New Applications of Heparin and Other Glycosaminoglycans
Abstract
:1. Introduction
2. Applications in Anticoagulation and Cancer Treatments
3. Recovery from Nervous System Damage
4. Respiratory Diseases
5. Neurodegenerative Diseases
6. Roles as Antimicrobial Agents
6.1. Viruses
6.2. Parasites
6.3. Bacteria
7. Panceatitis
8. Roles in Rheumatoid Arthritis (RA)
9. Inflammation Reduction
10. Alternative Sources of GAG-Like Structures with Potentially Useful Activities
11. Biotechnological and Other Applications
12. Concluding Remarks
Conflicts of Interest
References
- Barrowcliffe, T.W. History of heparin. Handb. Exp. Pharmacol. 2012, 207, 3–22. [Google Scholar]
- Nader, H.B.; McDuffie, N.M.; Dietrich, C.P. Heparin fractionation by electrofocusing: presence of 21 components of different molecular weights. Biochem. Biophys. Res. Commun. 1974, 57, 488–493. [Google Scholar] [CrossRef]
- McDuffie, N.M.; Dietrich, C.P.; Nader, H.B. Electrofocusing of heparin: Fractionation of heparin into 21 components distinguishable from other acidic mucopolysaccharides. Biopolymers 1975, 14, 1473–1486. [Google Scholar] [CrossRef] [PubMed]
- Dietrich, C.P.; Nader, H.B.; Mcduffie, N.N. Electrofocusing of heparin: Presence of 21 monomeric and dimeric molecular species in heparin preparations. An. Acad. Bras. Cienc. 1975, 47, 301–309. [Google Scholar] [PubMed]
- Perlin, A.S.; Mackie, D.M.; Dietrich, C.P. Evidence for a (1→4)-linked 4-O-(α-l-idopyranosyluronic acid 2-sulfate)-(2-deoxy-2-sulfoamino-d-glucopyranosyl 6-sulfate) sequence in heparin. Carbohydr. Res. 1971, 18, 185–194. [Google Scholar] [CrossRef]
- Turnbull, J.E.; Gallagher, J.T. Distribution of iduronate 2-sulphate residues in heparan sulphate. Evidence for an ordered polymeric structure. Biochem. J. 1991, 273, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Maccarana, M.; Sakura, Y.; Tawada, A.; Yoshida, K.; Lindahl, U. Domain structure of heparan sulfates from bovine organs. J. Biol. Chem. 1996, 271, 17804–17810. [Google Scholar] [CrossRef] [PubMed]
- Merry, C.L.; Lyon, M.; Deakin, J.A.; Hopwood, J.J.; Gallagher, J.T. Highly sensitive sequencing of the sulfated domains of heparan sulfate. J. Biol. Chem. 1999, 274, 18455–18462. [Google Scholar] [CrossRef] [PubMed]
- Panagos, C.G.; Thomson, D.S.; Moss, C.; Hughes, A.D.; Kelly, M.S.; Liu, Y.; Chai, W.; Venkatasamy, R.; Spina, D.; Page, C.P.; et al. Fucosylated chondroitin sulfates from the body wall of the sea cucumber Holothuria forskali: Conformation, selectin binding, and biological activity. J. Biol. Chem. 2014, 289, 28284–28298. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H. Holothurian fucosylated chondroitin sulfate. Mar. Drugs 2014, 12, 232–254. [Google Scholar] [CrossRef] [PubMed]
- Gibbon, J.G., Jr. The maintenance of life during experimental occlusion of the pulmonary artery followed by survival. Surg Gynecol Obs. 1939, 69, 602–614. [Google Scholar]
- Warkentin, T.E.; Crowther, M.A. Reversing anticoagulants both old and new. Can. J. Anaesth. 2002, 49, S11–S25. [Google Scholar] [PubMed]
- Johnson, E.A.; Kirkwood, T.B.; Stirling, Y.; Perez-Requejo, J.L.; Ingram, G.I.; Bangham, D.R.; Brozović, M. Four heparin preparations: Anti-Xa potentiating effect of heparin after subcutaneous injection. Thromb. Haemost. 1976, 35, 586–591. [Google Scholar] [PubMed]
- Beeler, D.L.; Marcum, J.A.; Schiffman, S.; Rosenberg, R.D. Interaction of factor XIa and antithrombin in the presence and absence of heparin. Blood 1986, 67, 1488–1492. [Google Scholar] [PubMed]
