Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers via Stereoselective Catalytic Polymerization
Abstract
:1. Introduction
2. Copolymerization with α-Olefins
2.1. Ethylene
2.2. Propylene
3. Copolymerization with Dienes
3.1. Butadiene and Isoprene
3.1.1. Group 4 Metallocene Catalysts
3.1.2. Group 3 Catalysts
3.2. Other Conjugated and Non-Conjugated Dienes
3.3. Other Comonomers
4. Copolymerization with Styrene Derivatives
4.1. Styrene with Substituted Styrene Derivatives
4.1.1. Alkyl-Substituted Styrene Monomers
4.1.2. Polar Styrene Monomers
4.2. Substituted Styrene Monomers with Other Monomers
4.3. Stereoblock Polystyrene
5. Terpolymerization
6. Stereoregular Diblock and Graft Polystyrene Copolymers
6.1. Polystyrene Graft Copolymers
6.2. Diblock Copolymers
Acknowledgments
Conflicts of Interest
References
- Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. Crystalline High Polymers of α-Olefins. J. Am. Chem. Soc. 1955, 77, 1708–1710. [Google Scholar] [CrossRef]
- Natta, V.G. Polymères isotactiques. Makromol. Chem. 1955, 16, 213–237. [Google Scholar] [CrossRef]
- Corradini, P. The Impact of the Discovery of Stereoregular Polymers in Macromolecular Science. Macromol. Symp. 1995, 89, 1–11. [Google Scholar] [CrossRef]
- Ishihara, N.; Seimiya, T.; Kuramoto, M.; Uoi, M. Crystalline Syndiotactic Polystyrene. Macromolecules 1986, 19, 2464–2465. [Google Scholar] [CrossRef]
- Ishihara, N.; Kuramoto, M.; Uoi, M. Stereospecific Polymerization of Styrene Giving the Syndiotactic Polymer. Macromolecules 1988, 21, 3356–3360. [Google Scholar] [CrossRef]
- Po, R.; Cardi, N. Synthesis of Syndiotactic Polystyrene: Reaction Mechanisms and Catalysis. Prog. Polym. Sci. 1996, 21, 47–88. [Google Scholar] [CrossRef]
- Tomotsu, N.; Ishihara, N.; Newman, T.H.; Malanga, M.T. Syndiospecific Polymerization of Styrene. J. Mol. Catal. A Chem. 1998, 128, 167–190. [Google Scholar] [CrossRef]
- Malanga, M. Syndiotactic Polystyrene Materials. Adv. Mater. 2000, 12, 1869–1872. [Google Scholar] [CrossRef]
- Schellenberg, J.; Tomotsu, N. Syndiotactic Polystyrene Catalysts and Polymerization. Prog. Polym. Sci. 2002, 27, 1925–1982. [Google Scholar] [CrossRef]
- Rodrigues, A.-S.; Kirillov, E.; Carpentier, J.-F. Groups 3 and 4 Single-Site Catalysts for Stereospecific Polymerization of Styrene. Coord. Chem. Rev. 2008, 252, 2115–2136. [Google Scholar] [CrossRef]
- Natta, V.G.; Corradini, P. Kristallstruktur des Isotaktischen Polystyrols. Die Makromol. Chem. 1955, 16, 77–80. [Google Scholar] [CrossRef]
- Kern, R.J.; Hurst, H.G.; Richard, W.R. Triethylaluminum—Titanium Tetrachloride Catalysts for Preparation of Crystalline Polystyrene. J. Polym. Sci. 1960, 45, 195–204. [Google Scholar] [CrossRef]
- Overberger, C.G.; Angj, F.; Mark, H. A Convenient Laboratory Preparation of Isotactic Polystyrene. J. Polym. Sci. 1959, 35, 381–389. [Google Scholar] [CrossRef]
- Hay, J.N. Crystallization Kinetics of High Polymers: Isotactic Polystyrene. J. Polym. Sci. Part A Gen. Pap. 1965, 3, 433–447. [Google Scholar] [CrossRef]
- Cimmino, S.; Di Pace, E.; Martuscelli, E.; Silvestre, C. Syndiotactic Polystyrene: Crystallization and Melting Behaviour. Polymer 1991, 32, 1080–1083. [Google Scholar] [CrossRef]
- Brintzinger, H.H.; Fischer, D.; Mülhaupt, R.; Rieger, B.; Waymouth, R.M. Stereospecific Olefin Polymerization with Chiral Metallocene Catalysts. Angew. Chem. Int. Ed. Engl. 1995, 34, 1143–1170. [Google Scholar] [CrossRef]
- Kaminsky, W.; Arndt, M. Metallocenes for Polymer Catalysis. In Polymer Synthesis/Polymer Catalysis; Springer: Berlin/Heidelberg, Germany, 1997; pp. 143–187. [Google Scholar]
- Kaminsky, W. New Polyolefins by Metallocene Catalysts. Pure Appl. Chem. 1998, 70, 1229–1233. [Google Scholar] [CrossRef]
- McKnight, A.L.; Waymouth, R.M. Group 4 ansa-Cyclopentadienyl-Amido Catalysts for Olefin Polymerization. Chem. Rev. 1998, 98, 2587–2598. [Google Scholar] [CrossRef] [PubMed]
- Suhm, J.; Heinemann, J.; Wörner, C.; Müller, P.; Stricker, F.; Kressler, J.; Okuda, J.; Mülhaupt, R. Novel Polyolefin Materials via Catalysis and Reactive Processing. Macromol. Symp. 1998, 129, 1–28. [Google Scholar] [CrossRef]
- Kaminsky, W. (Ed.) Polyolefins: 50 Years after Ziegler and Natta II Polyolefins by Metallocenes and Other Single-Site Catalysts; Springer: Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2013. [Google Scholar]
- Takeuchi, D. Stereoregular Polymers. In Encyclopedia of Polymer Science and Technology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Kaminsky, W.; Fernandes, M. Discovery and Development of Metallocene-Based Polyolefins with Special Properties. Polyolefins J. 2015, 2, 1–16. [Google Scholar]
- Zinck, P.; Bonnet, F.; Mortreux, A.; Visseaux, M. Functionalization of Syndiotactic Polystyrene. Prog. Polym. Sci. 2009, 34, 369–392. [Google Scholar] [CrossRef]
