Cu Nanoparticles in Hydrogels of Chitosan-PVA Affects the Characteristics of Post-Harvest and Bioactive Compounds of Jalapeño Pepper
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Synthesis of Chitosan-Polyvinyl Alcohol (Cs-PVA) Hydrogels and Absorption of Cu Nanoparticles in Hydrogels
3.2. Characterization of Cu Nanoparticles
3.3. Absorption of Cu Nanoparticles in Cs-PVA Hydrogels
3.4. Experimental Development
3.5. Variables for Growth and Production of Jalapeño Pepper
3.6. Storage of Jalapeño Pepper Fruits
3.7. Physicochemical Analysis
3.8. Functional Analysis
3.9. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- SAGARPA. Producción nacional de chile alcanza 2.3 millones de toneladas [National production of peppers reaches 2.3 million tons]. 2017. Available online: http://www.sagarpa.gob.mx/Delegaciones/nayarit/boletines/Paginas/BNSAGENE052017.aspx (accessed on 15 April 2017).
- SIAP. Un panorama del cultivo del chile [An overview of the cultivation of chili pepper]. 2015. Available online: www.gob.mx/siap (accessed on 13 December 2016).
- Sweat, K.G.; Broatch, J.; Borror, C.; Hagan, K; Cahill, T.M. Variability in capsaicinoid content and Scoville heat ratings of commercially grown Jalapeño, Habanero and Bhut Jolokia peppers. Food Chem. 2016, 210, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Barbero, G.F.; Liazid, A.; Azaroual, L.; Palma, M.; Barroso, C.J. Capsaicinoid contents in peppers and pepper-related spicy foods. Int. J. Food Prop. 2016, 19, 485–493. [Google Scholar] [CrossRef]
- Ornelas-Paz, J.; Martinez-Burrola, J.M.; Ruiz-Cruz, S.; Santana-Rodriguez, V.; Ibarra-Junquera, V.; Olivas, H.I. Effect of cooking on capsaicinoids and phenolics contents of mexican peppers. Food Chem. 2010, 119, 1619–1625. [Google Scholar] [CrossRef]
- Lili, H.; Liu, Y.; Mustapha, A.; Lin, M. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium Expansum. Microbiol. Res. 2011, 166, 207–215. [Google Scholar]
- Wang, P.; Lombi, E.; Zhao, F.; Kopittke, P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Rizwan, M.; Ali, S.; Farooq, Q.M.; Sik, O.Y.; Adrees, M.; Ibrahim, M.; Zia-ur-Rehman, M.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater. 2017, 322, 2–16. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.P.; Xia, O.; Hwang, H.M.; Ray, P.C.; Yu, H. Mechanisms of nanotoxicity: Generation of reactive oxygen species. J. Food Drug Anal. 2014, 22, 64–75. [Google Scholar] [CrossRef] [PubMed]
- Juárez-Maldonado, A.; Ortega-Ortiz, H.; Pérez-Labrada, F.; Cadenas-Pliego, G.; Benavidez-Mendoza, A. Cu nanoparticle absorbed on chitosan hydrogels positively alter morphological production and quality characteristics of tomato. J. Appl. Bot. Food Qual. 2016, 89, 183–189. [Google Scholar]
- White, P.J.; Brown, P.H. Plant nutrition for sustainable development and global health. Ann. Bot. 2010, 105, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Kamari, A.; Pulford, I.D.; Hargreaves, J.S. Chitosan as a potential amendment to remediate metal contaminated soil—A characterisation study. Colloids Surf. B 2011, 82, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Zuverza-Mena, N.; Medina-Veto, I.A.; Barrios, A.C.; Wenjuan, T.; Peralta-Virea, J.R.; Garcia-Torresdey, J.L. Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum). Environ. Sci. Process. Impacts 2015, 17, 1783–1793. [Google Scholar] [CrossRef] [PubMed]
- Stampoulis, D.; Sinha, S.K.; White, J.C. Assay-dependent phytotoxicity of nanoparticles to plants. Environ. Sci. Technol. 2009, 43, 9473–9479. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.O.; McLean, J.E.; Latta, D.E.; Manangón, E.; Britt, D.W.; Jonhson, W.P.; Boyanov, M.I.; Anderson, A.J. CuO and ZnO nanoparticles: Phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J. Nanopart Res. 2012, 14, 1125–1129. [Google Scholar] [CrossRef]
