In Vitro Evaluation of Cytotoxicity and Permeation Study on Lysine- and Arginine-Based Lipopeptides with Proven Antimicrobial Activity
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Activity
2.2. Cytotoxicity towards HaCaT Cells and Permeation Study
3. Materials and Methods
3.1. Lipopeptide Synthesis
3.2. Antimicrobial Activity
3.3. Cell Line, Culture Conditions and Cytotoxicity Assay
3.4. Permeation Study
4. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Marr, A.K.; Gooderham, W.J.; Hancock, R.E.W. Antibacterial peptides for therapeutic use: Obstacles and realistic outlook. Curr. Opin. Pharmacol. 2006, 6, 468–472. [Google Scholar] [CrossRef] [PubMed]
- Hancock, R.E.W.; Sahl, H.G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat. Biotechnol. 2006, 24, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Dziomba, S.; Nowakowska, J.; Markuszewski, M.J. Thin layer chromatography in drug discovery process. J. Chromatogr. A 2017, 1520, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Ciura, K.; Nowakowska, J.; Rudnicka-Litka, K.; Kawczak, P.; Bączek, T.; Markuszewski, M.J. The study of salting-out thin-layer chromatography and their application on QSRR/QSAR of some macrolide antibiotics. Monatshefte Chem. 2016, 147, 301–310. [Google Scholar] [CrossRef]
- Ciura, K.; Nowakowska, J.; Kawczak, P.; Greber, K.E.; Markuszewski, M.J. The quantitative structure–retention relationships and quantitative structure–activity relationships study of macrolide antibiotics on micellar thin layer chromatography. Acta Pol. Pharm.-Drug Res. 2017, 74, 1365–1372. [Google Scholar]
- McPhee, J.B.; Scott, M.G.; Hancock, R.E.W. Design of host defence peptides for antimicrobial and immunity enhancing activities. Comb. Chem. High Throughput Screen. 2005, 8, 257–272. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, L.; Li, J.; Suresh, A.; Verma, C.; Foo, Y.H.; Yap, E.P.; Tan, D.T.; Beuerman, R.W. Linear analogues of human beta-defensin 3: Concepts for design of antimicrobial peptides with reduced cytotoxicity to mammalian cells. ChemBioChem 2008, 9, 964–973. [Google Scholar] [CrossRef] [PubMed]
- Avrahami, D.; Shai, Y. A new group of antifungal lipopeptides derived from non-membrane active peptides conjugated to palmitic acid. J. Biol. Chem. 2004, 279, 12277–12285. [Google Scholar] [CrossRef] [PubMed]
- Shai, Y.; Makovitzky, A.; Avrahami, D. Host defense peptides and lipopeptides: Modes of action and potential candidates for the treatment of bacterial and fungal infections. Curr. Protein Pept. Sci. 2006, 7, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Lohan, S.; Cameotra, S.S.; Bisht, G.S. Systematic Study of Non-Natural Short Cationic Lipopeptides as Novel Broad-Spectrum Antimicrobial Agents. Chem. Biol. Drug Des. 2013, 82, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Greber, K.E.; Dawgul, M.; Kamysz, W.; Sawicki, W. Cationic net charge and counter ion type as antimicrobial activity determinant factors of short lipopeptides. Front. Microbiol. 2017, 8, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Greber, K.E.; Dawgul, M.; Kamysz, W.; Sawicki, W.; Łukasiak, J. Biological and surface-active properties of double-chain cationic amino acid-based surfactants. Amino Acids 2014, 46, 1893–1898. [Google Scholar] [CrossRef] [PubMed]
- Kamysz, W.; Silvestri, C.; Cirioni, O.; Giacometti, A.; Licci, A.; Della Vittoria, A.; Okroj, M.; Scalise, G. In vitro activities of the lipopeptides Palmitoyl (Pal)-Lys-Lys-NH2 and Pal-Lys-Lys alone and in combination with antimicrobial agents against multiresistant Gram-positive cocci. Antimicrob. Agents Chemother. 2007, 51, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Dawgul, M.; Baranska-Rybak, W.; Kamysz, E.; Karafova, A.; Nowicki, R.; Kamysz, W. Activity of short lipopeptides and conventional antimicrobials against planktonic cells and biofilms formed by clinical strains of Staphylococcus aureus. Future Med. Chem. 2012, 4, 1541–1551. [Google Scholar] [CrossRef] [PubMed]
- Cirioni, O.; Giacometti, A.; Ghiselli, R.; Kamysz, W.; Silvestri, C.; Orlando, F.; Mocchegiani, F.; Della Vittoria, A.; Kamysz, E.; Saba, V.; et al. The lipopeptides Pal-Lys-Lys-NH2 and Pal-Lys-Lys soaking alone and in combination with intraperitoneal vancomycin prevent vascular graft biofilm in a subcutaneous rat pouch model of staphylococcal infection. Peptides 2007, 28, 1299–1303. [Google Scholar] [CrossRef] [PubMed]
- Serrano, G.N.; Zhanel, G.G.; Schweizer, F. Antibacterial activity of ultrashort cationic lipo-beta-peptides. Antimicrob. Agents Chemother. 2009, 53, 2215–2217. [Google Scholar] [CrossRef] [PubMed]
- Laverty, G.; McLaughlin, M.; Shaw, C.; Gorman, S.P.; Gilmore, B.F. Antimicrobial activity of short, synthetic cationic lipopeptides. Chem. Biol. Drug Des. 2010, 75, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Cirioni, O.; Kamysz, E.; Ghiselli, R.; Kamysz, W.; Silvestri, C.; Orlando, F.; Rimini, M.; Brescini, L.; Gabrielli, E.; Marchionni, E.; et al. Lipopeptide Laur-CKK-NH2 dimer preserves daptomycin susceptibility and enhances its activity against Enterococcus faecalis. J. Antimicrob. Chemother. 2011, 66, 859–862. [Google Scholar] [CrossRef] [PubMed]
- Dawgul, M.; Barańska-Rybak, W.; Piechowicz, L.; Bauer, M.; Neubauer, D.; Nowicki, R.; Kamysz, W. The antistaphylococcal activity of citropin 1.1 and temporin A against planktonic cells and biofilms formed by isolates from patients with atopic dermatitis: An assessment of their potential to induce microbial resistance compared to conventional antimicrobials. Pharmaceuticals 2016, 9, 1–13. [Google Scholar]
- Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 2002, 415, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Gallo, R.L. AMPed Up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, 30, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Barańska-Rybak, W.; Pikuła, M.; Dawgul, M.; Kamysz, W.; Trzonkoski, P.; Roszkiewicz, J. Safety profile of antymicrobial peptides: Camel, citropin, protegrin, temporin A and lipopeptide on HaCaT keratinocytes. Acta Pol. Pharm.-Drug Res. 2013, 70, 795–801. [Google Scholar]
- Available online: http://www.millipore.com/publications.nsf/a73664f9f981af8c852569b9005b4eee/1c544b6645c6e4a385257a63005efd7f/$FILE/PB4013EN00_EM.pdf (accessed on 12 August 2017).