- Jaymand, M. Recent Progress in the Chemical Modification of Syndiotactic Polystyrene. Polym. Chem. 2014, 5, 2663. [Google Scholar] [CrossRef]
- Rodrigues, A.-S.; Carpentier, J.-F. Groups 3 and 4 Single-Site Catalysts for Styrene–Ethylene and Styrene–α-Olefin Copolymerization. Coord. Chem. Rev. 2008, 252, 2137–2154. [Google Scholar] [CrossRef]
- Luo, Y.; Baldamus, J.; Hou, Z. Scandium Half-Metallocene-Catalyzed Syndiospecific Styrene Polymerization and Styrene-Ethylene Copolymerization: Unprecedented Incorporation of Syndiotactic Styrene-Styrene Sequences in Styrene-Ethylene Copolymers. J. Am. Chem. Soc. 2004, 126, 13910–13911. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Luo, Y.; Qu, J.; Hou, Z. QM/MM Studies on Scandium-Catalyzed Syndiospecific Copolymerization of Styrene and Ethylene. Organometallics 2011, 30, 2908–2919. [Google Scholar] [CrossRef]
- Kirillov, E.; Lehmann, C.W.; Razavi, A.; Carpentier, J.-F. Highly Syndiospecific Polymerization of Styrene Catalyzed by Allyl Lanthanide Complexes. J. Am. Chem. Soc. 2004, 126, 12240–12241. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, A.-S.; Kirillov, E.; Lehmann, C.W.; Roisnel, T.; Vuillemin, B.; Razavi, A.; Carpentier, J.-F. Allyl ansa-Lanthanidocenes: Single-Component, Single-Site Catalysts for Controlled Syndiospecific Styrene and Styrene-Ethylene (Co)polymerization. Chem. A Eur. J. 2007, 13, 5548–5565. [Google Scholar] [CrossRef] [PubMed]
- Perrin, L.; Sarazin, Y.; Kirillov, E.; Carpentier, J.-F.; Maron, L. On the initiation mechanism of syndiospecific styrene polymerization catalyzed by single-component ansa-lanthanidocenes. Chem. A Eur. J. 2009, 15, 3773–3783. [Google Scholar] [CrossRef] [PubMed]
- Perrin, L.; Kirillov, E.; Carpentier, J.-F.; Maron, L. DFT Investigation of the Tacticity Control during Styrene Polymerization Catalyzed by Single-Component Allyl ansa-Lanthanidocenes {(C5H4CMe2(9-C13H8)}Ln(C3H5). Macromolecules 2010, 43, 6330–6336. [Google Scholar] [CrossRef]
- Yoon, S.W.; Kim, Y.; Kim, S.K.; Kim, S.Y.; Do, Y.; Park, S. Novel Dinuclear Half-Titanocene-Producing Styrene/Ethylene Copolymers Containing Syndiotactic Styrene/Styrene Sequences. Macromol. Chem. Phys. 2011, 212, 785–789. [Google Scholar] [CrossRef]
- Hagihara, H.; Usui, C.; Naga, N. Synthesis of Ethylene–Styrene Copolymer containing Syndiotactic Polystyrene Sequence by Trivalent Titanium Catalyst. Polym. J. 2012, 44, 147–154. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Tong, X.; Zhang, H.; Chen, Y.; Liu, Y.; Liu, H.; Wang, X.; Nishiura, M.; He, H.; et al. Aluminum Effects in the Syndiospecific Copolymerization of Styrene with Ethylene by Cationic Fluorenyl Scandium Alkyl Catalysts. Organometallics 2013, 32, 1445–1458. [Google Scholar] [CrossRef]
- Capacchione, C.; D’Acunzi, M.; Motta, O.; Oliva, L.; Proto, A.; Okuda, J. Isolated Ethylene Units in Isotactic Polystyrene Chain: Stereocontrol of an Isospecific Post-Metallocene Titanium Catalyst. Macromol. Chem. Phys. 2004, 205, 370–373. [Google Scholar] [CrossRef]
- Lin, S.; Wu, Q.; Chen, R.; Zhu, F. Syntheses and characterizations of polypropene, polystyrene and their block copolymers with titanocene catalysts. Macromol. Symp. 2003, 195, 63–68. [Google Scholar] [CrossRef]
- Chen, R.; Wu, Q.; Zhu, F.; Lin, S. Syndiotactic Polystyrene-b-Atactic Polypropylene Block Copolymer Alloy as a Compatibilizer for Syndiotactic Polystyrene/Isotactic Polypropylene Blends. J. Appl. Polym. Sci. 2003, 89, 1596–1605. [Google Scholar] [CrossRef]
- Tan, R.; Guo, F.; Li, Y. Copolymerization of Propylene with Styrene and Ethylene by a THF-containing Half-sandwich Scandium Catalyst: Efficient Synthesis of Polyolefins with a Controllable Styrene Content. Polym. Chem. 2017, 4, 482–489. [Google Scholar] [CrossRef]
- Del Giudice, L.; Cohen, R.E.; Attalla, G.; Bertinotti, F. Compatibilizing Effect of a Diblock Copolymer of Isotactic Polystyrene and Isotactic Polypropylene in Blends of the Corresponding Homopolymers. J. Appl. Polym. Sci. 1985, 30, 4305–4318. [Google Scholar] [CrossRef]
- Capacchione, C.; De Carlo, F.; Zannoni, C.; Okuda, J.; Proto, A. Propylene—Styrene Multiblock Copolymers: Evidence for Monomer Enchainment via Opposite Insertion Regiochemistry by a Single-Site Catalyst. Macromolecules 2004, 37, 8918–8922. [Google Scholar] [CrossRef]
- Pellecchia, C.; Proto, A.; Zambelli, A. Copolymerization of styrene and isoprene: An insight into the mechanism of syndiospecific styrene polyinsertion. Macromolecules 1992, 25, 4450–4452. [Google Scholar] [CrossRef]
- Zambelli, A.; Caprio, M.; Grassi, A.; Bowen, D.E. Copolymerization of Styrene and Isoprene: An Insight into the Mechanism of Syndiospecific Styrene Polyinsertion. Macromol. Chem. Phys. 2000, 201, 393–400. [Google Scholar] [CrossRef]
- Caprio, M.; Serra, M.C.; Bowen, D.E.; Grassi, A. Structural Characterization of Novel Styrene—Butadiene Block Copolymers Containing Syndiotactic Styrene Homosequences. Macromolecules 2002, 35, 9315–9322. [Google Scholar] [CrossRef]
