The Hypnotic, Anxiolytic, and Antinociceptive Profile of a Novel µ-Opioid Agonist
Abstract
:1. Introduction
2. Results
2.1. Effect of PILABs on Pentobarbital-Induced Sleep
2.2. Hypnosis Following i.v. Injections of the Various PILABs and an Evaluation of the Mechanism of Action
2.3. Effect of PILAB 8 on Locomotor Activity and Performance in the Moto Coordination (Rotarod Test)
2.4. Effect of PILAB 8 on the Anxiolytic Response
2.5. Effect of PILAB 8 on Formalin-Induced Nociception Response
2.6. Effect of PILAB 8 on Hot Plate-Induced Nociception Response
3. Discussion
4. Material and Methods
4.1. Synthesis of Hybrid Triazole-Isatin Derivatives
4.2. Analysis of the Purity of the Compounds Evaluated by HPLC (High Performance Liquid Chromatography)
4.3. Animals
4.4. Drugs
4.5. Pentobarbital-Induced Sleep Test
4.6. Motor Coordination (Rotarod Test)
4.7. Anxiolytic Activity (Elevated Plus-Maze (EPM) Test)
4.8. Antinociceptive Activity Evaluation of PILAB 8
4.8.1. Formalin Test
4.8.2. Hot Plat Test
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Castana, O.; Anagiotos, G.; Rempelos, G.; Adalopoulou, A.; Kokkinakis, C.; Giannakidou, M.; Diplas, D.B.; Alexakis, D. Pain response and pain control in burn patients. Ann. Burns Fire Disasters 2009, 22, 88–89. [Google Scholar] [PubMed]
- Woolf, C.J.; Mannion, R.J. Neuropathic pain: Aetiology, symptoms, mechanisms, and management. Lancet 1999, 353, 1959–1964. [Google Scholar] [CrossRef]
- Ossipov, M.H.; Dussor, G.O.; Porreca, F. Central modulation of pain. J. Clin. Investig. 2010, 120, 3779–3787. [Google Scholar] [CrossRef] [PubMed]
- Williams, A.C.; Craig, K.D. Updating the definition of pain. Pain 2016, 157, 2420–2423. [Google Scholar] [CrossRef] [PubMed]
- Pain terms: A list with definitions and notes on usage. Recommended by the IASP Subcommittee on Taxonomy. Pain 1979, 6, 249.
- Jirkof, P. Side effects of pain and analgesia in animal experimentation. Lab Anim. (NY) 2017, 46, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Wolkerstorfer, A.; Handler, N.; Buschmann, H. New approaches to treating pain. Bioorg. Med. Chem. Lett. 2016, 26, 1103–1119. [Google Scholar] [CrossRef] [PubMed]
- Barrett, J.E.; Haas, D.A. Perspectives and Trends in Pharmacological Approaches to the Modulation of Pain. Adv. Pharmacol. 2016, 75, 1–33. [Google Scholar] [PubMed]
- Kuner, R.; Flor, H. Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 2016, 18, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.F.M.; Garden, S.J.; Pinto, A.C. The chemistry of isatins: A review from 1975 to 1999. J. Braz. Chem. Soc. 2001, 12, 273–324. [Google Scholar] [CrossRef]
- Silva, B.V. Isatin, a versatile molecule: Studies in Brazil. J. Braz. Chem. Soc. 2013, 24, 707–720. [Google Scholar] [CrossRef]
- Armando, I.; Glover, V.; Sandler, M. Distribution of endogenous benzodiazepine receptor ligand-monoamine oxidase inhibitory activity (tribulin) in tissues. Life Sci. 1986, 38, 2063–2067. [Google Scholar] [CrossRef]
- Yuwiler, A. The effect of isatin (tribulin) on metabolism of indoles in the rat brain and pineal: In vitro and in vivo studies. Neurochem. Res. 1990, 15, 95–100. [Google Scholar] [CrossRef] [PubMed]
- Prakash, C.R.; Raja, S.; Saravanan, G. Synthesis, characterization and anticonvulsant activity of novel Schiff base of isatin derivatives. Int. J. Pharm. Pharm. Sci. 2010, 2, 177–181. [Google Scholar]
