Antidiabetic Effects of Tea
Abstract
:1. Introduction
2. Epidemiologic Evidences
3. Protective Effects of Tea Against DM
3.1. Alleviation of Oxidative Stress
3.2. Inhibition of α-Amylase and α-Glucosidase Activity
3.3. Improvement of Endothelial Disfunction
3.4. Modulation of Cytokines Expression
3.5. Ameliorating Insulin Resistance
3.6. Antihyperglycemic Activity
3.7. Improving Complications Associated with Hyperglycemia
3.8. Regulation of Gene Expression
3.9. Alleviating Diabetes-Induced Damages of Neural Cells
3.10. Immunity Improvement and Anti-Inflammation
4. Inconsistent Results
5. Conclusions and Future Expectations
Acknowledgments
Conflicts of Interest
References
- World Health Organization. The Top 10 Causes of Death. 2015. Available online: http://www.who.int/mediacentre/factsheets/fs310/en/ (accessed on 19 May 2017).
- Hoyert, D.L.; Xu, J. Deaths. Preliminary Data for 2011. Natl. Vital Stat. Rep. 2012, 61, 1–51. [Google Scholar] [PubMed]
- Zhu, B.; Wu, X.M.; Bi, Y.F.; Yang, Y. Effect of bilirubin concentration on the risk of diabetic complications: A meta-analysis of epidemiologic studies. Sci. Rep. 2017, 7, 41681. [Google Scholar] [CrossRef] [PubMed]
- Aathira, R.; Jain, V. Advances in management of type 1 diabetes mellitus. World J. Diabetes 2014, 5, 68–96. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care 2014, 37, S14–S80. [Google Scholar]
- American Diabetes Association. Clinical practice recommendations 2007. Diabetes Care 2007, 30, S3. [Google Scholar]
- Lopes, G.; Andrade, P.B.; Valentao, P. Phlorotannins: Towards New Pharmacological Interventions for Diabetes Mellitus Type 2. Molecules 2017, 22, 56. [Google Scholar] [CrossRef] [PubMed]
- De Souza, G.F.P.; Novaes, L.F.T.; Avila, C.M.; Nascimento, L.F.R.; Velloso, L.A.; Pilli, R.A. (−)-Tarchonanthuslactone Exerts a Blood Glucose-Increasing Effect in Experimental Type 2 Diabetes Mellitus. Molecules 2015, 20, 5038–5049. [Google Scholar] [CrossRef] [PubMed]
- Hong, X.; Xu, F.; Wang, Z.; Liang, Y.; Li, J. Dietary patterns and the incidence of hyperglyacemia in China. Public Health Nutr. 2015, 19, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Jankun, J.; Al-Senaidy, A.; Skrzypczak-Jankun, E. Can drinking black tea fight diabetes: Literature review and theoretical indication. Cent. Eur. J. Immunol. 2012, 37, 167–172. [Google Scholar]
- Xiang, L.P.; Wang, A.; Ye, J.H.; Zheng, X.Q.; Polito, C.A.; Lu, J.L.; Li, Q.S.; Liang, Y.R. Suppressive effects of tea catechins on breast cancer. Nutrients 2016, 8, 458. [Google Scholar] [CrossRef] [PubMed]
- Du, L.L.; Fu, Q.Y.; Xiang, L.P.; Zheng, X.Q.; Lu, J.L.; Ye, J.H.; Li, Q.S.; Polito, C.A.; Liang, Y.R. Tea Polysaccharides and Their Bioactivities. Molecules 2016, 21, 1449. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Stepaniak, U.; Micek, A.; Topor-Madry, R.; Pikhart, H.; Szafraniec, K.; Pajak, A. Association of daily coffee and tea consumption and metabolic syndrome: Results from the Polish arm of the HAPIEE study. Eur. J. Nutr. 2015, 54, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Van Dieren, S.; Uiterwaal, C.S.; van der Schouw, Y.T.; van der Schouw, D.L.; Boer, J.M.; Spijkerman, A.; Grobbee, D.E.; Beulens, J.W. Coffee and tea consumption and risk of type 2 diabetes. Diabetologia 2009, 52, 2561–2569. [Google Scholar] [CrossRef] [PubMed]
- Hamer, M.; Witte, D.R.; Mosdøl, A.; Marmot, M.G.; Brunner, E.J. Prospective study of coffee and tea consumption in relation to risk of type 2 diabetes mellitus among men and women: The Whitehall II study. Br. J. Nutr. 2008, 100, 1046–1053. [Google Scholar] [CrossRef] [PubMed]
- Iso, H.; Date, C.; Wakai, K.; Fukui, M.; Tamakoshi, A. The relationship between green tea and total caffeine intake and risk for self-reported type 2 diabetes among Japanese adults. Ann. Intern. Med. 2006, 144, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Hinkle, S.N.; Laughon, S.K.; Catov, J.M.; Olsen, J.; Bech, B.H. First trimester coffee and tea intake and risk of gestational diabetes mellitus: A study within a national birth cohort. Bjog-Int. J. Obstet. Gy. 2015, 122, 420–428. [Google Scholar] [CrossRef] [PubMed]
- Siddiquia, F.J.; Avanc, B.I.; Mahmudd, S.; Nananf, D.J.; Jabbarh, A.; Assama, P.N. Uncontrolled diabetes mellitus: Prevalence and risk factors among people with type 2 diabetes mellitus in an Urban District of Karachi, Pakistan. Diabetes Res. Clin. Pract. 2015, 107, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, C.; Huai, Q.; Guo, F.; Liu, L.; Feng, R.; Sun, C. Effects of tea or tea extract on metabolic profiles in patients with type 2 diabetes mellitus: A meta analysis of ten randomized controlled trials. Diabetes Metab. Res. Rev. 2016, 32, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Huxley, R.R.; Lee, C.; Barzi, F.; Timmermeister, L.; Czernichow, S.; Perkovic, V.; Grobbee, D.E.; Batty, D.; Woodward, M. Coffee, decaffeinated coffee, and tea consumption in relation to incident type-II diabetes mellitus: A systematic review with meta-analysis. Arch. Intern. Med. 2009, 169, 2053–2063. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Mao, Q.X.; Xu, H.X.; Ma, X.; Zeng, C.Y. Tea consumption and risk of type 2 diabetes mellitus: A systematic review and meta-analysis update. BMJ Open 2014, 4, e005632. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Guo, Q.; Qiu, C.; Huang, B.; Fu, X.; Yao, J.; Liang, J.; Li, L.; Chen, L.; Tang, K.; et al. Associations of green tea and rock tea consumption with risk of impaired fasting glucose and impaired glucose tolerance in Chinese men and women. PLoS ONE 2013, 8, e79214. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.R.; Ye, Q.; Jin, J.; Liang, H.; Lu, J.L.; Du, Y.Y.; Dong, J.J. Chemical and instrumental assessment of green tea sensory preference. Int. J. Food Prop. 2008, 11, 258–272. [Google Scholar] [CrossRef]