- Naga, N.; Imanishi, Y. Copolymerization of Styrene and Conjugated Dienes with Half-Sandwich Titanium(IV) Catalysts: The Effect of the Ligand Structure on the Monomer Reactivity, Monomer Sequence Distribution, and Insertion Mode of Dienes. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 939–946. [Google Scholar] [CrossRef]
- Ban, H.T.; Tsunogae, Y.; Shiono, T. Synthesis and Characterization of cis-Polybutadiene-block-syn-Polystyrene Copolymers with a Cyclopentadienyl Titanium Trichloride/Modified Methylaluminoxane Catalyst. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 2698–2704. [Google Scholar] [CrossRef]
- Ban, H.T.; Tsunogae, Y.; Shiono, T. Stereospecific Sequential Block Copolymerizations of Styrene and 1,3-Butadiene with a C5Me5TiMe3/B(C6F5)3/Al(oct)3 Catalyst. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 1188–1195. [Google Scholar] [CrossRef]
- Ban, H.T.; Kase, T.; Kawabe, M.; Miyazawa, A.; Ishihara, T.; Hagihara, H.; Tsunogae, Y.; Murata, M.; Shiono, T. A New Approach to Styrenic Thermoplastic Elastomers: Synthesis and Characterization of Crystalline Styrene−Butadiene−Styrene Triblock Copolymers. Macromolecules 2006, 39, 171–176. [Google Scholar] [CrossRef]
- Cuomo, C.; Serra, M.C.; Maupoey, M.G.; Grassi, A. Copolymerization of Styrene with Butadiene and Isoprene Catalyzed by the Monocyclopentadienyl Titanium Complex Ti(η5-C5H5)(η2-MBMP)Cl. Macromolecules 2007, 40, 7089–7097. [Google Scholar] [CrossRef]
- Ricciardi, R.; Napoli, M.; Longo, P. Facile Synthesis of Blocky Styrene(1,3)-Butadiene Copolymers Having Stereoregular Mmonomeric Sequences. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 815–822. [Google Scholar] [CrossRef]
- Milione, S.; Cuomo, C.; Capacchione, C.; Zannoni, C.; Grassi, A.; Proto, A. Stereoselective Polymerization of Conjugated Dienes and Styrene—Butadiene Copolymerization Promoted by Octahedral Titanium Catalyst. Macromolecules 2007, 40, 5638–5643. [Google Scholar] [CrossRef]
- Proto, A.; Avagliano, A.; Saviello, D.; Ricciardi, R.; Capacchione, C. Living, Isoselective Polymerization of Styrene and Formation of Stereoregular Block Copolymers via Sequential Monomer Addition. Macromolecules 2010, 43, 5919–5921. [Google Scholar] [CrossRef]
- Hohberger, C.; Spaniol, T.P.; Okuda, J. Living Polymerization by Bis(phenolate) Zirconium Catalysts: Synthesis of Isotactic Polystyrene-block-Polybutadiene Copolymers. Macromol. Chem. Phys. 2014, 215, 2001–2006. [Google Scholar] [CrossRef]
- Napoli, M.; Ricciardi, R.; Memoli, A.; Longo, P. Styrene/1,3-Butadiene Copolymerization by C2-Symmetric Group 4 Metallocenes Based Catalysts. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 1476–1487. [Google Scholar] [CrossRef]
- Zhang, H.; Luo, Y.; Hou, Z. Scandium-Catalyzed Syndiospecific Copolymerization of Styrene with Isoprene. Macromolecules 2008, 41, 1064–1066. [Google Scholar] [CrossRef]
- Zinck, P.; Valente, A.; Mortreux, A.; Visseaux, M. In Situ Generated Half-Lanthanidocene Based Catalysts for the Controlled Oligomerisation of Styrene: Selectivity, Block Copolymerization and Chain Transfer. Polymer 2007, 48, 4609–4614. [Google Scholar] [CrossRef]
- Rodrigues, A.-S.; Kirillov, E.; Vuillemin, B.; Razavi, A.; Carpentier, J.-F. Stereocontrolled Styrene–Isoprene Copolymerization and Styrene–Ethylene–Isoprene Terpolymerization with a Single-Component Allyl ansa-Neodymocene Catalyst. Polymer 2008, 49, 2039–2045. [Google Scholar] [CrossRef]
- Annunziata, L.; Duc, M.; Carpentier, J.-F. Chain Growth Polymerization of Isoprene and Stereoselective Isoprene–Styrene Copolymerization Promoted by an ansa-Bis(indenyl)allyl-Yttrium Complex. Macromolecules 2011, 44, 7158–7166. [Google Scholar] [CrossRef]
- Annunziata, L.; Rodrigues, A.-S.; Kirillov, E.; Sarazin, Y.; Okuda, J.; Perrin, L.; Maron, L.; Carpentier, J.-F. Isoselective Styrene Polymerization Catalyzed by ansa-Bis(indenyl) Allyl Rare Earth Complexes. Stereochemical and Mechanistic Aspects. Macromolecules 2011, 44, 3312–3322. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, K.; Nishiura, M.; Hou, Z. Chain-Shuttling Polymerization at Two Different Scandium Sites: Regio- and Stereospecific “One-Pot” Block Copolymerization of Styrene, Isoprene, and Butadiene. Angew. Chem. Int. Ed. 2011, 50, 12012–12015. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Tang, S.; Cui, D. Highly Regio- and Stereoselective Terpolymerization of Styrene, Isoprene and Butadiene with Lutetium-Based Coordination Catalyst. Macromolecules 2011, 44, 7675–7681. [Google Scholar] [CrossRef]
- Jian, Z.; Tang, S.; Cui, D. A Lutetium Allyl Complex That Bears a Pyridyl-Functionalized Cyclopentadienyl Ligand: Dual Catalysis on Highly Syndiospecific and cis-1,4-Selective (Co)Polymerizations of Styrene and Butadiene. Chem. A Eur. J. 2010, 16, 14007–14015. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.; Guo, F.; Tan, R.; Niu, H.; Li, T.; Li, Y. “Arm-first” approach for the synthesis of star-shaped stereoregular polymers through living coordination polymerization. Polym. Chem. 2017, 8, 1449–1453. [Google Scholar] [CrossRef]