- Shai, Y.; Abrahami, D. Antimicrobial and Anticancer Lipopeptides, Yustia Patents, No. 8445636. Available online: https://patents.justia.com/patent/8445636 (accessed on 6 July 2017).
Sample Availability: Samples of the compounds (C10)2-KKKK-NH2 and (C12)2-KKKK-NH2 are available from the authors. |
S. aureus | E. coli | C. albicans | Reference | ||||
---|---|---|---|---|---|---|---|
Compound | MIC | MBC | MIC | MBC | MIC | MFC | |
C16-KK-NH2 | 4 | 4 | 8 | 8 | 128 | 128 | [11] |
C16-KεK-NH2 | 8 | 8 | 16 | 32 | 128 | 256 | - |
C16-KKK-NH2 | 4 | 8 | 8 | 16 | 128 | 128 | [11] |
C16-KRK-NH2 | 4 | 16 | 8 | 16 | 128 | 256 | - |
C16-RR-NH2 | 8 | 8 | 16 | 16 | 128 | 256 | - |
C16-RRR-NH2 | 2 | 4 | 16 | 16 | 128 | 256 | - |
(C10)2-KKKK-NH2 | 8 | 16 | 16 | 16 | 128 | 256 | [12] |
(C12)2-KKKK-NH2 | 16 | 32 | 64 | 64 | 256 | 512 | [12] |
Compound | IC50 ± SD |
---|---|
C16-KK-NH2 | 1.8 ± 0.2 |
C16-KεK-NH2 | 7.4 ± 0.9 |
C16-KKK-NH2 | 3.2 ± 0.1 |
C16-KRK-NH2 | 2.3 ± 0.4 |
C16-RR-NH2 | 1.9 ± 0,3 |
C16-RRR-NH2 | 3.2 ± 1.4 |
(C10)2-KKKK-NH2 | 49.4 ± 9.1 |
(C12)2-KKKK-NH2 | 42.1 ± 9.1 |
Amino Acid Sequence of Lipopeptide | Molecular Mass | |
---|---|---|
Lipopeptide 1 | C16-KK-NH2 | 511.6 |
Lipopeptide 2 | C16-KεK-NH2 | 511.6 |
Lipopeptide 3 | C16-KKK-NH2 | 639.9 |
Lipopeptide 4 | C16-KRK-NH2 | 667.9 |
Lipopeptide 5 | C16-RR-NH2 | 567.8 |
Lipopeptide 6 | C16-RRR-NH2 | 723.7 |
Lipopeptide 7 | (C10)2-KKKK-NH2 | 837.5 |
Lipopeptide 8 | (C12)2-KKKK-NH2 | 893.6 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dawgul, M.A.; Greber, K.E.; Bartoszewska, S.; Baranska-Rybak, W.; Sawicki, W.; Kamysz, W. In Vitro Evaluation of Cytotoxicity and Permeation Study on Lysine- and Arginine-Based Lipopeptides with Proven Antimicrobial Activity. Molecules 2017, 22, 2173. https://doi.org/10.3390/molecules22122173
Dawgul MA, Greber KE, Bartoszewska S, Baranska-Rybak W, Sawicki W, Kamysz W. In Vitro Evaluation of Cytotoxicity and Permeation Study on Lysine- and Arginine-Based Lipopeptides with Proven Antimicrobial Activity. Molecules. 2017; 22(12):2173. https://doi.org/10.3390/molecules22122173
Chicago/Turabian StyleDawgul, Malgorzata Anna, Katarzyna Ewa Greber, Sylwia Bartoszewska, Wioletta Baranska-Rybak, Wieslaw Sawicki, and Wojciech Kamysz. 2017. "In Vitro Evaluation of Cytotoxicity and Permeation Study on Lysine- and Arginine-Based Lipopeptides with Proven Antimicrobial Activity" Molecules 22, no. 12: 2173. https://doi.org/10.3390/molecules22122173