- Straus, A.H.; Sant’anna, O.A.; Nader, H.B.; Dietrich, C.P. An inverse relationship between heparin content and antibody response in genetically selected mice. Sex effect and evidence of a polygenic control for skin heparin concentration. Biochem. J. 1984, 220, 625–630. [Google Scholar] [CrossRef] [PubMed]
- Call, D.R.; Remick, D.G. Low molecular weight heparin is associated with greater cytokine production in a stimulated whole blood model. Shock 1998, 10, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Linhardt, R.J. Chemoenzymatic synthesis of heparan sulfate and heparin. Nat. Prod. Rep. 2014, 31, 1676–1685. [Google Scholar] [CrossRef] [PubMed]
- Viskov, C.; Just, M.; Laux, V.; Mourier, P.; Lorenz, M. Description of the chemical and pharmacological characteristics of a new hemisynthetic ultra-low-molecular-weight heparin, AVE5026. J. Thromb. Haemost. 2009, 7, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Bisio, A.; Vecchietti, D.; Citterio, L.; Guerrini, M.; Raman, R.; Bertini, S.; Eisele, G.; Naggi, A.; Sasisekharan, R.; Torri, G. Structural features of low-molecular-weight heparins affecting their affinity to antithrombin. Thromb. Haemost. 2009, 102, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Weïwer, M.; Li, B.; Kemp, M.M.; Daman, T.H.; Linhardt, R.J. Oversulfated chondroitin sulfate: Impact of a heparin impurity, associated with adverse clinical events, on low-molecular-weight heparin preparation. J. Med. Chem. 2008, 51, 5498–5501. [Google Scholar] [CrossRef] [PubMed]
- Hoppensteadt, D.; Iqbal, O.; Fareed, J. Chapter 21—Basic and clinical differences of heparin and low molecular weight heparin treatment. Chem. Biol. Heparin Heparan Sulfate 2005, 1, 583–606. [Google Scholar]
- Xu, Y.; Wang, Z.; Liu, R.; Bridges, A.S.; Huang, X.; Liu, J. Directing the biological activities of heparan sulfate oligosaccharides using a chemoenzymatic approach. Glycobiology 2012, 22, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Pempe, E.H.; Liu, J. Chemoenzymatic synthesis of heparin oligosaccharides with both anti-factor Xa and anti-factor IIa activities. J. Biol. Chem. 2012, 287, 29054–29061. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.; Ori, A.; Rudd, T.R.; Uniewicz, K.A.; Ahmed, Y.A.; Guimond, S.E.; Skidmore, M.A.; Siligardi, G.; Yates, E.A.; Fernig, D.G. Diversification of the structural determinants of fibroblast growth factor-heparin interactions: Implications for binding specificity. J. Biol. Chem. 2012, 287, 40061–40073. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, C.; Yates, E.A.; Jiang, C.; Wilkinson, M.C.; Fernig, D.G. Heparin binding preference and structures in the fibroblast growth factor family parallel their evolutionary diversification. Open Biol. 2016, 6, 150275. [Google Scholar] [CrossRef] [PubMed]
- Schultz, V.; Suflita, M.; Liu, X.; Zhang, X.; Yu, Y.; Li, L.; Green, D.E.; Xu, Y.; Zhang, F.; DeAngelis, P.L.; et al. Heparan sulfate domains required for fibroblast growth factor 1 and 2 signaling through fibroblast growth factor receptor 1c. J. Biol. Chem. 2017, 292, 2495–2509. [Google Scholar] [CrossRef] [PubMed]
- Theodoraki, A.; Hu, Y.; Poopalasundaram, S.; Oosterhof, A.; Guimond, S.E.; Disterer, P.; Khoo, B.; Hauge-Evans, A.C.; Jones, P.M.; Turnbull, J.E.; et al. Distinct patterns of heparan sulphate in pancreatic islets suggest novel roles in paracrine islet regulation. Mol. Cell. Endocrinol. 2015, 399, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Rickles, F.R.; Falanga, A. Molecular basis for the relationship between thrombosis and cancer. Thromb. Res. 2001, 102, V215–V224. [Google Scholar] [CrossRef]