- Lin, F.; Wang, M.; Pan, Y.; Tang, T.; Cui, D.; Liu, B. Sequence and Regularity Controlled Coordination Copolymerization of Butadiene and Styrene: Strategy and Mechanism. Macromolecules 2017, 50, 849–856. [Google Scholar] [CrossRef]
- Longo, P.; Proto, A.; Oliva, P.; Sessa, I.; Zambelli, A. Copolymerization of Styrene with (Z)-1,3-Pentadiene in the Presence of a Syndiotactic-Specific Catalyst. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 2697–2702. [Google Scholar] [CrossRef]
- Loria, M.; Proto, A.; Capacchione, C. Styrene-Isoprene and Styrene-1,3-Pentadiene Copolymerization Catalyzed by Titanium [OSSO]-type Catalysts. Polym. Chem. 2015, 5, 65998–66004. [Google Scholar]
- Capacchione, C.; Saviello, D.; Ricciardi, R.; Proto, A. Living, Isoselective Polymerization of 4-Methyl-1,3-pentadiene and Styrenic Monomers and Synthesis of Highly Stereoregular Block Copolymers via Sequential Monomer Addition. Macromolecules 2011, 44, 7940–7947. [Google Scholar] [CrossRef]
- Loria, M.; Proto, A.; Capacchione, C. Binary Copolymerization of 4-Methyl-1,3-pentadiene with Styrene, Butadiene and Isoprene Catalysed by a Titanium [OSSO]-type Catalyst. Polym. Int. 2017, 66, 144–150. [Google Scholar] [CrossRef]
- Guo, F.; Nishiura, M.; Koshino, H.; Hou, Z. Scandium-Catalyzed Cyclocopolymerization of 1,5-Hexadiene with Styrene and Ethylene: Efficient Synthesis of Cyclopolyolefins Containing Syndiotactic Styrene–Styrene Sequences and Methylene-1,3-cyclopentane Units. Macromolecules 2011, 44, 6335–6344. [Google Scholar] [CrossRef]
- Du, G.; Long, Y.; Xue, J.; Zhang, S.; Dong, Y.; Li, X. 1,4-Selective Polymerization of 1,3-Cyclohexadiene and Copolymerization with Styrene by Cationic Half-Sandwich Fluorenyl Rare Earth Metal Alkyl Catalysts. Macromolecules 2015, 48, 1627–1635. [Google Scholar] [CrossRef]
- Pan, L.; Zhang, K.; Nishiura, M.; Hou, Z. Syndiospecific Living Copolymerization of Styrene with ε-Caprolactone by Scandium Catalysts. Macromolecules 2010, 43, 9591–9593. [Google Scholar] [CrossRef]
- Grassi, A.; Longo, P.; Proto, A.; Zambelli, A. Some Substituted Styrenes in the Presence of a Syndiotactic Specific Polymerization Catalyst. Macromolecules 1989, 22, 104–108. [Google Scholar] [CrossRef]
- Soga, K.; Nakatani, H.; Monoi, T. Copolymerization of Styrene and Substituted Styrenes with Ti(Omen)4-Methylaluminoxane Catalyst. Macromolecules 1990, 23, 953–957. [Google Scholar] [CrossRef]
- Pérez, M.; Caro, C.J.; Cancino, R.A.; Rabagliati, F.M. Ph2-Zn-Metallocene-MAO Initiator Systems in the Homo- and Copolymerization of Styrene/p-alkylstyrene. Polym. Bull. 2003, 51, 199–208. [Google Scholar] [CrossRef]
- Rabagliati, F.M.; Cancino, R.A.; Pérez, M.A.; Rodríguez, F.J. Styrene/(Styrene Derivative) and Styrene/(1-Alkene) Copolymerization using Ph2Zn-Additive Initiator Systems. Macromol. Symp. 2004, 216, 55–64. [Google Scholar] [CrossRef]
- Rabagliati, F.M.; Pérez, M.A.; Cancino, R.A.; Soto, M.A.; Rodríguez, F.J.; Caro, C.J.; León, A.G.; Ayal, H.A.; Quijada, R. Polymerization and Copolymerization of Styrene by Ph2Zn-Metallocene-MAO Initiator Systems. Macromol. Symp. 2001, 168, 31–42. [Google Scholar] [CrossRef]
- Rabagliati, F.M.; Pérez, M.A.; Soto, M.A.; de Ilarduya, A.M.; Muñoz-Guerra, S. Copolymerization of Styrene by Diphenylzinc-Additive Systems I. Copolymerization of Styrene/p-tert-butylstyrene by Ph2Zn-Metallocene-MAO Systems. Eur. Polym. J. 2001, 37, 1001–1006. [Google Scholar] [CrossRef]
- Rabagliati, F.M.; Rodríguez, F.J.; Alla, A.; Muñoz-Guerra, S. Styrene-Substituted-Styrene Copolymerization using Diphenylzinc-Metallocene-Methylaluminoxane Systems. Polym. Int. 2006, 55, 910–915. [Google Scholar] [CrossRef]
- Kawabe, M.; Murata, M. Syndiospecific Living Polymerization of 4-Methylstyrene and Styrene with (Trimethyl)pentamethylcyclopentadienyltitanium/Tris(pentafluorophenyl)borane/Trioctylaluminum Catalytic System. J. Polym. Sci. Part A Polym. Chem. 2001, 39, 3692–3706. [Google Scholar] [CrossRef]
- Kawabe, M.; Murata, M. Synthesis of Block Graft Copolymer with Syndiospecific Living Polymerization of Styrene Derivatives by (Trimethyl)pentamethylcyclopentadienyltitanium /Tris(pentafluorophenyl)borane/Trioctylaluminium Catalytic System. Macromol. Chem. Phys. 2001, 202, 1799–1805. [Google Scholar] [CrossRef]
- Kawabe, M.; Murata, M. Syndiospecific Living Block Copolymerization of Styrenic Monomers Containing Functional Groups, and Preparation of Syndiotactic Poly{(4-hydroxystyrene)-block-[(4-methylstyrene)-co-(4-hydroxystyrene)]}. Macromol. Chem. Phys. 2002, 203, 24–30. [Google Scholar] [CrossRef]