- Liang, Y.R.; Lu, J.L.; Zhang, L.Y.; Wu, S.; Wu, Y. Estimation of black tea quality by analysis of chemical composition and colour difference of tea infusions. Food Chem. 2003, 80, 283–290. [Google Scholar] [CrossRef]
- Abdul-Ghani, M.A.; Jenkinson, C.P.; Richardson, D.K.; Tripathy, D.; DeFronzo, R.A. Insulin secretion and action in subjects with impaired fasting glucose and impaired glucose tolerance: Results from the veterans administration genetic epidemiology study. Diabetes 2006, 55, 1430–1435. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, M.A.; Tripathy, D.; Defronzo, R.A. Contributions of β-cell dysfunction and insulin resistance to the pathogenesis of impaired glucose tolerance and impaired fasting glucose. Diabetes Care 2006, 29, 1130–1139. [Google Scholar] [CrossRef] [PubMed]
- Han, M.K. Epigallocatechin gallate, a constituent of green tea, suppresses cytokine-induced pancreatic β-cell damage. Exp. Mol. Med. 2003, 35, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Hininger-Favier, I.; Kelly, M.A.; Benaraba, R.; Dawson, H.D.; Coves, S.; Roussel, A.M.; Anderson, R.A. Green tea polyphenol extract regulates the expression of genes involved in glucose uptake and insulin signaling in rats fed a high fructose diet. J. Agric. Food Chem. 2007, 55, 6372–6378. [Google Scholar] [CrossRef] [PubMed]
- Matsui, T.; Tanaka, T.; Tamura, S.; Toshima, A.; Tamaya, K.; Miyata, Y.; Tanaka, K.; Matsumoto, K. Alpha-glucosidase inhibitory profile of catechins and theaflavins. J. Agric. Food Chem. 2007, 55, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Mukwevho, E.; Kohn, T.A.; Lang, D.; Nyatia, E.; Smith, J.; Ojuka, E.O. Caffeine induces hyperacetylation of histones at the MEF2 site on the Glut4promoter and increases MEF2A binding to the site via a CaMK-dependent mechanism. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E582–E588. [Google Scholar] [CrossRef] [PubMed]
- Beresniak, A.; Duru, G.; Berger, G.; Bremond-Gignac, D. Relationships between black tea consumption and key health indicators in the world: An ecological study. BMJ Open 2012, 2, e000648. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, D.; Nyakayiru, J.; Draijer, R.; Mulder, T.P.J.; Hopman, M.T.E.; Eijsvogels, T.M.H.; Thijssen, D.H. Impact of flavonoid-rich black tea and beetroot juice on postprandial peripheral vascular resistance and glucose homeostasis in obese, insulin-resistant men: A randomized controlled trial. Nutr. Metab. 2016, 13, 34. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Tofte, J.I.; Mølgaard, P.; Josefsen, K.; Abdallah, Z.; Hansen, S.H.; Cornett, C.; Mu, H.; Richter, E.A.; Petersen, H.W.; Nørregaard, J.C.; et al. Randomized and double-blinded pilot clinical study of the safety and anti-diabetic efficacy of the Rauvolfia-Citrus tea, as used in Nigerian traditional medicine. J. Ethnopharmacol. 2011, 133, 402–411. [Google Scholar] [CrossRef] [PubMed]
- Babu, P.V.A.; Sabitha, K.E.; Shyamaladevi, C.S. Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem-Biol Interact. 2006, 162, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Rizvi, S.I. Black tea extract improves anti-oxidant profile in experimental diabetic rats. Arch. Physiol. Biochem. 2015, 121, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Ozyurt, H.; Luna, C.; Estevez, M. Redox chemistry of the molecular interactions between tea catechins and human serum proteins under simulated hyperglycemic conditions. Food Funct. 2016, 7, 1390–1400. [Google Scholar] [CrossRef] [PubMed]
- Sharifzadeh, M.; Ranjbar, A.; Hosseini, A.; Khanavi, M. The effect of green tea extract on oxidative stress and spatial learning in Streptozotocin-diabetic rats. Iran. J. Pharm. Res. 2017, 16, 201–209. [Google Scholar] [PubMed]
- Neyestani, T.R.; Shariatzade, N.; Kalayi, A.; Gharavi, A.A.; Khalaji, N.; Dadkhah, M.; Zowghi, T.; Haidari, H.; Shab-bidar, S. Regular daily intake of black tea improves oxidative stress biomarkers and decreases serum c-reactive protein levels in type 2 diabetic patients. Ann. Nutr. Metab. 2010, 57, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Frei, B.; Higdon, J.V. Antioxidant activity of tea polyphenols in vivo: Evidence from animal studies. J. Nutr. 2003, 133, 3275S–3284S. [Google Scholar] [PubMed]
