8.10 µM (IC50) | |||
Luteolin-7-O-glucoside | T-24 (bladder carcinoma cells) | 11.35 ± 0.32 µM (IC50) | ||
Hydroxytyrosol | 12.39 ± 2.20 µM (IC50) | |||
Hydroxytyrosol acetate | 23.32 ± 0.38 µM (IC50) | |||
Oleuropein | 7.59 ± 1.80 µM (IC50) | |||
Reduction of inflammatory angiogenesis | HUVEC (human vascular endothelial cells), Matrigel assay | Decrease of 40% by 10 µM | [158] | |
Hydroxytyrosol | Decrease of 55% by 10 µM | |||
Maslinic acid | HT-29 (colon adenocarcinoma) | 28.8 ± 0.9 µg mL−1 (EC50) | [180] | |
Squalene | Decrease of radical oxygen species level | MCF10A (breast epithelial cells), H2O2 assay | ~50% reduction by 50 µM (24 h) | [181] |
Oleocanthal | Inducing apoptotic cell death | ARH-77 (multiple myeloma cell line) | Proliferation decrease of ~80% by 50 μM (24 h) | [182] |
Inhibition of carcinogenesis | JB6 Cl41 (cell line sensitive to carcinogenesis) | 3 µM inhibits the expression of p-ERK 1/2, and P-p90rsk | [168] | |
Inducing apoptotic cell death | SK-BR-3 (Human breast cancer cell line) | Proliferation decrease of ~10% by 15 µM | ||
HCT-116 (Human colon colorectal carcinoma) | Proliferation decrease of ~70% by 15 µM | |||
Inhibition of metastatic process | MCF7 (nonmetastatic human breast cancer) | 18 µM (IC50) | [174] | |
MDA-MB-231(highly metastatic human breast cancer) | 15 µM (IC50) | |||
PC-3 (human prostate cancer) | 20 µM (IC50) | |||
Anti-inflammatory activity | Inhibition of MIP-1α in J774 macrophages | ~50% inhibition by 50 µM (24 h) | [183] | |
Inhibition of IL-6 in J774 macrophages | ~60% inhibition by 50 µM (24 h) | |||
Inhibition of MIP-1α in ATDC5 chondrocytes | ~90% inhibition by 50 µM (24 h) | |||
Inhibition of IL-6 in ATDC5 chondrocytes | ~75% inhibition by 50 µM (24 h) | |||
Oleocanthal (−) | Anti-inflammatory activity | COX1 inhibition | 56.1 ± 3.2% inhibition by 25 µM | [161] |
Oleocanthal (+) | 68.0 ± 15.2% inhibition by 25 µM | |||
Oleocanthal (−) | COX2 inhibition | 56.6 ± 9.5% inhibition by 25 µM | ||
Oleocanthal (+) | 41. 3± 15.9% inhibition by 25 µM |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouvinhas, I.; Machado, N.; Sobreira, C.; Domínguez-Perles, R.; Gomes, S.; Rosa, E.; Barros, A.I.R.N.A. Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules 2017, 22, 1986. https://doi.org/10.3390/molecules22111986
Gouvinhas I, Machado N, Sobreira C, Domínguez-Perles R, Gomes S, Rosa E, Barros AIRNA. Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules. 2017; 22(11):1986. https://doi.org/10.3390/molecules22111986
Chicago/Turabian StyleGouvinhas, Irene, Nelson Machado, Carla Sobreira, Raúl Domínguez-Perles, Sónia Gomes, Eduardo Rosa, and Ana I. R. N. A. Barros. 2017. "Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health" Molecules 22, no. 11: 1986. https://doi.org/10.3390/molecules22111986
APA StyleGouvinhas, I., Machado, N., Sobreira, C., Domínguez-Perles, R., Gomes, S., Rosa, E., & Barros, A. I. R. N. A. (2017). Critical Review on the Significance of Olive Phytochemicals in Plant Physiology and Human Health. Molecules, 22(11), 1986. https://doi.org/10.3390/molecules22111986