- Kim, K.H.; Jo, W.H.; Kwak, S.; Kim, K.U.; Kim, J. Synthesis of 4-tert-Butyldimethylsilyloxystyrene and its Copolymerization with Styrene using (η5-indenyl)trichlorotitanium in the Presence of Methylaluminoxane. Macromol. Rapid Commun. 1999, 20, 175–178. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, D.; Cui, D. Statistically Syndioselective Coordination (Co)polymerization of 4-Methylthiostyrene. Macromolecules 2016, 49, 781–787. [Google Scholar] [CrossRef]
- Liu, D.; Wang, M.; Wang, Z.; Wu, C.; Pan, Y.; Cui, D. Stereoselective Copolymerization of Unprotected Polar and Nonpolar Styrenes by an Yttrium Precursor: Control of Polar-Group Distribution and Mechanism. Angew. Chem. Ind. Ed. 2017, 129, 2758–2763. [Google Scholar] [CrossRef]
- Buonerba, A.; Fienga, M.; Milione, S.; Cuomo, C.; Grassi, A.; Proto, A.; Capacchione, C. Binary Copolymerization of p-Methylstyrene with Butadiene and Isoprene Catalyzed by Titanium Compounds Showing Different Stereoselectivity. Macromolecules 2013, 46, 8449–8457. [Google Scholar] [CrossRef]
- Shi, Z.; Guo, F.; Meng, R.; Jiang, L.; Li, Y. Stereoselective Copolymerization of Amino-Functionalized Styrene with Butadiene using a Half-Sandwich Scandium Complex. Polym. Chem. 2016, 7, 7365–7369. [Google Scholar] [CrossRef]
- Shi, Z.; Guo, F.; Li, Y.; Hou, Z. Synthesis of Amino-Containing Syndiotactic Polystyrene as Efficient Polymer Support for Palladium Nanoparticles. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 5–9. [Google Scholar] [CrossRef]
- Longo, P.; Mariconda, A.; D’Urso, L.; Napoli, M. Syndiotactic-Atactic Stereoblock Polystyrene Obtained with a Hapto-Flexible Catalyst. Macromolecules 2014, 47, 2214–2218. [Google Scholar] [CrossRef]
- Du, G.; Yan, X.; Zhang, P.; Wang, H.; Dong, Y.; Li, X. 1,4-Specific Copolymerization of 1,3-Cyclohexadiene with Isoprene and their Terpolymerization with Styrene by Cationic Half-Sandwich Fluorenyl Rare-Earth Metal Alkyl Catalysts. Polym. Chem. 2017, 250, 212–241. [Google Scholar] [CrossRef]
- Guo, F.; Nishiura, M.; Koshino, H.; Hou, Z. Cycloterpolymerization of 1,6-Heptadiene with Ethylene and Styrene Catalyzed by a THF-free Half-Sandwich Scandium Complex. Macromolecules 2011, 44, 2400–2403. [Google Scholar] [CrossRef]
- Sernetz, F.G.; Mülhaupt, R. Metallocene-Catalyzed Ethene/Styrene Co- and Terpolymerization with Olefinic Termonomers. Polym. Sci. Part A Polym. Chem. 1997, 35, 2549–2560. [Google Scholar] [CrossRef]
- Li, X.; Hou, Z. Scandium-Catalyzed Copolymerization of Ethylene with Dicyclopentadiene and Terpolymerization of Ethylene, Dicyclopentadiene, and Styrene. Macromolecules 2005, 38, 6767–6769. [Google Scholar] [CrossRef]
- Hou, Z.; Luo, Y.; Li, X. Cationic Rare Earth Metal Alkyls as Novel Catalysts for Olefin Polymerization and Copolymerization. J. Organomet. Chem. 2006, 691, 3114–3121. [Google Scholar] [CrossRef]
- Endo, K.; Senoo, K. Syndiospecific Copolymerization of Styrene with Styrene Terminated Isoprene Macromonomer by CpTiCl3-Methylaluminoxane Catalyst. Macromol. Rapid Commun. 1998, 19, 563–566. [Google Scholar] [CrossRef]
- Endo, K.; Senoo, K. Syndiospecific Copolymerization of Styrene with Styrene Macromonomer Bearing Terminal Styryl Group by CpTiCl3-Methylaluminoxane Catalyst. Polymer 1999, 40, 5977–5980. [Google Scholar] [CrossRef]
- Endo, K.; Senoo, K. Synthesis and Properties of Syndiotactic Graft Copolymer of Styrene with Polyisoprene Macromonomer by CpTiCl3-Methylaluminoxane Catalyst. Polym. J. 1999, 31, 817–821. [Google Scholar] [CrossRef]
- Huang, H.; Niu, H.; Dong, J.-Y. Synthesis and Crystallization Behavior Study of Syndiotactic Polystyrene-g-Isotactic Polypropylene (sPS-g-iPP) Graft Copolymers. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 2734–2745. [Google Scholar] [CrossRef]
- Coessens, V.; Pintauer, T.; Matyjaszewski, K. Functional Polymers by Atom Transfer Radical Polymerization. Prog. Polym. Sci. 2001, 26, 337–377. [Google Scholar] [CrossRef]
- Matyjaszewski, K. Atom Transfer Radical Polymerization (ATRP): Current Status and Future Perspectives. Macromolecules 2012, 45, 4015–4039. [Google Scholar] [CrossRef]
- Lui, S.; Sen, A. Syntheses of Syndiotactic-polystyrene-graft-poly(methyl methacrylate), Syndiotactic-polystyrene-graft-poly(methyl acrylate), and Syndiotactic-polystyrene-graft-atactic-polystyrene with Defined Structures by Atom Transfer Radical Polymerization. Macromolecules 2000, 33, 5106–5110. [Google Scholar]
- Gao, Y.; Li, S.; Li, H.; Wang, X. Synthesis of Syndiotactic-polystyrene-graft-poly(methyl methacrylate) and Syndiotactic-polystyrene-graft-atactic-polystyrene by Atom Transfer Radical Polymerization. Eur. Polym. J. 2005, 41, 2329–2334. [Google Scholar] [CrossRef]
- Abbasian, M.; Rahmani, S.; Mohammadi, R.; Entezami, A.A. Graft Copolymerization of Styrene or Methyl Methacrylate onto Syndiotactic Polystyrene by ATRP Technique. J. Appl. Polym. Sci. 2007, 104, 611–619. [Google Scholar] [CrossRef]