- Nishioka, J.; Goodin, S. Low-molecular-weight heparin in cancer-associated thrombosis: Treatment, secondary prevention, and survival. J. Oncol. Pharm. Pract. 2007, 13, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Solari, V.; Jesudason, E.C.; Turnbull, J.E.; Yates, E.A. Determining the anti-coagulant-independent anti-cancer effects of heparin. Br. J. Cancer 2010, 103, 593–594. [Google Scholar] [CrossRef] [PubMed]
- Afratis, N.; Gialeli, C.; Nikitovic, D.; Tsegenidis, T.; Karousou, E.; Theocharis, A.D.; Pavão, M.S.; Tzanakakis, G.N.; Karamanos, N.K. Glycosaminoglycans: Key players in cancer cell biology and treatment. FEBS J. 2012, 279, 1177–1197. [Google Scholar] [CrossRef] [PubMed]
- Solari, V.; Borriello, L.; Turcatel, G.; Shimada, H.; Sposto, R.; Fernandez, G.E.; Asgharzadeh, S.; Yates, E.A.; Turnbull, J.E.; DeClerck, Y.A. MYCN-dependent expression of sulfatase-2 regulates neuroblastoma cell survival. Cancer Res. 2014, 74, 5999–6009. [Google Scholar] [CrossRef] [PubMed]
- Vicente, C.M.; Lima, M.A.; Yates, E.A.; Nader, H.B.; Toma, L. Enhanced tumorigenic potential of colorectal cancer cells by extracellular sulfatases. Mol. Cancer Res. 2015, 13, 510–523. [Google Scholar] [CrossRef] [PubMed]
- Vlodavsky, I.; Elkin, M.; Ilan, N. Impact of heparanase and the tumor microenvironment on cancer metastasis and angiogenesis: Basic aspects and clinical applications. Rambam Maimonides Med. J. 2011, 2, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Laubli, H.; Varki, A.; Borsig, L. Antimetastatic properties of low molecular weight heparin. J. Clin. Oncol. 2016, 34, 2560–2561. [Google Scholar] [CrossRef] [PubMed]
- Borsig, L.; Wong, R.; Feramisco, J.; Nadeau, D.R.; Varki, N.M.; Varki, A. Heparin and cancer revisited: Mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc. Natl. Acad. Sci. USA 2001, 98, 3352–3357. [Google Scholar] [CrossRef] [PubMed]
- Läubli, H.; Stevenson, J.L.; Varki, A.; Varki, N.M.; Borsig, L. L-selectin facilitation of metastasis involves temporal induction of Fut7-dependent ligands at sites of tumor cell arrest. Cancer Res. 2006, 66, 1536–1542. [Google Scholar] [CrossRef] [PubMed]
- Duckworth, C.A.; Guimond, S.E.; Sindrewicz, P.; Hughes, A.J.; French, N.S.; Lian, L.-Y.; Yates, E.A.; Pritchard, D.M.; Rhodes, J.M.; Turnbull, J.E.; et al. Chemically modified, non-anticoagulant heparin derivatives are potent galectin-3 binding inhibitors and inhibit circulating galectin-3-promoted metastasis. Oncotarget 2015, 6, 23671–23687. [Google Scholar] [CrossRef] [PubMed]
- Karousou, E.; Misra, S.; Ghatak, S.; Dobra, K.; Götte, M.; Vigetti, D.; Passi, A.; Karamanos, N.K.; Skandalis, S.S. Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer. Matrix Biol. 2016, 59, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pfankuchen, D.B.; Stölting, D.P.; Schlesinger, M.; Royer, H.-D.; Bendas, G.; Bastian, D.; Philipp, D.; Schlesinger, M.; Royer, H.-D.; Bendas, G. Low molecular weight heparin tinzaparin antagonizes cisplatin resistance of ovarian cancer cells. Biochem. Pharmacol. 2015, 97, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Sato, N.; Cheng, X.-B.; Kohi, S.; Koga, A.; Hirata, K. Targeting hyaluronan for the treatment of pancreatic ductal adenocarcinoma. Acta Pharm. Sin. B 2016, 6, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Paveliev, M.; Fenrich, K.K.; Kislin, M.; Kuja-Panula, J.; Kulesskiy, E.; Varjosalo, M.; Kajander, T.; Mugantseva, E.; Ahonen-Bishopp, A.; Khiroug, L.; et al. HB-GAM (pleiotrophin) reverses inhibition of neural regeneration by the CNS extracellular matrix. Nat. Publ. Gr. 2016, 6, 33916. [Google Scholar] [CrossRef] [PubMed]