- Chatterjee, N.; Eom, H.J.; Choi, J. A systems toxicology approach to the surface functionality control of graphene–cell interactions. Biomaterials 2014, 35, 1109–1127. [Google Scholar] [CrossRef] [PubMed]
- Van-Aken, B. Gene expression changes in plants and microorganisms exposed to nanomaterials. Curr. Opin. Biotechnol. 2015, 33, 206–219. [Google Scholar] [CrossRef] [PubMed]
- Benavides-Mendoza, A.; Romero-García, J.; Ledesma-Pérez, A.S.; Raygoza-Castro, J.M. La aplicación foliar de quitosano en ácido acético aumenta la biomasa de la lechuga. Biotam Nueva Ser. 2001, 12, 1–6. [Google Scholar]
- Pérez-de-Luque, A. Interaction of Nanomaterials with Plants: What Do We Need for Real Applications in Agriculture? Front. Environ. Sci. 2017, 5, 1–7. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Chung, I.M. Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignification in Indian mustard (Brassica juncea L.). Ecotoxicol. Environ. Saf. 2015, 113, 302–313. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.M.G.; Chung, I.M. A Mechanistic Study on the Toxic Effect of Copper Oxide Nanoparticles in Soybean (Glycine max L.) Root Development and Lignification of Root Cells. Biological. Trace Elem. Res. 2014, 162, 342–352. [Google Scholar] [CrossRef] [PubMed]
- Nair, P.M.G.; Chung, I.M. Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ. Sci. Pollut. Res. 2014, 21, 12709–12722. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Fuentes, A.D.; Campos-Montiel, R.; Pinedo-Espinoza, J.M. Postharvest behavior of bell pepper (Capsicum annum L.) variety california by the effect of chemical fertilization and appliance of lombrihumus. Rev. Iberoamer. Tecnol. Postcosecha 2010, 11, 82–91. [Google Scholar]
- Báez-Sañudo, M.; Siller-Cepeda, J.; Rangel, D.; Contreras-Martínez, R.; Contreras-Angulo, L. Dehydration and loss of firmness in colored chili peppers stored under market simulation. In Proceedings of the Second World Pepper Convention, Centro de Investigación en Alimentación y Desarrollo, Sinaloa, Mexico; 2005. [Google Scholar]
- Espinosa–Torres, L.E.; Pérez–Grajales, M.; Martínez–Damián, M.T.; Castro–Brindis, R.; Barrios–Puente, G. Effect of packaging and postharvest storage temperatures on manzano hot peppers (Capsicum pubescens Ruíz & Pavón). Rev. Chapingo Ser. Hortic. 2010, 16, 115–121. [Google Scholar]
- Ghasemnezhad, M.; Sherafati, M.; Payvast, G.A. Variation in phenolic compounds, ascorbic acid and antioxidant activity of five coloured bell pepper (Capsicum annum) fruits at two different harvest times. J. Funct. Foods 2011, 3, 44–49. [Google Scholar] [CrossRef]
- Wills, R.; McGlasson, B..; Graham, D.; Jo, D. Postharvest: An Introduction to the Physiology & Handling of Fruit, Vegetable and Ornamentals, 4th ed.; CAB International: Oxfordshire, UK, 1998; p. 262. [Google Scholar]
- Tucker, G.A. Biochemistry of Fruit Ripening; Editorial Chapman and Hall: Boca Raton, FL, USA, 1993; pp. 1–15. [Google Scholar]
- Shobha, G.; Moses, V.; Ananda., S. Biological synthesis of copper nanoparticle and its impact—A review. Int. J. Farmaceut. Sci. Invent. 2014, 3, 28–38. [Google Scholar]
- Kim, S.; Lee, K.W.; Park, J.; Lee, H.J.; Hwang, I.K. Effect of drying in antioxidant activity and changes of ascorbic acid and color by different drying and storage in Korean red pepper (Capsicum annuum L.). Int. J. Food Sci. Technol. 2006, 41, 90–95. [Google Scholar] [CrossRef]
- Vega-Gálvez, A.; Di, K.; Rodríguez, K.; Lemus-mondaca, R.; Miranda, M.; Pérez-Won, M. Effect of air-drying temperature on physico-chemical properties, antioxidant capacity, colour and total phenolic content of red pepper. Food Chem. 2009, 117, 647–653. [Google Scholar] [CrossRef]
