Essential Oil Composition and Bioactivities of Waldheimia glabra (Asteraceae) from Qinghai-Tibet Plateau
Abstract
:1. Introduction
2. Results
2.1. Chemical Composition of Essential Oil
2.2. Anti-Influenza Activity of Essential Oil from W. glabra
2.3. Anti-Inflammatory Activity of Essential Oil from W. glabra
2.4. Anti-Complementary Activity of Essential Oil
3. Discussion
4. Materials and Methods
4.1. Plant Material and Extraction of Essential Oil
4.2. Identification of the Components of Essential Oil
4.3. Anti-H3N2 Virucidal Activity
4.3.1. Viruses, Cells, and Cell Culture
4.3.2. Cellular Toxicity Test
4.3.3. Determination of Anti-H3N2 Activity
4.4. Anti-Inflammatory
4.5. Anti-Complementary Activity
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Editorial Committee of Chinese Flora. Flora of China; Science Press: Beijing, China, 1999; Volume 76, p. 84. [Google Scholar]
- Grytnes, J.A.; Vetaas, O.R. Species richness and altitude: A comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. Am. Nat. 2002, 159, 294–304. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, A.; Panseri, S.; Mattara, M.S.; Andreis, C.; Chiesa, L.M. Secondary metabolites and antioxidant capacities of Waldheimia glabra (Decne.) Regel from Nepal. J. Sci. Food Agric. 2013, 93, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
- Manzo, A.; Musso, L.; Panseri, S.; Iriti, M.; Dallavalle, S.; Catalano, E.; Scarì, G.; Giorgi, A. Screening of the chemical composition and bioactivity of Waldheimia glabra (Decne.) Regel essential oil. J. Sci. Food Agric. 2016, 96, 3195–3201. [Google Scholar] [CrossRef] [PubMed]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological effects of essential oils—A review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2015; Volume 4, p. 2204. [Google Scholar]
- Armstrong, J.A. Cytopathic effect inhibition assay for interferon: Microculture plate assay. Methods Enzymol. 1981, 78, 381–387. [Google Scholar] [PubMed]
- Lee, C. J.; Chen, L. G.; Liang, W. L.; Wang, C.C. Anti-inflammatory effects of Punica granatum Linne in vitro and in vivo. Food Chem. 2010, 118, 315–322. [Google Scholar] [CrossRef]
- Yin, X.; Lu, Y.; Cheng, Z.H.; Chen, D.F. Anti-Complementary Components of Helicteres angustifolia. Molecules 2016, 21, 1506. [Google Scholar] [CrossRef] [PubMed]
- Murugan, R.; Mallavarapu, G.R. α-Bisabolol, the main constituent of the essential oil of Pogostemon speciosus. Ind. Crops Prod. 2013, 49, 237–239. [Google Scholar] [CrossRef]
- Silvério, M.S.; Del-Vechio-Vieira, G.; Pinto, M.A.; Alves, M.S.; Sousa, O.V. Chemical composition and biological activities of essential oils of Eremanthus erythropappus (DC) McLeisch (Asteraceae). Molecules 2013, 18, 9785–9796. [Google Scholar] [CrossRef] [PubMed]
- Rocha, N.F.M.; Rios, E.R.V.; Carvalho, A.M.R.; Cerqueira, G.S.; de Araújo Lopes, A.; Leal, L.K.A.M.; Dias, M.L.; de Sousa, D.P.; de Sousa, F.C.F. Anti-nociceptive and anti-inflammatory activities of (−)-α-bisabolol in rodents. Naunyn-Schmiedeberg’s Arch. Pharmacol. 2011, 384, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Dong, J.W.; Zhao, J.H.; Tang, L.N.; Zhang, J.J. Herbal insomnia medications that target GABAergic systems: A review of the psychopharmacological evidence. Curr. Neuropharmacol. 2014, 12, 289–302. [Google Scholar] [CrossRef] [PubMed]
- Glaser, J.; Schultheis, M.; Moll, H.; Hazra, B.; Holzgrabe, U. Antileishmanial and cytotoxic compounds from Valeriana wallichii and identification of a novel nepetolactone derivative. Molecules 2015, 20, 5740–5753. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, L.B.P.; Rocha, M.D.S.; Lima, S.G.D.; Júnior, G.R.D.S.; Citó, A.M.D.G.L.; Silva, D.D.; Lopes, J.A.D.; Moura, D.J.; Saffi, J.; Mobin, M.; et al. Chemical constituents and evaluation of cytotoxic and antifungal activity of Lantana camara essential oils. Rev. Bras. Farmacogn. 2012, 22, 1259–1267. [Google Scholar] [CrossRef]
- Hammami, S.; Jmii, H.; Mokni, R.E.; Khmiri, A.; Faidi, K.; Dhaouadi, H.; Aouni, M.H.E.; Aouni, M.; Joshi, R.K. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia. Molecules 2015, 20, 20426–20433. [Google Scholar] [CrossRef] [PubMed]
- Callan, N.W.; Johnson, D.L.; Westcott, M.P.; Welty, L.E. Herb and oil composition of dill (Anethum graveolens L.): Effects of crop maturity and plant density. Ind. Crops Prod. 2007, 253, 282–287. [Google Scholar] [CrossRef]
- Melito, S.; Petretto, G.L.; Podani, J.; Foddai, M.; Maldini, M.; Chessa, M.; Pintore, G. Altitude and climate influence Helichrysum italicum subsp. microphyllum essential oils composition. Ind. Crops Prod. 2016, 80, 242–250. [Google Scholar] [CrossRef]
- Cun, Y.Z.; Wang, X.Q. Plant recolonization in the Himalaya from the southeastern Qinghai-Tibetan Plateau: Geographical isolation contributed to high population differentiation. Mol. Phylogenet. Evol. 2010, 56, 972–982. [Google Scholar] [CrossRef] [PubMed]
- Sample Availability: Not Available.