- Siebert, J.R.; Conta Steencken, A.; Osterhout, D.J. Chondroitin Sulfate Proteoglycans in the Nervous System: Inhibitors to Repair. Biomed Res. Int. 2014, 2014, 845323. [Google Scholar] [CrossRef] [PubMed]
- Kwok, J.C.F.; Yang, S.; Fawcett, J.W. Neural ECM in regeneration and rehabilitation. Prog. Brain Res. 2014, 214, 179–192. [Google Scholar]
- Dick, G.; Liktan, C.; Alves, J.N.; Ehlert, E.M.E.; Miller, G.M.; Hsieh-Wilson, L.C.; Sugahara, K.; Oosterhof, A.; Van Kuppevelt, T.H.; Verhaagen, J.; et al. Semaphorin 3A binds to the perineuronal nets via chondroitin sulfate type E motifs in rodent brains. J. Biol. Chem. 2013, 288, 27384–27395. [Google Scholar] [CrossRef] [PubMed]
- Orlando, C.; Ster, J.; Gerber, U.; Fawcett, J.W.; Raineteau, O. Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J. Neurosci. 2012, 32, 18009–18017. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Ichiyama, R.M.; Zhao, R.; Andrews, M.R.; Fawcett, J.W. Chondroitinase Combined with Rehabilitation Promotes Recovery of Forelimb Function in Rats with Chronic Spinal Cord Injury. J. Neurosci. 2011, 31, 9332–9344. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, R.J.; McKeon, R.J.; Darr, A.; Calabro, A.; Hascall, V.C.; Bellamkonda, R. V CS-4,6 is differentially upregulated in glial scar and is a potent inhibitor of neurite extension. Mol. Cell. Neurosci. 2005, 29, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Koike, T.; Mikami, T.; Shida, M.; Habuchi, O.; Kitagawa, H. Chondroitin sulfate-E mediates estrogen-induced osteoanabolism. Sci. Rep. 2015, 5, 8994. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ling, Y.; Huang, M.; Yin, T.; Gou, S.M.; Zhan, N.Y.; Xiong, J.X.; Wu, H.S.; Yang, Z.Y.; Wang, C.Y. Heparin inhibits the inflammatory response induced by LPS and HMGB1 by blocking the binding of HMGB1 to the surface of macrophages. Cytokine 2015, 72, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Veraldi, N.; Hughes, A.J.; Rudd, T.R.; Thomas, H.B.; Edwards, S.W.; Hadfield, L.; Skidmore, M.A.; Siligardi, G.; Cosentino, C.; Shute, J.K.; et al. Heparin derivatives for the targeting of multiple activities in the inflammatory response. Carbohydr. Polym. 2015, 117, 400–407. [Google Scholar] [CrossRef] [PubMed]
- Lehri-Boufala, S.; Ouidja, M.O.; Barbier-Chassefière, V.; Hénault, E.; Raisman-Vozari, R.; Garrigue-Antar, L.; Papy-Garcia, D.; Morin, C. New roles of glycosaminoglycans in α-synuclein aggregation in a cellular model of Parkinson disease. PLoS ONE 2015, 10, e0116641. [Google Scholar] [CrossRef] [PubMed]