- Damgaard, M.; Al-Khawaja, A.; Vogensen, S.B.; Jurik, A.; Sijm, M.; Lie, M.E.; Baek, M.I.; Rosenthal, E.; Jensen, A.A.; Ecker, G.F.; et al. Identification of the First Highly Subtype-Selective Inhibitor of Human GABA Transporter GAT3. ACS Chem. Neurosci. 2015, 6, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Poslusney, M.S.; Melancon, B.J.; Gentry, P.R.; Sheffler, D.J.; Bridges, T.M.; Utley, T.J.; Daniels, J.S.; Niswender, C.M.; Conn, P.J.; Lindsley, C.W.; et al. Spirocyclic replacements for the isatin in the highly selective, muscarinic M1 PAM ML137: The continued optimization of an MLPCN probe molecule. Bioorg. Med. Chem. Lett. 2013, 23, 1860–1864. [Google Scholar] [CrossRef] [PubMed]
- Phillips, O.A.; Sharaf, L.H.; D’Silva, R.; Udo, E.E.; Benov, L. Evaluation of the monoamine oxidases inhibitory activity of a small series of 5-(azole)methyl oxazolidinones. Eur. J. Pharm. Sci. 2015, 71, 56–61. [Google Scholar] [CrossRef] [PubMed]
- Akrami, H.; Mirjalili, B.F.; Khoobi, M.; Moradi, A.; Nadri, H.; Emami, S.; Foroumadi, A.; Vosooghi, M.; Shafiee, A. 9H-Carbazole Derivatives Containing the N-Benzyl-1,2,3-triazole Moiety as New Acetylcholinesterase Inhibitors. Arch. Pharm. (Weinh.) 2015, 348, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Sudo, G.; Pontes, L.B.; Gabriel, D.; Mendes, T.C.; Ribeiro, N.M.; Pinto, A.C.; Trachez, M.M.; Sudo, R.T. Sedative-hypnotic profile of novel isatin ketals. Pharmacol. Biochem. Behav. 2007, 86, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.N.M.; Silva, B.V.S.; Silva, F.C.; Gonzaga, D.T.G.; Ferreira, V.F.; Pinto, A.C. Synthesis of Novel Isatin-Type 5′-(4-Alkyl/Aryl-1H-1,2,3-triazoles) via 1,3-Dipolar Cycloaddition Reactions. J. Braz. Chem. Soc. 2013, 24, 179–183. [Google Scholar] [CrossRef]
- Silva, B.N.M.; Pinto, A.C.; Silva, F.C.; Ferreira, V.F.; Silva, B.V. Ultrasound-Assisted Synthesis of Isatin-Type 5′-(4-Alkyl/Aryl-1H-1,2,3-triazoles) via 1,3-Dipolar Cycloaddition Reactions. J. Braz. Chem. Soc. 2016, 27, 2378–2382. [Google Scholar] [CrossRef]
- Iwaszkiewicz, K.S.; Schneider, J.J.; Hua, S. Targeting peripheral opioid receptors to promote analgesic and anti-inflammatory actions. Front. Pharmacol. 2013, 4, 132. [Google Scholar] [CrossRef] [PubMed]
- Bessa, J.M.; Oliveira, M.; Cerqueira, J.J.; Almeida, O.F.; Sousa, N. Age-related qualitative shift in emotional behaviour: Paradoxical findings after re-exposure of rats in the elevated-plus maze. Behav. Brain Res. 2005, 162, 135–142. [Google Scholar] [CrossRef] [PubMed]
- Lister, R.G. The use of a plus-maze to measure anxiety in the mouse. Psychopharmacology (Berl.) 1987, 92, 180–185. [Google Scholar] [CrossRef]
- Lister, R.G. Ethologically-based animal models of anxiety disorders. Pharmacol. Ther. 1990, 46, 321–340. [Google Scholar] [CrossRef]
- Pellow, S.; File, S.E. Anxiolytic and anxiogenic drug effects on exploratory activity in an elevated plus-maze: A novel test of anxiety in the rat. Pharmacol. Biochem. Behav. 1986, 24, 525–529. [Google Scholar] [CrossRef]
- Mora, S.; Diaz-Veliz, G.; Millan, R.; Lungenstrass, H.; Quiros, S.; Coto-Morales, T.; Hellion-Ibarrola, M.C. Anxiolytic and antidepressant-like effects of the hydroalcoholic extract from Aloysia polystachya in rats. Pharmacol. Biochem. Behav. 2005, 82, 373–378. [Google Scholar] [CrossRef] [PubMed]
- Noori Ahmad Abadi, M.; Mortazavi, M.; Kalani, N.; Zare Marzouni, H.; Kooti, W.; Ali-Akbari, S. Effect of Hydroalcoholic Extract of Rosmarinus officinalis L. Leaf on Anxiety in Mice. J. Evid. Based Complement. Altern. Med. 2016, 21, NP85–NP90. [Google Scholar] [CrossRef] [PubMed]
- Colasanti, A.; Rabiner, E.A.; Lingford-Hughes, A.; Nutt, D.J. Opioids and anxiety. J. Psychopharmacol. 2011, 25, 1415–1433. [Google Scholar] [CrossRef] [PubMed]