- Kumar, B.; Gupta, S.K.; Nag, T.C.; Srivastava, S.; Saxena, R. Green tea prevents hyperglycemia-induced retinal oxidative stress and inflammation in streptozotocin-induced diabetic rats. Ophthal Res. 2012, 47, 103–107. [Google Scholar] [CrossRef] [PubMed]
- Han, H.R.; Bai, X.R.; Zhang, N.; Zhao, D.D.; Wei, K.H.; Zhang, C.H.; Li, M.H. Activities constituents from yaowang tea (Potentilla glabra Lodd.). Food Sci. Technol. Res. 2016, 22, 371–376. [Google Scholar] [CrossRef]
- Dufresne, C.J.; Farnworth, E.R. A review of latest research findings on the health promotion properties of tea. J. Nutr. Biochem. 2001, 12, 404–421. [Google Scholar] [CrossRef]
- Basu, A.; Betts, N.M.; Mulugeta, A.; Tong, C.; Newman, E.; Lyons, T.J. Green tea supplementation increases glutathione and plasma antioxidant capacity in adults with the metabolic syndrome. Nutr. Res. 2013, 33, 180–187. [Google Scholar]
- Kongpichitchoke, T.; Chiu, M.T.; Huang, T.C.; Hsu, J.L. Gallic acid content in taiwanese teas at different degrees of fermentation and its antioxidant activity by inhibiting PKC delta activation: In vitro and in silico studies. Molecules 2016, 21, 1346. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.X.; Qu, Z.; Fu, L.L.; Dong, P.; Zhang, X. Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. J. Food Sci. 2009, 74, C469–C474. [Google Scholar] [CrossRef] [PubMed]
- Spadiene, A.; Savickiene, N.; Ivanauskas, L.; Jakstas, V.; Skesters, A.; Silova, A.; Rodovicius, H. Antioxidant effects of Camellia sinensis L. extract in patients with type 2 diabetes. J. Food Drug Anal. 2014, 22, 505–511. [Google Scholar]
- Zhang, M.; Cheung, P.C.; Zhang, L. Evaluation of mushroom dietary fiber (nonstarch polysaccharides) from sclerotia of pleurotus tuber-regium (fries) singer as a potential antitumor Agent. J. Agric. Food Chem. 2001, 49, 5059–5062. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.P.; Song, C.Q.; Yuna, P.; Mao, R.G. α-Glucosidase and α-amylase inhibitory activity of common constituents from traditional Chinese medicine used for diabetes mellitus. Chin. J. Nat. Med. 2010, 8, 349–352. [Google Scholar] [CrossRef]
- Lochocka, K.; Bajerska, J.; Glapa, A.; Fidler-Witon, E.; Nowak, J.K.; Szczapa, T.; Grebowiec, P.; Lisowska, A.; Walkowiak, J. Green tea extract decreases starch digestion and absorption from a test meal in humans: A randomized, placebo-controlled crossover study. Sci. Rep. 2015, 5, 12015. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.P.; Kong, F.B. Evaluation of the in vitro alpha-glucosidase inhibitory activity of green tea polyphenols and different tea types. J. Sci. Food Agr. 2016, 96, 777–782. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Liu, J.; Zhang, X.D.; Ji, G. Antidiabetic activity of lipophilic (−)-epigallocatechin-3-gallate derivative under its role of α-glucosidase inhibition. Biomed. Pharmacother. 2007, 61, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, E.B.; Papadimitriou, A.; Teixeira, D.A.T.; Montemurro, C.; Duarte, D.A.; Silva, K.C.; de Faria, J.L. Reduced LRP6 expression and increase in the interaction of GSK3β with p53 contribute to podocyte apoptosis in diabetes mellitus and are prevented by green tea. J. Nutr. Biochem. 2015, 26, 416–430. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Jo, S.; Kim, J.; Ha, K.; Lee, J.; Choi, H.; Yu, S.; Kwon, Y.; Kim, Y. Selected tea and tea pomace extracts inhibit intestinal α-glucosidase activity in vitro and postprandial hyperglycemia in vivo. Int. J. Mol. Sci. 2015, 16, 8811–8825. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.Y.; Yu, Z.; Zhu, H.K.; Zhang, W.; Chen, Y.Q. In vitro alpha-glucosidase inhibitory activity of isolated fractions from water extract of qingzhuan dark tea. BMC Complem. Altern. M. 2016, 16, 378. [Google Scholar] [CrossRef] [PubMed]
- Kamiyama, O.; Sanae, F.; Ikeda, K.; Higashi, Y.; Minami, Y.; Asano, N.; Adachi, I.; Kato, A. In vitro inhibition of alpha-glucosidases and glycogen phosphorylase by catechin gallates in green tea. Food Chem. 2010, 122, 1061–1066. [Google Scholar] [CrossRef]
- Lo Piparo, E.; Scheib, H.; Frei, N.; Williamson, G.; Grigorov, M.; Chou, C.J. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase. J. Med. Chem. 2008, 51, 3555–3561. [Google Scholar] [CrossRef] [PubMed]
- Miao, M.; Jiang, B.; Jiang, H.; Zhang, T.; Li, X.F. Interaction mechanism between green tea extract and human alpha-amylase for reducing starch digestion. Food Chem. 2015, 186, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Yilmazer-Musa, M.; Griffith, A.M.; Michels, A.J.; Schneider, E.; Frei, B. Grape seed and tea extracts and catechin 3-gallates are potent inhibitors of alpha-amylase and alpha-glucosidase activity. J. Agric. Food Chem. 2012, 60, 8924–8929. [Google Scholar] [CrossRef] [PubMed]
- Calles-Escandon, J.; Cipolla, M. Diabetes and endothelial dysfunction: A clinical perspective. Endocr. Rev. 2001, 22, 36–52. [Google Scholar] [CrossRef] [PubMed]
- Peristiowati, Y.; Indasah, I.; Ratnawati, R. The effects of catechin isolated from green tea GMB-4 on NADPH and nitric oxide levels in endothelial cells exposed to high glucose. J. Intercult. Ethnopharmacol. 2015, 4, 114. [Google Scholar] [PubMed]