- Gao, Y.; Li, H.; Wang, X. Synthesis and Characterization of Syndiotactic Polystyrene-graft-poly(glycidyl methacrylate) Copolymer by Atom Transfer Radical Polymerization. Eur. Polym. J. 2007, 43, 1258–1266. [Google Scholar] [CrossRef]
- Gao, Y.; Li, H.; Wang, X. Atom Transfer Radical Polymerization of Styrene Initiated by Bromoacetylated Syndiotactic Polystyrene Macroinitiator. Polym. Int. 2007, 56, 976–983. [Google Scholar] [CrossRef]
- Abbasian, M. Synthesis of Functional Syndiotactic Polystyrene Copolymers with Graft and Block Structures by Nitroxide-Mediated Living Radical Polymerization. J. Elastomers Plast. 2011, 43, 481–497. [Google Scholar] [CrossRef]
- Xu, G.; Chung, T.C. Synthesis of Syndiotactic Polystyrene (s-PS) Containing a Terminal Polar Group and Diblock Copolymers Containing s-PS and Polar Polymers. Macromolecules 1999, 32, 8689–8692. [Google Scholar] [CrossRef]
- Lu, Y.; Hu, Y.; Chung, T.C.M. Syntheses of Diblock Copolymers Polyolefin-b-poly(ε-caprolactone) and Their Applications as the Polymeric Compatilizer. Polymer 2005, 46, 10585–10591. [Google Scholar] [CrossRef]
- Hsiao, T.-J.; Lee, J.-Y.; Mao, Y.-C.; Chen, Y.-C.; Tsai, J.-C.; Lin, S.-C.; Ho, R.-M. Stereoregular Diblock Copolymers of Syndiotactic Polystyrene Derivatives and Polylactide: Syntheses and Self-Assembled Nanostructures. Macromolecules 2011, 44, 286–298. [Google Scholar] [CrossRef]
- Annunziata, L.; Sarazin, Y.; Duc, M.; Carpentier, J.-F. Well-defined Syndiotactic Polystyrene-b-Atactic Polystyrene Stereoblock Polymers. Macromol. Rapid Commun. 2011, 32, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Annunziata, L.; Monasse, B.; Rizzo, P.; Guerra, G.; Duc, M.; Carpentier, J.-F. On the Crystallization Behavior of Syndiotactic-b-Atactic Polystyrene Stereodiblock Copolymers, Atactic/Syndiotactic Polystyrene Blends, and aPS/sPS Blends Modified with sPS-b-aPS. Mater. Chem. Phys. 2013, 141, 891–902. [Google Scholar] [CrossRef]
- Kirschvink, F.; Gall, B.T.; Vielhauer, M.; Lutz, P.J.; Mülhaupt, R. Semicrystalline Rubber Diblock Copolymers via Cyclooctene ROMP and Chain Transfer with Vinyl-terminated Isotactic Polystyrene. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2271–2275. [Google Scholar] [CrossRef]
- Cazzaniga, L.; Cohen, R.E. Synthesis and Characterization of Isotactic Polystyrene/Polybutadiene Block Copolymers. Macromolecules 1991, 24, 5817–5822. [Google Scholar] [CrossRef]
- Li, Z.; Liu, R.; Mai, B.; Feng, S.; Wu, Q.; Liang, G.; Gao, H.; Zhu, F. Synthesis and Self-assembly of Isotactic Polystyrene-block-poly(ethylene glycol). Polym. Chem. 2013, 4, 954–960. [Google Scholar] [CrossRef]
- Capacchione, C.; De Roma, A.; Buonerba, A.; Speranza, V.; Milione, S.; Grassi, A. Syndiotactic Polystyrene-block-Poly(methyl methacrylate) Copolymer via Click Chemistry. Macromol. Chem. Phys. 2013, 214, 1990–1997. [Google Scholar] [CrossRef]
Copolymer Microstructure | Catalytic System | Tpolym (°C) | Productivity (kg·mol−1·h−1) | St Incorporated (mol %) | Mn (×10−3 g·mol−1) | Mw/Mn | Tm (°C) | Reference |
---|---|---|---|---|---|---|---|---|
Blocky sPS-co-PE | 2/BF20 | 25 | 600–2314 | 13–87 | 79–162 | 1.1–1.2 | 214–245 or n.o. | [27] |
Random sPS-co-PE (r > 81%) | 9 | 60–120 | 11–2529 | 45–97 (±2) | 9–152 | 1.2–3.8 | 205–241 or n.o. | [30] |
ESI with sPS block (64%–69%) | 20/MMAO | 50–90 | 160–900 | 64–80 | 6–58 (Mw) | 1.6–1.9 | 254–265 | [33] |
Block-like sPS-co-PE | 18/MMAO | −20–50 | 0.8–70 | 29.2–75.5 | 13–2,192 | 1.3–2.7 | 252.7–264.5 (sPS part) 113.8–121.8 (PE part) | [34] |
Random to blocky sPS-co-PE (syndiotact. > 90%) | 6a-6b-6e-6h/BF20/TIBAL | 25 | 1429–9571 | 17–78 | 3–94 | 1.2–3.0 | 122–272 | [35] |
iPS-co-PE | 21a/MAO | 20–50 | 19,300–41,400 | 51–99 | n.r. | n.r. | n.r. | [36] |
Copolymer Microstructure | Catalytic System | Tpolym (°C) | Productivity (kg·mol−1·h−1) | St Incorporated (mol %) | Mn (×10−3 g·mol−1) | Mw/Mn | Tm (°C) | Reference |
---|---|---|---|---|---|---|---|---|
sPS-b-aPP | 14c/MAO | 90 | 450–860 | n.r. | n.r. | n.r. | 265–266.7 | [37] |
Blocky sPS-co-aPP | 2/BF20 | 25 | 30–110 | 10–85 | 12–45 | 1.5–1.7 | 240–256 or n.o. | [39] |
Blocky iPS-co-iPP | 21a/MAO | 0–70 | 18–164 | 66–99 | 2.1–60 (Mw) | 1.6–2.4 | 165/193–173/197 | [41] |
Copolymer Microstructure | Catalytic System | Tpolym (°C) | Productivity (kg·mol−1·h−1) | St Incorp. (mol %) | Mn (×10−3 g·mol−1) | Mw/Mn | Tm (°C) | Reference |
---|---|---|---|---|---|---|---|---|
sPS-co-PIP | 12a/MAO | 40 | 0.04–0.06 | 7–55 | n.r. | n.r. | n.r. | [42] |
Blocky sPS-co-PBD (mix of cis-1,4, trans-1,4 and 1,2 BD insertion) | 12a/MAO | 15 | 8–52 | 2–43 | 31–41 (Mw) | 1.3–2.0 | 170–220 or n.o. | [43] |
Blocky sPS-co-PBD (mix of cis-1,4, trans-1,4 and 1,2 BD insertion) | 12a/MAO | 15–70 | 24–36 | 15–92 | n.r. | n.r. | 205–230 or n.o. | [44] |
Blocky sPS-co-PBD (mix of 1,4 and 1,2 insertion) | 12a-13-14b/MAO | 40 | 0.1–53 | 10–94 | 2–18 | 1.9–4.0 | 189–243 | [45] |