- Asakawa, A.; Inui, A.; Momose, K.; Ueno, N.; Fujino, M.A.; Kasuga, M. Endomorphins have orexigenic and anxiolytic activities in mice. Neuroreport 1998, 9, 2265–2267. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.C.; Lee, Y.J.; Fan, L.W.; Yang, P.P.; Tao, P.L.; Ho, I.K.; Tien, L.T. Mu-opioid receptor knockout mice are more sensitive to chlordiazepoxide-induced anxiolytic behavior. Brain Res. Bull. 2013, 90, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Wang, X.; Dong, J.; Zhuang, Y.; Huang, S.; Ma, B.; Chen, P.; Li, X.; Zhang, B.; Li, Z.; et al. Systematic characterization of lncRNAs’ cell-to-cell expression heterogeneity in glioblastoma cells. Oncotarget 2016, 7, 18403–18414. [Google Scholar] [CrossRef] [PubMed]
- Le Bars, D.; Gozariu, M.; Cadden, S.W. Animal models of nociception. Pharmacol. Rev. 2001, 53, 597–652. [Google Scholar] [PubMed]
- Hunskaar, S.; Hole, K. The formalin test in mice: Dissociation between inflammatory and non-inflammatory pain. Pain 1987, 30, 103–114. [Google Scholar] [CrossRef]
- Mendes, T.C.; Raimundo, J.M.; Nascimento-Junior, N.M.; Fraga, C.A.; Barreiro, E.J.; Sudo, R.T.; Zapata-Sudo, G. Sedation and antinociception induced by a new pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivative (LASSBio-873) is modulated by activation of muscarinic receptors. Pharmacol. Biochem. Behav. 2009, 94, 70–74. [Google Scholar] [CrossRef] [PubMed]
- De Queiroz, R.B.; de Carvalho, F.L.; Fonseca, D.V.; Barbosa-Filho, J.M.; Salgado, P.R.; Paulo, L.L.; de Queiroz, A.B.; Pordeus, L.C.; de Souza, S.A.; Souza, H.D.; et al. Antinociceptive effect of hydantoin 3-phenyl-5-(4-ethylphenyl)-imidazolidine-2,4-dione in mice. Molecules 2015, 20, 974–986. [Google Scholar] [CrossRef] [PubMed]
- Fongang, A.L.; Laure Nguemfo, E.; Djouatsa Nangue, Y.; Bogning Zangueu, C.; Fouokeng, Y.; Azebaze, A.G.; Jose Llorent-Martinez, E.; Cordova, M.L.; Bertrand Dongmo, A.; Vierling, W. Antinociceptive and anti-inflammatory effects of the methanolic stem bark extract of Antrocaryon klaineanum Pierre (Anacardiaceae) in mice and rats. J. Ethnopharmacol. 2017, 203, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Coderre, T.J.; Vaccarino, A.L.; Melzack, R. Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection. Brain Res. 1990, 535, 155–158. [Google Scholar] [CrossRef]
- Dos Anjos, K.S.; Araujo-Filho, H.G.; Duarte, M.C.; Costa, V.C.; Tavares, J.F.; Silva, M.S.; Almeida, J.R.; Souza, N.A.; Rolim, L.A.; Menezes, I.R.; et al. HPLC-DAD analysis, antinociceptive and anti-inflammatory properties of the ethanolic extract of Hyptis umbrosa in mice. EXCLI J. 2017, 16, 14–24. [Google Scholar] [PubMed]
- Shibata, M.; Ohkubo, T.; Takahashi, H.; Inoki, R. Modified formalin test: Characteristic biphasic pain response. Pain 1989, 38, 347–352. [Google Scholar] [CrossRef]
- Al-Ghamdi, M.S. The anti-inflammatory, analgesic and antipyretic activity of Nigella sativa. J. Ethnopharmacol. 2001, 76, 45–48. [Google Scholar] [CrossRef]
- Giorno, T.B.; Ballard, Y.L.; Cordeiro, M.S.; Silva, B.V.; Pinto, A.C.; Fernandes, P.D. Central and peripheral antinociceptive activity of 3-(2-oxopropyl)-3-hydroxy-2-oxindoles. Pharmacol. Biochem. Behav. 2015, 135, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Stein, C. Targeting pain and inflammation by peripherally acting opioids. Front. Pharmacol. 2013, 4, 123. [Google Scholar] [CrossRef] [PubMed]
- Stein, C.; Baerwald, C. Opioids for the treatment of arthritis pain. Expert Opin. Pharmacother. 2014, 15, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Stein, C. The control of pain in peripheral tissue by opioids. N. Engl. J. Med. 1995, 332, 1685–1690. [Google Scholar] [PubMed]