- Widlansky, M.E.; Hamburg, N.M.; Anter, E.; Holbrook, M.; Kahn, D.F.; Elliott, J.G.; Keaney, J.F.; Vita, J.A. Acute EGCG supplementation reverses endothelial dysfunction in patients with coronary artery disease. J. Am. Coll. Nutr. 2007, 26, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, P.; Khanna, D.; Balakumar, P. Catechin averts experimental diabetes mellitus-induced vascular endothelial structural and functional abnormalities. Cardiovasc. Toxicol. 2014, 14, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, M.; Wessler, S.; Follmann, E.; Michaelis, W.; Dusterhoft, T.; Baumann, G.; Stangl, K.; Stangl, V. A constituent of green tea, epigallocatechin-3-gallate, activates endothelial nitric oxide synthase by a phosphatidylinositol-3-OH-kinase-, cAMP-dependent protein kinase-, and Akt-dependent pathway and leads to endothelial-dependent vasorelaxation. J. Biol. Chem. 2004, 279, 6190–6195. [Google Scholar] [CrossRef] [PubMed]
- Anter, E.; Chen, K.; Shapira, O.M.; Karas, R.H.; Keaney, J.F. P38 mitogen-activated protein kinase activates eNOS in endothelial cells by an estrogen receptor alpha-dependent pathway in response to black tea polyphenols. Circ. Res. 2005, 96, 1072–1078. [Google Scholar] [CrossRef] [PubMed]
- Wedekind, L.; Belkacemi, L. Altered cytokine network in gestational diabetes mellitus affects maternal insulin and placental-fetal development. J. Diabetes Complicat. 2016, 30, 1393–1400. [Google Scholar] [CrossRef] [PubMed]
- Eizirik, D.L.; Colli, M.L.; Ortis, F. The role of inflammation in insulitis and beta-cell loss in type 1 diabetes. Nat. Rev. Endocrinol. 2009, 5, 219–226. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, F.; Haines, D.; Al-Ozairi, E.; Dashti, A. Effect of black tea consumption on intracellular cytokines, regulatory t cells and metabolic biomarkers in type 2 diabetes patients. Phytother. Res. 2016, 30, 454–462. [Google Scholar] [CrossRef] [PubMed]
- Neyestani, T.R.; Gharavi, A.; Kalayi, A. Selective effects of tea extract and its phenolic compounds on human peripheral blood mononuclear cell cytokine secretions. Intl. J. Food Sci. Nutr. 2009, 60, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.F.; Ding, Y.; Dai, X.Q.; Wang, J.B.; Li, Y. Epigallocatechin-3-gallate protects pro-inflammatory cytokine induced injuries in insulin-producing cells through the mitochondrial pathway. Eur. J. Pharmacol. 2011, 670, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Gennaro, G.; Claudino, M.; Cestari, T.M.; Ceolin, D.; Germino, P.; Garlet, G.P.; de Assis, G.F. Green tea modulates cytokine expression in the periodontium and attenuates alveolar bone resorption in type 1 diabetic rats. PLoS ONE 2015, 10, e0134784. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.P.; Nguyen, L.P.; Noh, S.K.; Bray, T.M.; Bruno, R.S.; Ho, E. Induction of regulatory t cells by green tea polyphenol EGCG. Immunol. Lett. 2011, 139, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Huang, C.J.; Huang, L.H.; Chen, I.J.; Chiu, J.P.; Hsu, C.H. Effects of green tea extract on insulin resistance and glucagon-like peptide 1 in patients with type 2 diabetes and lipid abnormalities: A randomized, double-blinded, and placebo-controlled trial. PLoS ONE 2014, 9, e91163. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.S.; Chang, Y.F.; Liu, P.Y.; Chen, C.Y.; Tsai, Y.S.; Wu, C.H. Smoking, habitual tea drinking and metabolic syndrome in elderly men living in rural community: The Tianliao old people (top) study 02. PLoS ONE 2012, 7, e38874. [Google Scholar] [CrossRef] [PubMed]
- Keske, M.A.; Ng, H.L.H.; Premilovac, D.; Rattigan, S.; Kim, J.A.; Munir, K.; Yang, P.X.; Quon, M.J. Vascular and metabolic actions of the green tea polyphenol epigallocatechin gallate. Curr. Med. Chem. 2015, 22, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Rizvi, S.I.; Zaid, M.A. Insulin-like effect of (−)epicatechin on erythrocyte membrane acetylcholinesterase activity in type 2 diabetes mellitus. Clin. Exp. Pharmacol. Physiol. 2001, 28, 776–778. [Google Scholar] [CrossRef] [PubMed]
- Anton, S.; Melville, L.; Rena, G. Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor foxo1a and elicits cellular responses in the presence and absence of insulin. Cell Signal 2007, 19, 378–383. [Google Scholar] [CrossRef] [PubMed]
- Wimmer, R.J.; Russell, S.J.; Schneider, M.F. Green tea component EGCG, insulin and IGF-1 promote nuclear efflux of atrophy-associated transcription factor Foxo1 in skeletal muscle fibers. J. Nutr. Biochem. 2015, 26, 1559–1567. [Google Scholar] [CrossRef] [PubMed]
- Thirone, A.C.P.; Huang, C.; Klip, A. Tissue-specific roles of IRS proteins in insulin signaling and glucose transport. Trends Endocrin. Met. 2006, 17, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.L.; Lin, J.K. Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol. Nutr. Food Res. 2008, 52, 930–939. [Google Scholar] [CrossRef] [PubMed]