Random sPS-co-PIP (mix of 1,4 and 3,4 insertion) | 12a-13-14b/MAO | 40 | 0.1–35 | 69–97 | 2–19 | 1.9–3.2 | 181–250 | [45] |
Blocky sPS-co-PBD (1,4 insertion > 75%) | 19/MAO | 50 | 46–89 | 28–81 | 19–57 (Mw) | 1.9–2.4 | 235–254 | [49] |
Random sPS-co-PIP (1,4 insertion > 80%) | 19/MAO | 50 | 29–81 | 23–73 | 28–39 (Mw) | 1.8–2.4 | Amorphous | [49] |
Blocky sPS-co-(cis-1,4)PBD (cis-1,4 = 65%–74%) | 16/MAO | 25 | 4–32 | 22–68 | 10–92 (Mw) | 2.0–2.6 | 171–239 | [50] |
Diblock sPS-b-(cis-1,4)PBD ([r]4 > 95% and cis-1,4 > 70%) | 14a/BF20/Al(oct)3 | −25 (St) −40 (BD) | n.r. | n.r. | 106–238 | 1.5–1.6 | > 270 | [47] |
Triblock sPS-b-(cis-1,4)PBD-b-sPS ([r]4 > 95% and cis-1,4 > 70%) | 14a/BF20/Al(oct)3 | −25 (St) −40 (BD) | n.r. | ca. 85% | 202 | 1.5 | > 272 | [48] |
Random iPS-co-(trans-1,4)PBD | 21a/MAO | 50 | 8–672 | 15–97 | 6–103 | 1.9–2.9 | Amorphous | [51] |
Diblock iPS-b-(trans-1,4)PBD | 21b/MAO | 25 | n.r. | 30–95 | 139–201 | 1.1 | 42–46 (PBD) 80.4–85.9 (PBD) 222.8–224.1 (iPS) | [52] |
Diblock iPS-b-(1,4)PBD (trans-1,4 = 80 mol %) | 22/[PhNMe2H][BF20]/Al(Oct)3 | 25 | n.r. | 26–81 | 33–153 | 1.1–1.2 | n.r. | [53] |
Random or blocky iPS-co-(1,4)PBD | 21a-21c/MAO | 50 | 1–15 | 32–88 | 50–990 (Mw) | 1.7-3.7 | n.o. | [54] |
Diblock sPS-b-PIP Triblock sPS-b-PIP-b-sPS | 2/BF20 | 25 | n.r. | 48–71 | 32–126 | 1.2–1.5 | 267–270 (sPS) −37–−35 (PIP) | [55] |
Blocky sPS-co-PIP | 2/BF20 | 25 | 9–510 | 2–76 | 34–195 | 1.2–2.1 | 189–241 or n.o. | [55] |
Blocky sPS-co-(cis-1,4)PIP ([r]4 > 99% and cis-1,4 > 97%) | 2 + 1/BF20/TIBAL | 25 | n.r. | 34–67 | 28–194 | 1.4–1.9 | 267–272 | [60] |
Blocky sPS-co-(3,4)PIP ([r]4 > 99% and 3,4 ca. 90%) | 2 + 11/BF20/TIBAL | 25 | n.r. | 50 | 26–67 | 1.7–1.8 | 262–263 | [60] |
Blocky sPS-co-(cis-1,4)PIP ([r]4 > 99% and cis-1,4 > 68.5%) | 8/BF20 | 20 | 88–134 | 6–83 | 13–82 | 1.4–1.9 | 240–246 or n.o. | [61] |
Diblock sPS-b-(cis-1,4)PIP | 8/BF20 | 20 | 66 | 50 | 39 | 1.3 | 268 | [61] |
Diblock sPS-b-(cis-1,4)PBD ([r]4 > 99% and cis-1,4 > 95%) | 8/BF20 | 20 | 306–396 | 4–85 | 88–225 | 1.3–1.7 | 263–268 | [62] |
Random sPS-co-(trans-1,4)PIP | 9 | 60–80 | 165–1025 | 70–97 | 12–91 | 1.2–3.25 | 218–245 or n.o. | [57] |
Blocky iPS-co-(trans-1,4)PIP ([m]6 = 7–98% and trans-1,4 > 90%) | 10 | 60 | 2-47 | 30–98 | 59–73 | 2.0–2.2 | 51–214 | [58] |
Diblock iPS-b-(trans-1,4)PIP ([m]6 > 99% and trans-1,4 > 90%) | 10 | 60 | 3–4 | 28.8–76.4 | 78–115 | 2.0–2.2 | 37–42; 212–219 | [58] |
From diblock to random sPS-co-PBD | 5a-5d/BF20 | 15 | n.r. | 11.0–88.9 | 123–312 | 1.1–2.1 | 238–258 | [64] |
Copolymer Microstructure | Catalytic System | Tpolym (°C) | Productivity (kg·mol−1·h−1) | St Incorporated (mol %) | Mn (×10−3 g·mol−1) | Mw/Mn | Tm (°C) | Reference |
---|---|---|---|---|---|---|---|---|
Blocky sPS-co-s(1,2)PPD | 12a/MAO | −20 | 0.1–0.3 | 32–64 | n.r. | n.r. | n.r. | [65] |
Random PS-co-PPD (1,2 insertion maj) | 21a-21b/MAO | 50 | 5–200 | 8–85 | 90–620 (Mw) | 1.2–1.9 | n.r. | [66] |
Diblock iPS-b-i(1,2)P(4Me)PD | 21b/MAO | 25 | n.r. | 22–81 | 114–390 | 1.1–1.3 | 85–89 23–132 i(1,2)P(4M)PD 219–224 (iPS) | [67] |
Alternated iPS-co- i(1,2)P(4Me)PD | 21b/MAO | 25 | 50–1000 | 33–95 | 228–968 (Mw) | 1.1–2.5 | n.r. | [68] |
Blocky sPS-co-PHD (trans-MCP: 5–72 mol %; VTM:3–14 mol %) | 4a-4c/BF20 | 25 | 24–156 | 14–92 | 17–84 | 2.2–2.8 | 224–260 | [69] |
Random sPS-co-(1,4)PCHD | 6a-6j/BF20/TIBAL | 25 | 5–11 | 26–78 | 4–7 | 1.5–1.8 | n.r. | [70] |
Diblock sPS-b-PCL | 2-3/BF20 | r.t. | 21–397 | 18–81 | 26–165 | 1.1–1.3 | 51–55 271–274 | [71] |
Copolymer Microstructure | Catalytic System | Tpolym (°C) | Productivity (kg·mol−1·h−1) | St Incorporated (mol %) | Mn (×10−3 g·mol−1) | Mw/Mn | Tm (°C) | Reference |
---|---|---|---|---|---|---|---|---|
Diblock iPS-b-iP(p-Me)S | 21b/MAO | 25 | n.r. | 32–90 | 148–202 | 1.1–1.2 | 230–235 | [67] |
Triblock iP(p-Me)S-b-iPS-b-iP(p-Me)S | 21b/MAO | 25 | n.r. | 39 | 272 | 1.2 | 232 | [67] |
Diblock sP(p-OH)S-b-sP(p-Me)S | 14a/BF15/Al(Oct)3 | −25 | n.r. | 50–91 | 150–734 | 1.11–1.31 | n.r. | [81] |
Random sPS-co-sP(p-SMe)S | 5b/BF20/TIBAL | 25 | n.r. | 7–89 | 111–294 | 1.4–2.0 | 221–227 or n.o. | [83] |
Diblock, triblock and quadriblock sPS-b-sP(p-SMe)S | 5b/BF20/TIBAL | 25 | n.r. | n.r. | 58 73 92 | 1.5 1.6 2.2 | 252/263/270 252/260/268 242/253/260/267 | [83] |
Tapered sPS-co-sP(o-OMe)S | 5d/BF20/TIBAL | 25 | 276–1220 | 7–90 | 125–147 | 1.1–1.3 | 228–266 | [84] |
Gradient sPS-co-sP(m-OMe)S | 5d/BF20/TIBAL | 25 | 380–1260 | 5–91 | 123–182 | 1.3–1.5 | 263-265 or n.o. | [84] |
Random sPS-co-sP(p-OMe)S | 5d/BF20/TIBAL | 25 | 64–1100 | 4–96 | 69–246 | 1.3–2.1 | 213-249 or n.o. | [84] |
Diblock iP(p-Me)S-b-(trans-1,4)PBD | 21b/MAO | 25 | n.r. | 33–85 (pMe)S | 95–177 | 1.1–1.4 | 46–50/ 85–94 | [67] |
Random iP(p-Me)S-co-(trans-1,4)PBD | 21a/MAO | 25 | 15–827 | 28–93 (pMe)S | 21–270 (Mw) | 1.7–2.6 | n.o. | [85] |