- Scholefield, Z.; Yates, E.A.; Wayne, G.; Amour, A.; McDowell, W.; Turnbull, J.E. Heparan sulfate regulates amyloid precursor protein processing by BACE1, the Alzheimer’s β-secretase. J. Cell Biol. 2003, 163, 97–107. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, X.; Lang, Y.; Li, Q.; Liu, X.; Cai, C.; Hao, J.; Li, G.; Yu, G. Low anticoagulant heparin oligosaccharides as inhibitors of BACE-1, the Alzheimer’s β-secretase. Carbohydr. Polym. 2016, 151, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Patey, S.J.; Edwards, E.A.; Yates, E.A.; Turnbull, J.E. Heparin derivatives as inhibitors of BACE-1, the Alzheimer’s β-secretase, with reduced activity against factor Xa and other proteases. J. Med. Chem. 2006, 49, 6129–6132. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.; Cornelli, U.; Hanin, I.; Jeske, W.P.; Linhardt, R.J.; Walenga, J.M.; Fareed, J.; Lee, J.M. Heparin Oligosaccharides as Potential Therapeutic Agents in Senile Dementia. Curr Pharm Des. 2007, 13, 1607–1616. [Google Scholar] [CrossRef] [PubMed]
- Stewart, K.L.; Hughes, E.; Yates, E.A.; Akien, G.R.; Huang, T.Y.; Lima, M.A.; Rudd, T.R.; Guerrini, M.; Hung, S.C.; Radford, S.E.; Middleton, D.A. Atomic Details of the Interactions of Glycosaminoglycans with Amyloid-β Fibrils. J. Am. Chem. Soc. 2016, 138, 8328–8331. [Google Scholar] [CrossRef] [PubMed]
- Vigant, F.; Santos, N.C.; Lee, B. Broad-spectrum antivirals against viral fusion. Nat. Rev. Microbiol. 2015, 13, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Nonanticoagulant Actions of Glycosaminoglycans; Harenberg, J.; Casu, B. (Eds.) Springer US: Boston, MA, USA, 2012. [Google Scholar]
- Salvador, B.; Sexton, N.R.; Carrion, R.; Nunneley, J.; Patterson, J.L.; Steffen, I.; Lu, K.; Muench, M.O.; Lembo, D.; Simmons, G. Filoviruses utilize glycosaminoglycans for their attachment to target cells. J. Virol. 2013, 87, 3295–3304. [Google Scholar] [CrossRef] [PubMed]
- Kato, D.; Era, S.; Watanabe, I.; Arihara, M.; Sugiura, N.; Kimata, K.; Suzuki, Y.; Morita, K.; Hidari, K.I.P.J.; Suzuki, T. Antiviral activity of chondroitin sulphate E targeting dengue virus envelope protein. Antiviral Res. 2010, 88, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-L.; Lei, H.-Y.; Lin, Y.-S.; Yeh, T.-M.; Chen, S.-H.; Liu, H.-S. Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res. 2002, 56, 93–96. [Google Scholar] [CrossRef]
- Sapsford, K.E.; Algar, W.R.; Berti, L.; Gemmill, K.B.; Casey, B.J.; Oh, E.; Stewart, M.H.; Medintz, I.L. Functionalizing nanoparticles with biological molecules: Developing chemistries that facilitate nanotechnology. Chem. Rev. 2013, 113, 1904–2074. [Google Scholar] [CrossRef] [PubMed]
- Montanuy, I.; Alejo, A.; Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. FASEB J. 2011, 25, 1960–1971. [Google Scholar] [CrossRef] [PubMed]
- Terao-Muto, Y.; Yoneda, M.; Seki, T.; Watanabe, A.; Tsukiyama-Kohara, K.; Fujita, K.; Kai, C. Heparin-like glycosaminoglycans prevent the infection of measles virus in SLAM-negative cell lines. Antiviral Res. 2008, 80, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Schulze, A.; Gripon, P.; Urban, S. Hepatitis B virus infection initiates with a large surface protein-dependent binding to heparan sulfate proteoglycans. Hepatology 2007, 46, 1759–1768. [Google Scholar] [CrossRef] [PubMed]
- Su, C.M.; Liao, C.L.; Lee, Y.L.; Lin, Y.L. Highly sulfated forms of heparin sulfate are involved in japanese encephalitis virus infection. Virology 2001, 286, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, M.A.; Kajaste-Rudnitski, A.; Wells, N.M.; Guimond, S.E.; Rudd, T.R.; Yates, E.A.; Vicenzi, E. Inhibition of influenza H5N1 invasion by modified heparin derivatives. Med. Chem. Commun. 2015, 6, 640–646. [Google Scholar] [CrossRef]