- Collins, Q.F.; Liu, H.Y.; Pi, J.B.; Liu, Z.Q.; Quon, M.J.; Cao, W.H. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase. J. Biol. Chem. 2007, 282, 30143–30149. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Tsuda, S.; Yang, X.; Gu, N.; Tanabe, H.; Oshima, R.; Matsushita, T.; Egawa, T.; Dong, A.J.; Zhu, B.W.; et al. Pu-erh tea hot-water extract activates akt and induces insulin-independent glucose transport in rat skeletal muscle. J. Med. Food 2013, 16, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.Y.; Juan, C.C.; Hwang, L.S.; Hsu, Y.P.; Ho, P.H.; Ho, L.T. Green tea supplementation ameliorates insulin resistance and increases glucose transporter IV content in a fructose-fed rat model. Eur. J. Nutr. 2004, 43, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.Q.; Zhao, Y.; Suo, S.Q.G.W.; Liu, Y.; Zhao, B.L. Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress. Free Radical Bio. Med. 2012, 52, 1648–1657. [Google Scholar] [CrossRef] [PubMed]
- Preuss, H.G. Effects of glucose/insulin perturbations on aging and chronic disorders of aging: The evidence. J. Am. Coll. Nutr. 1997, 16, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Cade, W.T. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, K.; Wang, M.F.; Liao, M.L.; Chuang, C.K.; Iha, M.; Clevidence, B.; Yamamoto, S. Antihyperglycemic effect of oolong tea in type 2 diabetes. Diabetes Care 2003, 26, 1714–1718. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.A.; Polansky, M.M. Tea Enhances Insulin Activity. J. Agric. Food Chem. 2002, 50, 7182–7186. [Google Scholar] [CrossRef] [PubMed]
- Deusing, D.J.; Winter, S.; Kler, A.; Kriesl, E.; Bonnlander, B.; Wenzel, U.; Fitzenberger, E. A catechin-enriched green tea extract prevents glucose-induced survival reduction in Caenorhabditis elegans through sir-2.1 and uba-1 dependent hormesis. Fitoterapia 2015, 102, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Jayakody, J.R.A.C.; Ratnasooriya, W.D. Blood glucose level lowering activity of Sri Lankan black tea brew (Camellia sinensis) in rats. Pharmacogn. Mag. 2008, 4, 341–349. [Google Scholar]
- Tamaya, K.; Matsui, T.; Toshima, A.; Noguchi, M.; Ju, Q.; Miyata, Y.; Tanaka, T.; Tanaka, K. Suppression of blood glucose level by a new fermented tea obtained by tea-rolling processing of loquat (Eriobotrya japonica) and green tea leaves in disaccharide-loaded Sprague-Dawley rats. J. Sci. Food Agric. 2010, 90, 779–783. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, S.; Raederstorff, D.; Preller, M.; Wang, Y.; Teixeira, S.R.; Riegger, C.; Weber, P. Epigallocatechin gallate supplementation alleviates diabetes in rodents. J. Nutr. 2006, 136, 2512–2518. [Google Scholar] [PubMed]
- Moller, D.E. New drug targets for type 2 diabetes and the metabolic syndrome. Nature 2001, 414, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Saxena, R.; Madhu, S.V.; Shukla, R.; Prabhu, K.M.; Gambhir, J.K. Postprandial hypertriglyceridemia and oxidative stress in patients of type 2 diabetes mellitus with macrovascular complications. Clin. Chim. Acta 2005, 359, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Toth, P.P. High-density lipoprotein as a therapeutic target: Clinical evidence and treatment strategies. Am. J. Cardiol. 2005, 96, 50K–58K. [Google Scholar] [CrossRef] [PubMed]
- Veiraiah, A. Hyperglycemia, lipoprotein glycation, and vascular disease. Angiology 2005, 56, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Wolfram, S.; Raederstorff, D.; Wang, Y.; Teixeira, S.R.; Elste, V.; Weber, P. TEAVIGOTM (Epigallocatechin gallate) supplementation prevents obesity in rodents by reducing adipose tissue mass. Ann. Nutr. Metab. 2005, 49, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.C.; Dai, W.C.; Chen, X.H.; Wang, K.Y.; Zhang, W.Q.; Liu, L.; Hou, J.L. Caffeine reduces hepatic lipid accumulation through regulation of lipogenesis and ER stress in zebrafish larvae. J. Biomed. Sci. 2015, 22, 105. [Google Scholar] [CrossRef] [PubMed]
- Greenberg, J.A.; Axen, K.V.; Schnoll, R.; Boozer, C.N. Coffee, tea and diabetes: The role of weight loss and caffeine. Int. J. Obes. (Lond). 2005, 29, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Hinder, L.M.; O'Brien, P.D.; Hayes, J.M.; Backus, C.; Solway, A.P.; Sims-Robinson, C.; Feldman, E.L. Dietary reversal of neuropathy in a murine model of prediabetes and the metabolic syndrome. Dis. Model. Mech. 2017. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.G.; Martins, A.D.; Teixeira, N.F.; Rato, L.; Oliveira, P.F.; Silva, B.M. White tea consumption improves cardiac glycolytic and oxidative profile of prediabetic rats. J. Funct. Foods 2015, 14, 102–110. [Google Scholar] [CrossRef]
- Dias, T.R.; Alves, M.G.; Rato, L.; Casal, S.; Silva, B.M.; Oliveira, P.F. White tea intake prevents prediabetes-induced metabolic dysfunctions in testis and epididymis preserving sperm quality. J. Nutr. Biochem. 2016, 37, 83–93. [Google Scholar] [CrossRef] [PubMed]
- El-Bassossy, H.M.; Elberry, A.A.; Ghareib, S.A. Geraniol improves the impaired vascular reactivity in diabetes and metabolic syndrome through calcium channel blocking effect. J. Diabetes Complicat. 2016, 30, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Borges, C.M.; Papadimitriou, A.; Duarte, D.A.; Lopes de Faria, J.M.; Lopes de Faria, J.B. The use of green tea polyphenols for treating residual albuminuria in diabetic nephropathy: A double-blind randomised clinical trial. Sci. Rep. 2016, 6, 28282. [Google Scholar] [CrossRef] [PubMed]