- Menegatti, R.; Silva, G.M.; Zapata-Sudo, G.; Raimundo, J.M.; Sudo, R.T.; Barreiro, E.J.; Fraga, C.A. Design, synthesis, and pharmacological evaluation of new neuroactive pyrazolo[3,4-b]pyrrolo[3,4-d]pyridine derivatives with in vivo hypnotic and analgesic profile. Bioorg. Med. Chem. 2006, 14, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Savic, M.M.; Obradovic, D.I.; Ugresic, N.D.; Cook, J.M.; Yin, W.; Bokonjic, D.R. Bidirectional effects of benzodiazepine binding site ligands in the elevated plus-maze: Differential antagonism by flumazenil and beta-CCt. Pharmacol. Biochem. Behav. 2004, 79, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Zomkowski, A.D.; Santos, A.R.; Rodrigues, A.L. Evidence for the involvement of the opioid system in the agmatine antidepressant-like effect in the forced swimming test. Neurosci. Lett. 2005, 381, 279–283. [Google Scholar] [CrossRef] [PubMed]
- Demir Ozkay, U.; Can, O.D. Anti-nociceptive effect of vitexin mediated by the opioid system in mice. Pharmacol. Biochem. Behav. 2013, 109, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Lesscher, H.M.; Hordijk, M.; Bondar, N.P.; Alekseyenko, O.V.; Burbach, J.P.; van Ree, J.M.; Gerrits, M.A. Mu-opioid receptors are not involved in acute cocaine-induced locomotor activity nor in development of cocaine-induced behavioral sensitization in mice. Neuropsychopharmacology 2005, 30, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Pultrini Ade, M.; Galindo, L.A.; Costa, M. Effects of the essential oil from Citrus aurantium L. in experimental anxiety models in mice. Life Sci. 2006, 78, 1720–1725. [Google Scholar] [CrossRef] [PubMed]
- Dunham, N.W.; Miya, T.S. A note on a simple apparatus for detecting neurological deficit in rats and mice. J. Am. Pharm. Assoc. Am. Pharm. Assoc. 1957, 46, 208–209. [Google Scholar] [CrossRef] [PubMed]
- Souto-Maior, F.N.; de Carvalho, F.L.; de Morais, L.C.; Netto, S.M.; de Sousa, D.P.; de Almeida, R.N. Anxiolytic-like effects of inhaled linalool oxide in experimental mouse anxiety models. Pharmacol. Biochem. Behav. 2011, 100, 259–263. [Google Scholar] [CrossRef] [PubMed]
- Dubuisson, D.; Dennis, S.G. The formalin test: A quantitative study of the analgesic effects of morphine, meperidine, and brain stem stimulation in rats and cats. Pain 1977, 4, 161–174. [Google Scholar] [CrossRef]
Sample Availability: Not Available. |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montes, G.C.; Da Silva, B.N.M.; Rezende, B.; Sudo, R.T.; Ferreira, V.F.; De Carvalho da Silva, F.; Da Cunha Pinto, A.; Da Silva, B.V.; Zapata-Sudo, G. The Hypnotic, Anxiolytic, and Antinociceptive Profile of a Novel µ-Opioid Agonist. Molecules 2017, 22, 800. https://doi.org/10.3390/molecules22050800
Montes GC, Da Silva BNM, Rezende B, Sudo RT, Ferreira VF, De Carvalho da Silva F, Da Cunha Pinto A, Da Silva BV, Zapata-Sudo G. The Hypnotic, Anxiolytic, and Antinociceptive Profile of a Novel µ-Opioid Agonist. Molecules. 2017; 22(5):800. https://doi.org/10.3390/molecules22050800
Chicago/Turabian StyleMontes, Guilherme Carneiro, Bianca Nascimento Monteiro Da Silva, Bismarck Rezende, Roberto Takashi Sudo, Vitor Francisco Ferreira, Fernando De Carvalho da Silva, Angelo Da Cunha Pinto, Bárbara Vasconcellos Da Silva, and Gisele Zapata-Sudo. 2017. "The Hypnotic, Anxiolytic, and Antinociceptive Profile of a Novel µ-Opioid Agonist" Molecules 22, no. 5: 800. https://doi.org/10.3390/molecules22050800
APA StyleMontes, G. C., Da Silva, B. N. M., Rezende, B., Sudo, R. T., Ferreira, V. F., De Carvalho da Silva, F., Da Cunha Pinto, A., Da Silva, B. V., & Zapata-Sudo, G. (2017). The Hypnotic, Anxiolytic, and Antinociceptive Profile of a Novel µ-Opioid Agonist. Molecules, 22(5), 800. https://doi.org/10.3390/molecules22050800