No. | Compounds | % Area | RI 1 |
---|---|---|---|
1 | α-Pinene | 0.3 | 944 |
2 | Yomogi alcohol | 1.4 | 996 |
3 | Artemisia ketone | 0.2 | 1066 |
4 | Artemisia alcohol | 0.5 | 1086 |
5 | Tanacetone | 0.2 | 1122 |
6 | Lavandulol | 0.4 | 1173 |
7 | Terpinen-4-ol | 0.2 | 1197 |
8 | α-Terpineol | 0.2 | 1212 |
9 | β-Citronellol | 0.8 | 1234 |
10 | Bornyl acetate | 0.2 | 1299 |
11 | β-Caryophyllene | 6.1 | 1445 |
12 | β-Farnesene | 1.0 | 1459 |
13 | α-Himachalene | 0.4 | 1493 |
14 | α-Curcumene | 0.5 | 1496 |
15 | Citronellyl butanoate | 1.0 | 1531 |
16 | δ-Cadinene | 0.8 | 1537 |
17 | Geranyl butyrate | 0.2 | 1564 |
18 | Citronellyl iso-valerate | 1.7 | 1579 |
19 | Patchoulanol | 0.4 | 1588 |
20 | Spathulenol | 8.2 | 1608 |
21 | Caryophyllene oxide | 5.2 | 1617 |
22 | Isospathulenol | 0.4 | 1661 |
23 | α-Bisabolol | 20.2 | 1706 |
24 | Valeranone | 11.8 | 1713 |
25 | Hexahydrofarnesyl acetone | 0.2 | 1848 |
26 | Tonghaosu | 0.2 | 1980 |
27 | Chamazulene | 9.9 | 2002 |
Monoterpene hydrocarbons | 0.3 | ||
Oxygenated monoterpenes | 3.9 | ||
Sesquiterpene hydrocarbons | 8.7 | ||
Oxygenated sesquiterpenes | 59.1 | ||
Ketones | 0.2 | ||
Ester | 0.2 | ||
Total identified | 72.4 | ||
Others | 24.1 | ||
Total detected | 96.5 |
Samples | Concentrations (μg·mL−1) | Cytotoxicity (%) | TC50 a (μg·mL−1) | Inhibition Rate for CPE (%) | IC50 b (μg·mL−1) |
---|---|---|---|---|---|
Essential oil | 200 | 50 | 252.0 | / | 88.8 |
100 | 0 | 37.5 | |||
50 | 0 | 25 | |||
25 | 0 | 0 | |||
12.5 | 0 | 0 | |||
Ribavirin | 250 | 0 | 75 | 37.2 | |
125 | 0 | 75 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De, J.; Lu, Y.; Ling, L.; Peng, N.; Zhong, Y. Essential Oil Composition and Bioactivities of Waldheimia glabra (Asteraceae) from Qinghai-Tibet Plateau. Molecules 2017, 22, 460. https://doi.org/10.3390/molecules22030460
De J, Lu Y, Ling L, Peng N, Zhong Y. Essential Oil Composition and Bioactivities of Waldheimia glabra (Asteraceae) from Qinghai-Tibet Plateau. Molecules. 2017; 22(3):460. https://doi.org/10.3390/molecules22030460
Chicago/Turabian StyleDe, Ji, Yan Lu, Lijun Ling, Nan Peng, and Yang Zhong. 2017. "Essential Oil Composition and Bioactivities of Waldheimia glabra (Asteraceae) from Qinghai-Tibet Plateau" Molecules 22, no. 3: 460. https://doi.org/10.3390/molecules22030460
APA StyleDe, J., Lu, Y., Ling, L., Peng, N., & Zhong, Y. (2017). Essential Oil Composition and Bioactivities of Waldheimia glabra (Asteraceae) from Qinghai-Tibet Plateau. Molecules, 22(3), 460. https://doi.org/10.3390/molecules22030460