- Yamabe, N.; Kang, K.S.; Hur, J.M.; Yokozawa, T. Matcha, a powdered green tea, ameliorates the progression of renal and hepatic damage in type 2 diabetic OLETF rats. J. Med. Food. 2009, 12, 714–721. [Google Scholar] [CrossRef] [PubMed]
- Abolfathi, A.A.; Mohajeri, D.; Rezaie, A.; Nazeri, M. Protective effects of green tea extract against hepatic tissue injury in streptozotocin-induced diabetic rats. J. Evid. Based Complement. Altern. Med. 2012, 2012, 740671. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, J.M.; Shahab, U.; Tabrez, S.; Lee, E.J.; Choi, I.; Ahmad, S. Quercetin as a finer substitute to aminoguanidine in the inhibition of glycation products. Int. J. Biol. Macromol. 2015, 77, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Tabrez, S.; Al-Shali, K.Z.; Ahmad, S. Lycopene powers the inhibition of glycationinduced diabetic nephropathy: A novel approach to halt the AGE-RAGE axis menace. BioFactors 2015, 41, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Moi, P.; Chan, K.; Asunis, I.; Cao, A.; Kan, Y.W. Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc. Natl. Acad. Sci. USA 1994, 91, 9926–9930. [Google Scholar] [CrossRef]
- Mueller, C.G.; Hess, E. Emerging functions of RANKL in lymphoid tissues. Front. Immunol. 2012, 3, 261. [Google Scholar] [CrossRef] [PubMed]
- Sampath, C.; Rashid, M.R.; Sang, S.M.; Ahmedna, M. Green tea epigallocatechin 3-gallate alleviates hyperglycemia and reduces advanced glycation end products via nrf2 pathway in mice with high fat diet-induced obesity. Biomed. Pharmacother. 2017, 87, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jin, X.Q.; Yan, J.; Jin, Y.; Yu, W.; Wu, H.B.; Xu, S.H. Prevalence of dementia, cognitive status and associated risk factors among elderly of Zhejiang province, China in 2014. Age Ageing 2016, 45, 707–711. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.R.; Alves, M.G.; Tomas, G.D.; Conde, V.R.; Cristovao, A.C.; Moreira, P.I.; Oliveira, P.F.; Silva, B.M. Daily consumption of white tea (Camellia sinensis (L.) improves the cerebral cortex metabolic and oxidative profile in prediabetic Wistar rats. Brit. J. Nutr. 2015, 113, 832–842. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.Y.; Kuo, W.W.; Wang, H.F.; Lin, C.J.; Lin, Y.M.; Chen, J.L.; Kuo, C.H.; Chen, P.K.; Lin, J.Y. GABA tea ameliorates cerebral cortex apoptosis and autophagy in streptozotocin-induced diabetic rats. J. Funct. Foods 2014, 6, 534–544. [Google Scholar] [CrossRef]
- Sipe, J.D. Amyloidosis. Crit. Rev. Clin. Lab. Sci. 1994, 31, 325–354. [Google Scholar] [CrossRef] [PubMed]
- Selkoe, D.J. Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nat. Cell Biol. 2004, 6, 1054–1061. [Google Scholar] [CrossRef] [PubMed]
- Meng, F.; Abedini, A.; Plesner, A.; Verchere, C.B.; Raleigh, D.P. The flavanol (−)-epigallocatechin 3-gallate inhibits amyloid formation by islet amyloid polypeptide, disaggregates amyloid fibrils, and protects cultured cells against IAPP-induced toxicity. Biochemistry 2010, 49, 8127–8133. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.; Anjaneyulu, M.; Chopra, K. Modulatory role of green tea extract on antinociceptive effect of morphine in diabetic mice. J. Med. Food 2005, 8, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Anjaneyulu, M.; Chopra, K. Quercetin, a bioflavonoid, attenuates thermal hyperalgesia in a mouse model of diabetic neuropathic pain. Prog. Neuro-Psychoph. 2003, 27, 1001–1005. [Google Scholar] [CrossRef]
- Kamei, J.; Zushida, K.; Morita, K.; Sasaki, M.; Tanaka, S. Role of vanilloid VR1 receptor in thermal allodynia and hyperalgesia in diabetic mice. Eur. J. Pharmacol. 2001, 422, 83–86. [Google Scholar] [CrossRef]
- Ohsawa, M.; Kamei, J. Possible involvement of spinal protein kinase C in thermal allodynia and hyperalgesia in diabetic mice. Eur. J. Pharmacol. 1999, 372, 221–228. [Google Scholar] [CrossRef]
- Courteix, C.; Eschalier, A.; Lavarenne, J. Streptozocin-induced diabetic rats: Behavioural evidence for a model of chronic pain. Pain 1993, 53, 81–88. [Google Scholar] [CrossRef]
- Paquay, J.B.G.; Haenen, G.R.M.M.; Stender, G.; Wiseman, S.A.; Tijburg, L.B.M.; Bast, A. Protection against nitric oxide toxicity by tea. J. Agric, Food Chem. 2000, 48, 5768–5772. [Google Scholar] [CrossRef]
- Singh, R.; Ahmed, S.; Islam, N.; Goldberg, V.M.; Haqqi, T.M. Epigallocatechin-3-gallate inhibits interleukin-1β–induced expression of nitric oxide synthase and production of nitric oxide in human chondrocytes: Suppression of nuclear factor κB activation by degradation of the inhibitor of nuclear factor κB. Arthritis Rheum. 2002, 46, 2079–2086. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Rahman, A.; Hasnain, A.; Lalonde, M.; Goldberg, V.M.; Haqqi, T.M. Green tea polyphenol epigallocatechin-3-gallate inhibits the IL-1 beta-induced activity and expression of cyclooxygenase-2 and nitric oxide synthase-2 in human chondrocytes. Free Radic. Biol. Med. 2002, 33, 1097–1105. [Google Scholar] [CrossRef]