Random iP(p-Me)S-co-(trans-1,4)PIP | 21a/MAO | 25–50 | 1-117 | 20–92 | 12–81 (Mw) | 1.2–1.7 | n.o. | [85] |
Blocky sP(p-Me)S-co-(cis-1,4)PBD | 19/MAO | 50 | 41–121 | 19–69 (pMe)S | 37–63 (Mw) | 2.8–3.8 | n.o. | [85] |
Blocky sP(p-Me)S-co-(cis-1,4)PIP | 19/MAO | n.r. | 31–58 | 19–68 (pMe)S | 42–61 (Mw) | 1.8–2.5 | n.o. | [85] |
Blocky sP(DEAS)-co-(cis-1,4)PBD | 4c/BF20 | 25 | n.r. | 9–97 | 46–106 | 1.3–1.4 | 214–249 | [86] |
Diblock sP(DPAS)-b-(cis-1,4)PBD | 4c/BF20 | 25 | n.r. | 12–51 | 89–115 | 1.9–2.0 | 239–241 289–293 | [86] |
Multiblock sPS-co-aPS | 17/MAO | 10–15 | 0.3 | [r] = 71–86 | 100–140 | 1.3–1.4 | 251–262 | [88] |
Copolymer Microstructure | Catalytic System | Tpolym (°C) | Productivity (kg·mol−1·h−1) | St Incorporated (mol %) | Mn (×10−3 g·mol−1) | Mw/Mn | Tm (°C) | Reference |
---|---|---|---|---|---|---|---|---|
Triblock iP(p-Me)S-b-iPS-b-iP(p-tBu)S | 21b/MAO | 25 | n.r. | 40 (iP(p-Me)S) 42 (iPS) 18 (i(p-tBu)S) | 340 | 1.23 | 227 (iPS) 292 (iP(p-tBu)S) | [67] |
Triblock iP(p-Me)S-b-iPS-b-iP(4-Me)PD | 21b/MAO | 25 | n.r. | 39 (iP(p-Me)S) 38 (iPS) 22.2 (iP(4-Me)PD) | 315 | 1.27 | 227 (iPS) 83 (iP(4-Me)PD) | [67] |
Random sPS-co-PE-co-PP | 2/BF20 | 25 | 104–930 | 5–32 (sPS) 43–74 (PE) 3–43 (PP) | 32–153 | 1.1–1.8 | 228–229 or n.o. | [39] |
sPS-co-PE-co-(trans-1,4)PIP | 9 | 60–80 | 33–375 | 41–96 (sPS) 3–34 (PIP) 1–23 (PE) | 41–83 | 1.2–2.8 | 204–219 or n.o. | [57] |
Blocky sPS-co-(cis-1,4)PIP-co-(cis-1,4)PBD (ca. 75 mol % of (cis-1,4)PIP and 97 mol % of (cis-1,4)PBD) | 8/BF20 | 20 | 111–144 | 18–36 (sPS) 23–43 (PIP) 21–40 (PBD) | 48–88 | 1.3–1.5 | 242–251 or n.o. | [61] |
Triblock sPS-b-(cis-1,4)PIP-b-(cis-1,4)PBD (ca. 80 mol % of (cis-1,4)PIP and 96 mol % of (cis-1,4)PBD) | 8/BF20 | 20 | 46 | 23 (sPS) 38.5 (PIP) 38.5 (PBD) | 66 | 1.66 | 265 | [61] |
Blocky sPS-co-(cis-1,4)PIP-co-(cis-1,4)PBD ([r]4 > 99%, (cis-1,4)PIP >97 mol % and (cis-1,4)PBD) >97 mol %) | 2 + 1/TIBAL | r.t. | n.r. | 1/1/1 sPS/PIP/PBD | 94–166 (Mw) | 1.4–1.5 | 266–267 | [60] |
Random sPS-co-(1,4)PCHD-co-(1,4)PIP ((1,4) PCHD = 100% and (1,4) PIP >100 mol %) | 6h-6j/BF20/TIBAL | 25 | 5–12 | 6–40 (sPS) 16–63 (PIP) 31–64 (PCHD) | 5-7 | 1.5–1.9 | n.r. | [89] |
Blocky sPS-co-PE-co-PHD (VTM units <1 mol %) | 4c/BF20 | 25 | 925–2119 | 7–38 (sPS) 49–66 (PE) 12–27 (PHD) | 90–128 | 1.3–1.5 | 100–120 206–243 | [69] |
Blocky sPS-co-PE-co-PHPD (ca. 3/1 of MCH/ECP) | 4c/BF20 | 25 | 922–3698 | 15–83 (sPS) 9–33 (PE) 8–52 (PHPD) | 38–150 | 1.6–2.4 | 247–266 | [90] |
Random sPS-co-PE-co-PDCPD | 2/BF20 | 25 | 500–1800 | 4–46 (sPS) 36–69 (PE) 5–26 (PDCPD) | 381–511 | 1.2–1.4 | n.r. | [92] |
Microstructure | Styrene Content (mol %) | Mn (×10−3 g·mol−1) | Mw/Mn | Tm (°C) | Reference |
---|---|---|---|---|---|
sPS-graft-aPS | - | 32–46 | 1.5–1.7 | 231 or n.o. | [95] |
sPS-graft-PIP (cis-1,4 = 70 mol %, trans-1,4 = 23% and 3,4 = 7 mol %) | 74–94 | 15–77 (Mw) | n.r. | 228–256 | [94,96] |
sPS-graft-iPP | - | n.r. | n.r. | 217–234 (sPS) 128–130 (iPP) | [97] |
sPS-graft-PMMA | - | n.r. | n.r. | 241–253 or n.o. | [100] |
sPS-graft-PMMA | - | n.r. | n.r. | 217 | [102] |
sPS-graft-aPS | - | n.r. | n.r. | 219 | [102] |
sPS-graft-PGMA | - | n.r. | n.r. | n.o. | [103] |
sPS-graft-aPS | - | n.r. | n.r. | n.o. | [104] |
sPS-graft-[aPS-co-aP(p-Me)S] | - | n.r. | n.r. | 205 | [105] |
sPS-b-PMMA sPS-b-PBMA | n.r. | 15–70 (sPS) 2–17 (PMMA) 7–18 (PGMA) | n.r. | n.r. | [106] |
sPS-b-PCL | 40–62 | 96–185 | n.r. | n.r. | [107] |
sP(p-MeR)S-b-PLLA | n.r. | 14.8–15.8 | 1.2 | 194–224 (sP(p-Me)S 159 (PLLA) | [108] |
sPS-b-aPS | 20–84 (sPS) | 17–51 | 1.9–2.4 | 269 | [109] |
iPS-b-PCO | 4–17 (wt%) | 19–39 | 2.9–7.4 | 189–222 (sPS) −2 to 0 (PCO) | [111] |
iPS-b-PBD (>90 mol % of (1,4)PBD and > 95% of isotactic content) | 66–79 (w%) | 41–100 (iPS) 11–52 (PBD) | n.r. | 210–216 (iPS) | [112] |
iPS-b-PEG | n.r. | 17 | 1.54 | n.r. | [113] |
sPS-b-PMMA | 53–94 | 14–21 | n.r. | n.r. | [114] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laur, E.; Kirillov, E.; Carpentier, J.-F. Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers via Stereoselective Catalytic Polymerization. Molecules 2017, 22, 594. https://doi.org/10.3390/molecules22040594
Laur E, Kirillov E, Carpentier J-F. Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers via Stereoselective Catalytic Polymerization. Molecules. 2017; 22(4):594. https://doi.org/10.3390/molecules22040594
Chicago/Turabian StyleLaur, Eva, Evgueni Kirillov, and Jean-François Carpentier. 2017. "Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers via Stereoselective Catalytic Polymerization" Molecules 22, no. 4: 594. https://doi.org/10.3390/molecules22040594
APA StyleLaur, E., Kirillov, E., & Carpentier, J. -F. (2017). Engineering of Syndiotactic and Isotactic Polystyrene-Based Copolymers via Stereoselective Catalytic Polymerization. Molecules, 22(4), 594. https://doi.org/10.3390/molecules22040594