- Ghezzi, S.; Cooper, L.; Rubio, A.; Pagani, I.; Capobianchi, M.R.; Ippolito, G.; Pelletier, J.; Meneghetti, M.C.Z.; Lima, M.A.; Skidmore, M.A.; et al. Heparin prevents Zika virus induced-cytopathic effects in human neural progenitor cells. Antiviral Res. 2017, 140, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y.; Zhao, J.; Liu, X.; Fraser, K.; Lin, L.; Zhang, X.; Zhang, F.; Dordick, J.S.; Linhardt, R.J. Interaction of Zika Virus Envelope Protein with Glycosaminoglycans. Biochemistry 2017, 56, 1151–1162. [Google Scholar] [CrossRef] [PubMed]
- Hills, F.A.; Abrahams, V.M.; González-Timón, B.; Francis, J.; Cloke, B.; Hinkson, L.; Rai, R.; Mor, G.; Regan, L.; Sullivan, M.; et al. Heparin prevents programmed cell death in human trophoblast. Mol. Hum. Reprod. 2006, 12, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Skidmore, M.A.; Dumax-Vorzet, A.F.; Guimond, S.E.; Rudd, T.R.; Edwards, E.A.; Turnbull, J.E.; Craig, A.G.; Yates, E.A. Disruption of rosetting in Plasmodium falciparum malaria with chemically modified heparin and low molecular weight derivatives possessing reduced anticoagulant and other serine protease inhibition activities. J. Med. Chem. 2008, 51, 1453–1458. [Google Scholar] [CrossRef] [PubMed]
- Bastos, M.F.; Albrecht, L.; Kozlowski, E.O.; Lopes, S.C.P.; Blanco, Y.C.; Carlos, B.C.; Castiñeiras, C.; Vicente, C.P.; Werneck, C.C.; Wunderlich, G.; et al. Fucosylated chondroitin sulfate inhibits Plasmodium falciparum cytoadhesion and merozoite invasion. Antimicrob. Agents Chemother. 2014, 58, 1862–1871. [Google Scholar] [CrossRef] [PubMed]
- Judice, W.A.S.; Manfredi, M.A.; Souza, G.P.; Sansevero, T.M.; Almeida, P.C.; Shida, C.S.; Gesteira, T.F.; Juliano, L.; Westrop, G.D.; Sanderson, S.J.; et al. Heparin modulates the endopeptidase activity of Leishmania mexicana cysteine protease cathepsin L-like rCPB2.8. PLoS ONE 2013, 8, 602–614. [Google Scholar] [CrossRef] [PubMed]
- De Castro Côrtes, L.; de Souza Pereira, M.; da Silva, F.; Pereira, B.A.; de Oliveira Junior, F.; de Araújo Soares, R.; Brazil, R.; Toma, L.; Vicente, C.; Nader, H.; et al. Participation of heparin binding proteins from the surface of Leishmania (Viannia) braziliensis promastigotes in the adhesion of parasites to Lutzomyia longipalpis cells (Lulo) in vitro. Parasit. Vectors 2012, 5, 142. [Google Scholar] [CrossRef] [PubMed]
- Nunes, G.L.C.; Simões, A.; Dyszy, F.H.; Shida, C.S.; Juliano, M.A.; Juliano, L.; Gesteira, T.F.; Nader, H.B.; Murphy, G.; Chaffotte, A.F.; et al. Mechanism of heparin acceleration of tissue inhibitor of metalloproteases-1 (TIMP-1) degradation by the human neutrophil elastase. PLoS ONE 2011, 6, e21525. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, F.O.R.; Alves, C.R.; Souza-Silva, F.; Calvet, C.M.; Côrtes, L.M.C.; Gonzalez, M.S.; Toma, L.; Bouças, R.I.; Nader, H.B.; Pereira, M.C.S. Trypanosoma cruzi heparin-binding proteins mediate the adherence of epimastigotes to the midgut epithelial cells of Rhodnius prolixus. Parasitology 2012, 139, 735–743. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Wang, Z.; Flax, L.A.; Xu, D.; Esko, J.D.; Nizet, V.; Baron, M.J. Glycosaminoglycan binding facilitates entry of a bacterial pathogen into central nervous systems. PLoS Pathog. 2011, 7, e1002082. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Flax, L.A.; Kemp, M.M.; Linhardt, R.J.; Baron, M.J. Host and pathogen glycosaminoglycan-binding proteins modulate antimicrobial peptide responses in Drosophila melanogaster. Infect. Immun. 2011, 79, 606–616. [Google Scholar] [CrossRef] [PubMed]