- Silva, K.C.; Hamassaki, D.E.; Saito, K.C.; Faria, A.M.; Ribeiro, P.A.O.; de Faria, J.B.L.; de Faria, J.M.L. Green tea is neuroprotective in diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 2013, 54, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, Y.; Suzuki, T.; Mochizuki, K.; Goda, T. Dietary supplementation with (−)-epigallocatechin-3-gallate reduces inflammatory response in adipose tissue of non-obese type 2 diabetic Goto-Kakizaki (GK) rats. J. Agric. Food Chem. 2013, 61, 11410–11417. [Google Scholar] [CrossRef] [PubMed]
- Stosic-Grujicic, S.; Maksimovic, D.; Badovinac, V.; Samardzic, T.; Trajkovic, V.; Lukic, M.; Mostarica Stojkovic, M. Antidiabetogenic effect of pentoxifylline is associated with systemic and target tissue modulation of cytokines and nitric oxide production. J. Autoimmun. 2001, 16, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Song, E.K.; Hur, H.; Han, M.K. Epigallocatechin gallate prevents autoimmune diabetes induced by multiple low doses of streptozotocin in mice. Arch. Pharm Res. 2003, 26, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Bao, S.; Cao, Y.; Fan, C.; Fan, Y.; Bai, S.; Teng, W.; Shan, Z. Epigallocatechin gallate improves insulin signaling by decreasing toll-like receptor 4 (TLR4) activity in adipose tissues of high-fat diet rats. Mol. Nut. Food Res. 2014, 58, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kang, H.W.; Lee, S.Y.; Hur, S.J. Green tea polyphenol epigallocatechin-3-O-gallate attenuates lipopolysaccharide-induced nitric oxide production in RAW264. 7 cells. J. Food Nutr. Res. 2014, 2, 425–428. [Google Scholar] [CrossRef]
- Pullikotil, P.; Chen, H.; Muniyappa, R.; Greenberg, C.C.; Yang, S.T.; Reiter, C.E.N.; Lee, J.W.; Chung, J.H.; Quon, M.J. Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-alpha. J. Nutr. Biochem. 2012, 23, 1134–1145. [Google Scholar] [CrossRef] [PubMed]
- Bae, J.Y.; Choi, J.S.; Choi, Y.J.; Shin, S.Y.; Kang, S.W.; Han, S.J.; Kang, Y.H. (−)Epigallocatechin gallate hampers collagen destruction and collagenase activation in ultraviolet-B-irradiated human dermal fibroblasts: Involvement of mitogen-activated protein kinase. Food Chem. Toxicol. 2008, 46, 1298–1307. [Google Scholar] [CrossRef] [PubMed]
- Hisanaga, A.; Ishida, H.; Sakao, K.; Sogo, T.; Kumamoto, T.; Hashimoto, F.; Hou, D.X. Anti-inflammatory activity and molecular mechanism of Oolong tea theasinensin. Food Funct. 2014, 5, 1891–1897. [Google Scholar] [CrossRef] [PubMed]
- MacKenzie, T.; Leary, L.; Brooks, W.B. The effect of an extract of green and black tea on glucose control in adults with type 2 diabetes mellitus: Double-blind randomized study. Metabolism 2007, 56, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Hayashino, Y.; Fukuhara, S.; Okamura, T.; Tanaka, T.; Ueshima, H. High oolong tea consumption predicts future risk of diabetes among Japanese male workers: A prospective cohort study. Diabet. Med. 2011, 28, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, S.M.; Rasanen, L.; Ylonen, K.; Lounamaa, R.; Akerblom, H.K.; Tuomilehto, J.; Toivanen, L.; Kaprio, E.A. Is childrens or parents coffee or tea consumption associated with the risk for type-1 diabetes-mellitus in children. Eur. J. Clin. Nutr. 1994, 48, 279–285. [Google Scholar] [PubMed]
- Bailey, C.J. Xiaoke: Effect on glucose homeostasis in normal and streptozotocin diabetic mice. IRCS Med. Sci. 1986, 14, 577–578. [Google Scholar]
- Bailey, C.J.; Brown, D.; Smith, W.; Bone, A.J. Xiaoke, a traditional treatment for diabetes. Studies in streptozotocin diabetic mice and spontaneously diabetic BB/E rats. Diabetes Res. 1987, 4, 15–18. [Google Scholar] [CrossRef]
- Hale, P.J.; Horrocks, P.M.; Wright, A.D.; Fitzgerald, M.G.; Nattrass, M.; Bailey, C.J. Xiaoke tea, a chinese herbal treatment for diabetes mellitus. Diabet Med. 1989, 6, 675–676. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lin, Z.; Ye, Y.; Zhang, R.; Yin, J.; Jiang, Y.; Wan, H. Suppression of diabetes in non-obese diabetic (NOD) mice by oral administration of water-soluble and alkali-soluble polysaccharide conjugates prepared from green tea. Carbohyd. Polym. 2010, 82, 28–33. [Google Scholar] [CrossRef]
- Liang, H.L.; Liang, Y.R.; Dong, J.J.; Lu, J.L.; Xu, H.R.; Wang, H. Decaffeination of fresh green tea leaf (Camellia sinensis) by hot water treatment. Food Chem. 2007, 101, 1451–1456. [Google Scholar] [CrossRef]
- Boggs, D.A.; Rosenberg, L.; Ruiz-Narvaez, E.A.; Palmer, J.R. Coffee, tea, and alcohol intake in relation to risk of type 2 diabetes in African American women. Am. J. Clin. Nutr. 2010, 92, 960–966. [Google Scholar] [CrossRef] [PubMed]
- Golozar, A.; Khademi, H.; Kamangar, F.; Poutschi, H.; Islami, F.; Abnet, C.C.; Freedman, N.D.; Taylor, P.R.; Pharoah, P.; Boffetta, P.; et al. Diabetes mellitus and its correlates in an Iranian adult population. PLoS ONE 2011, 6, e26725. [Google Scholar] [CrossRef] [PubMed]