- Nelson, A.; Berkestedt, I.; Schmidtchen, A.; Ljunggren, L.; Bodelsson, M. Increased levels of glycosaminoglycans during septic shock: Relation to mortality and the antibacterial actions of plasma. Shock 2008, 30, 623–627. [Google Scholar] [CrossRef] [PubMed]
- Cornet, A.D.; Smit, E.G.M.; Beishuizen, A.; Groeneveld, A.B.J. The role of heparin and allied compounds in the treatment of sepsis. Thromb. Haemost. 2007, 98, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Tenke, P.; Riedl, C.R.; Jones, G.L.; Williams, G.J.; Stickler, D.; Nagy, E. Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. Int. J. Antimicrob. Agents 2004, 23, S67–S74. [Google Scholar] [CrossRef] [PubMed]
- Ceranowicz, P.; Dembinski, A.; Warzecha, Z.; Dembinski, M.; Cieszkowski, J.; Rembisz, K.; Konturek, S.J.; Kusnierz-Cabala, B.; Tomaszewska, R.; Pawlik, W.W. Protective and therapeutic effect of heparin in acute pancreatitis. J. Physiol. Pharmacol. 2008, 59, 103–125. [Google Scholar] [PubMed]
- Berger, Z.; Quera, R.; Poniachik, J.; Oksenberg, D.; Guerrero, J. Heparin and insulin treatment of acute pancreatitis caused by hypertriglyceridemia. Experience of 5 cases. Rev. Med. Chil. 2001, 129, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Qiu, F.; Lu, X.S.; Huang, Y.K. Protective effect of low-molecular-weight heparin on pancreatic encephalopathy in severe acute pancreatic rats. Inflamm. Res. 2012, 61, 1203–1209. [Google Scholar] [CrossRef] [PubMed]
- Trzaskoma, A.; Kruczek, M.; Rawski, B.; Poniewierka, E.; Kempiński, R. The use of heparin in the treatment of acute pancreatitis. Pol. Przegl. Chir. 2013, 85, 223–227. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.-S.; Qiu, F.; Li, J.-Q.; Fan, Q.-Q.; Zhou, R.-G.; Ai, Y.-H.; Zhang, K.-C.; Li, Y.-X. Low molecular weight heparin in the treatment of severe acute pancreatitis: A multiple centre prospective clinical study. Asian J. Surg. 2009, 32, 89–94. [Google Scholar] [PubMed]
- Gyorgy, B.; Tothfalusi, L.; Nagy, G.; Pasztoi, M.; Geher, P.; Polgar, A.; Rojkovich, B.; Ujfalussy, I.; Misjak, P.; Koncz, A.; Pozsonyi, E.; Fust, G.; Falus, A.; Buzas, E.I. Natural autoantibodies reactive to glycosaminoglycans are disease state markers in rheumatoid arthritis and are associated with HLA. Ann. Rheum. Dis. 2010, 69, A2. [Google Scholar] [CrossRef]
- Larsson, S.; Lohmander, L.S.; Struglics, A. Synovial fluid level of aggrecan ARGS fragments is a more sensitive marker of joint disease than glycosaminoglycan or aggrecan levels: A cross-sectional study. Arthritis Res. Ther. 2009, 11, R92. [Google Scholar] [CrossRef] [PubMed]
- Palmer, J.L.; Bertone, A.L.; McClain, H. Assessment of glycosaminoglycan concentration in equine synovial fluid as a marker of joint disease. Can. J. Vet. Res. 1995, 59, 205–212. [Google Scholar] [PubMed]
- Page, C. Heparin and related drugs: beyond anticoagulant activity. ISRN Pharmacol. 2013, 2013, 910743. [Google Scholar] [CrossRef] [PubMed]
- McIntire, A.M.; Harris, S.A.; Whitten, J.A.; Fritschle-Hilliard, A.C.; Foster, D.R.; Sood, R.; Walroth, T.A. Outcomes Following the Use of Nebulized Heparin for Inhalation Injury (HIHI Study). J. Burn Care Res. 2017, 38, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Shastri, M.D.; Peterson, G.M.; Stewart, N. Non-anticoagulant derivatives of heparin for the management of asthma: Distant dream or close reality? Expert Opin. Investig. Drugs 2014, 23, 357–373. [Google Scholar] [CrossRef] [PubMed]