- Karimfar, M.H.; Haghani, K.; Babakhani, A.; Bakhtiyari, S. Rosiglitazone, but not epigallocatechin-3-gallate, attenuates the decrease in PGC-1α protein levels in palmitate-induced insulin-resistant C2C12 cells. Lipids 2015, 50, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Dube, A.; Nicolazzo, J.A.; Larson, I. Chitosan nanoparticles enhance the intestinal absorption of the green tea catechins (+)-catechin and (−)-epigallocatechin gallate. Eur. J. Pharm. Sci. 2014, 41, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Garcia, J.P.D.; Hsieh, M.F.; Doma, B.T.; Peruelo, D.C.; Chen, I.H.; Lee, H.M. Synthesis of gelatin-γ-polyglutamic acid-based hydrogel for the in vitro controlled release of epigallocatechin gallate (EGCG) from Camellia sinensis. Polymers 2014, 6, 39–58. [Google Scholar] [CrossRef]
Type of Study | Location | Tea Type | Number of Subjects | Main Results | References |
---|---|---|---|---|---|
Population based study | Krakow, Poland | Black tea | 8821 adults (51.4% female) | Tea consumption was negatively associated with central obesity and fasting plasma glucose | [13] |
Population based cohort study | Amsterdam, The Netherlands | Black tea green tea | 10-year follow-up (40,011 participants) | Daily consumption of ≥3 cups of tea reduced the risk of T2DM by 42% | [14] |
Prospective cohort study | London, UK | Black tea | 11.7 years follow-up (4055 men and 1768 women) | Tea intake was associated with the reduced risk of T2DM, with a hazard ratio (HR): 0·66 (95% CI: 0.61–1.22; p < 0.05) after adjustment for age, gender, ethnicity and social status | [15] |
Retrospective cohort study | Osaka, Japan | Green tea | 5-year follow-up (6727 men and 10,686 women) | Drinking six cups of green tea per day was significantly associated with a lower risk for T2DM (OR = 0.67, 95% CI: 0.47–0.94) | [16] |
Case-control study | Denmark | Black tea | Cases: 912, control: 70,327 | Moderate first trimester tea intake were not associated with increased risk of gestational diabetes mellitus, but may have a protective effect | [17] |
Community based study | Karachi, Pakistan | Black tea | 452 T2DM participants | Prevalence of uncontrolled DM (UDM) was about 39% and higher consumption of tea was independently associated with UDM, with an OR: 1.5 (95% CI: 1.0–2.2) | [18] |
Meta-analysis | China, South Korea, USA, Japan, Iran | Black tea, green tea, oolong tea | 608 participants | Tea drinking could alleviate the decrease of fasting blood insulin (1.30 U/L, 95% CI: 0.36–2.24) and reduced waist circumference in more than 8-week intervention | [19] |
Meta-analysis | USA, Japan, Singapore, Puerto Rico, UK, Finland | Black tea, green tea | 457,922 participants | High intakes of decaffeinated tea were significantly associated with reduced risk of incident diabetes | [20] |
Meta-analysis | 12 countries including USA, Finland, Japan, UK, and etc | Oolong tea, green tea | 761,949 participants | Daily tea consumption (≥3 cups/day) was associated with a lower T2DM risk | [21] |
Cross-sectional study | Fujian, China | Oolong tea, green tea, black tea | 4808 participants | Consumption of green or oolong tea may protect against the development of T2DM in Chinese men and women, particularly in those who drink 16–30 cups per week | [22] |
Meta-analysis | A World Health Survey involving 50 countries | Black tea | More than 38,562 participants | High black tea consumption was significantly correlated to low DM prevalence | [31] |
Cross-sectional study | Nijmegen, The Netherlands | Black tea | 16 men | A single dose of black tea decreased peripheral vascular resistance (VR) across upper and lower limbs after a glucose load which was accompanied by a lower insulin response (p < 0.05). Postprandial insulin response was attenuated by ~29% after tea consumption (p < 0.0005) | [32] |
Case control study | Denmark | Rauvolfia-Citrus tea | Cases: 11, control: 7 | Chronic administration of the Rauvolfia-Citrus tea to overweight T2DM on OADs caused significant improvements in markers of glycaemic control and modifications to the fatty acid profile of skeletal muscle, without adverse effects or hypoglycaemia | [33] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Q.-Y.; Li, Q.-S.; Lin, X.-M.; Qiao, R.-Y.; Yang, R.; Li, X.-M.; Dong, Z.-B.; Xiang, L.-P.; Zheng, X.-Q.; Lu, J.-L.; et al. Antidiabetic Effects of Tea. Molecules 2017, 22, 849. https://doi.org/10.3390/molecules22050849
Fu Q-Y, Li Q-S, Lin X-M, Qiao R-Y, Yang R, Li X-M, Dong Z-B, Xiang L-P, Zheng X-Q, Lu J-L, et al. Antidiabetic Effects of Tea. Molecules. 2017; 22(5):849. https://doi.org/10.3390/molecules22050849
Chicago/Turabian StyleFu, Qiu-Yue, Qing-Sheng Li, Xiao-Ming Lin, Ru-Ying Qiao, Rui Yang, Xu-Min Li, Zhan-Bo Dong, Li-Ping Xiang, Xin-Qiang Zheng, Jian-Liang Lu, and et al. 2017. "Antidiabetic Effects of Tea" Molecules 22, no. 5: 849. https://doi.org/10.3390/molecules22050849
APA StyleFu, Q.-Y., Li, Q.-S., Lin, X.-M., Qiao, R.-Y., Yang, R., Li, X.-M., Dong, Z.-B., Xiang, L.-P., Zheng, X.-Q., Lu, J.-L., Yuan, C.-B., Ye, J.-H., & Liang, Y.-R. (2017). Antidiabetic Effects of Tea. Molecules, 22(5), 849. https://doi.org/10.3390/molecules22050849