- Serisier, D.J.; Shute, J.K.; Hockey, P.M.; Higgins, B.; Conway, J.; Carroll, M.P. Inhaled heparin in cystic fibrosis. Eur. Respir. J. 2006, 27, 354–358. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, E.O.; Gomes, A.M.; Silva, C.S. Structure and Biological Activities of Glycosaminoglycan analogs from marine invertebrates: New therapeutic agents? In Glycans in Diseases and Therapeutics, Biology of the Extracellular Matrix 158; Pavão, M.S.G., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 159–184. [Google Scholar]
- Pavão, M.S.G. Glycosaminoglycans analogs from marine invertebrates: Structure, biological effects, and potential as new therapeutics. Front. Cell. Infect. Microbiol. 2014, 4, 123. [Google Scholar]
- Sato, K.; Tsutsumi, M.; Nomura, Y.; Murata, N.; Kondo, N. Proteoglycan Isolated from Cartilaginous Fish and Process for Producing the Same. WO/2004/083257, 30 September 2004. [Google Scholar]
- Brosstad, F.; Flengsrud, R.; Skjervold, P.O.; Odegaard, O.R. Glycosaminoglycan Anticoagulants Derived from Fish. US7618652 B2, 22 March 2002. [Google Scholar]
- Holley, R.J.; Meade, K.A.; Merry, C.L.R. Using embryonic stem cells to understand how glycosaminoglycans regulate differentiation. Biochem. Soc. Trans. 2014, 42, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Pickford, C.E.; Holley, R.J.; Rushton, G.; Stavridis, M.P.; Ward, C.M.; Merry, C.L.R. Specific glycosaminoglycans modulate neural specification of mouse embryonic stem cells. Stem Cells 2011, 29, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Holley, R.J.; Smith, R.A.; van de Westerlo, E.M.A.; Pickford, C.E.; Merry, C.L.R.; van Kuppevelt, T.H. Use of flow cytometry for characterization and fractionation of cell populations based on their expression of heparan sulfate epitopes. Methods Mol. Biol. 2015, 1229, 239–251. [Google Scholar] [PubMed]
- Meade, K.A.; White, K.J.; Pickford, C.E.; Holley, R.J.; Marson, A.; Tillotson, D.; Van Kuppevelt, T.H.; Whittle, J.D.; Day, A.J.; Merry, C.L.R. Immobilization of heparan sulfate on electrospun meshes to support embryonic stem cell culture and differentiation. J. Biol. Chem. 2013, 288, 5530–5538. [Google Scholar] [CrossRef] [PubMed]
- Ghadiali, R.S.; Guimond, S.E.; Turnbull, J.E.; Pisconti, A. Dynamic changes in heparan sulfate during muscle differentiation and ageing regulate myoblast cell fate and FGF2 signaling. Matrix Biol. 2017, 59, 54–68. [Google Scholar] [CrossRef]
- Holder, G.M.; Bowfield, A.; Surman, M.; Suepfle, M.; Moss, D.; Tucker, C.E.; Rudd, T.R.; Fernig, D.G.; Yates, E.A.; Weightman, P. Fundamental differences in model cell-surface polysaccharides revealed by complementary optical and spectroscopic techniques. Soft Matter 2012, 8, 6521–6527. [Google Scholar] [CrossRef]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima, M.; Rudd, T.; Yates, E. New Applications of Heparin and Other Glycosaminoglycans. Molecules 2017, 22, 749. https://doi.org/10.3390/molecules22050749
Lima M, Rudd T, Yates E. New Applications of Heparin and Other Glycosaminoglycans. Molecules. 2017; 22(5):749. https://doi.org/10.3390/molecules22050749
Chicago/Turabian StyleLima, Marcelo, Timothy Rudd, and Edwin Yates. 2017. "New Applications of Heparin and Other Glycosaminoglycans" Molecules 22, no. 5: 749. https://doi.org/10.3390/molecules22050749
APA StyleLima, M., Rudd, T., & Yates, E. (2017). New Applications of Heparin and Other Glycosaminoglycans. Molecules, 22(5), 749. https://doi.org/10.3390/molecules22050749