- Deepa, N.; Kaur, C.; George, B.; Singh, B.; Kapoor, H.C. Antioxidant constituents in some sweet pepper (Capsicum annuum L.) genotypes during maturity. Lebensm. Wiss. Technol. 2007, 40, 121–129. [Google Scholar] [CrossRef]
- Lee, Y.; Howard, L.R.; Villalon, B. Flavonoids and Antioxidant Activity of Fresh Pepper (Capsicum annuum) Cultivars. J. Food Sci. 1995, 60, 473–476. [Google Scholar] [CrossRef]
- Howard, L.R.; Talcott, S.T.; Brenes, C.H.; Villalon, B. Changes in phytochemical and antioxidant activity of selected pepper cultivars (Capsicum species) as influenced by maturity. J. Agric. Food Chem. 2000, 48, 1713–1720. [Google Scholar] [CrossRef] [PubMed]
- Steiner, A.A. A universal method for preparing nutrient solutions of a certain desired composition. Plant Soil 1961, 15, 134–154. [Google Scholar] [CrossRef]
- AOAC. Vitamin and other nutrient. In Official Methods of Analysis of the Association of Official Analytical Chemists International, 17th ed.; Hoerwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Bennett, D.J.; Kirby, G.W. Constitution and biosynthesis of capsaicin. J. Chem. Soc. C 1968, 442–446. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yanga, M.; Rice-Evans, C.A. Antioxidant activity applying an improved ABTS radical catión decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthfer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means means of the Folín-Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Arvouet-Grand, A.; Vennat, B.; Pourrat, A.; Legret, P. Standardization of a propolis extract and identification of the main constituents. J. Pharm. Belg. 1994, 49, 462–468. [Google Scholar] [PubMed]
Sample Availability: Samples of the compounds are not available from the authors. |
Treatment | Height (cm) | Number of Fruits | Average Fruits Weight (g) | Total Fruits Weight (g) | Fresh Weight Aerial Biomass (g) | Dry Weight Aerial Biomass (g) |
---|---|---|---|---|---|---|
Control | 115.7 a | 115.8 ab | 26.6 ab | 3086.8 ab | 808.6 a | 192.9 a |
Cs-PVA | 110.6 ab | 124.5 ab | 27.0 a | 3450.3 a | 848.0 a | 187.8 a |
Cs-PVA + 0.02 mg nCu | 114.3 ab | 115.6 ab | 26.2 ab | 3028.7 ab | 766.6 a | 171.0 a |
Cs-PVA + 0.2 mg nCu | 113.5 ab | 126.6 a | 26.4 ab | 3342.2 a | 812.1 a | 185.2 a |
Cs-PVA + 2.0 mg nCu | 109.1 b | 111.6 b | 26.9 ab | 3002.04 b | 779.4 a | 177.4 a |
Cs-PVA + 10 mg nCu | 112.3 ab | 118.8 ab | 25.3 b | 3005.6 ab | 797.3 a | 182.1 a |
CV (%) | 7.53 | 18.84 | 9.14 | 17.13 | 17.81 | 20.16 |
Treatment | Refrigerated | Room Temperature | ||
---|---|---|---|---|
15 Days | 30 Days | 15 Days | 30 Days | |
Control | 5.80 c | 23.06 a | 12.66 ab | 20.79 a |
Cs-PVA | 7.91 a | 22.32 ab | 13.76 a | 20.15 ab |
Cs-PVA + 0.02 mg nCu | 7.84 ab | 22.27 ab | 12.80 ab | 19.00 b |
Cs-PVA + 0.2 mg nCu | 7.30 abc | 21.93 ab | 11.74 b | 20.53 a |
Cs-PVA + 2.0 mg nCu | 6.02 c | 23.82 a | 12.48 ab | 20.31 a |
Cs-PVA + 10 mg nCu | 6.28 bc | 20.52 b | 13.31 a | 20.26 ab |
CV (%) | 19.40 | 7.62 | 10.27 | 5.45 |
Treatment | Room Temperature | Refrigerated | ||||
---|---|---|---|---|---|---|
Initial | 15 Days | 30 Days | Initial | 15 Days | 30 Days | |
Control | 4.47 ab | 4.50 cd | 5.30 a | 4.47 ab | 4.53 a | 5.20 ab |
Cs-PVA | 4.33 ab | 4.70 cd | 5.17 a | 4.33 ab | 4.13 b | 4.77 bc |
Cs-PVA + 0.02 mg nCu | 4.17 b | 5.23 b | 5.20 a | 4.17 b | 4.57 a | 4.43 cd |
Cs-PVA + 0.2 mg nCu | 4.47 ab | 4.37 d | 5.50 a | 4.47 ab | 4.60 a | 4.27 d |
Cs-PVA + 2.0 mg nCu | 4.80 a | 6.37 a | 4.83 a | 4.80 a | 4.47 a | 5.67 a |
Cs-PVA + 10 mg nCu | 4.67 ab | 4.80 c | 4.67 a | 4.67 ab | 3.63 c | 4.10 d |
CV (%) | 6.48 | 4.33 | 9.75 | 6.48 | 3.49 | 5.61 |
Treatment | Room Temperature | Refrigerated | ||||
---|---|---|---|---|---|---|
Initial | 15 Days | 30 Days | Initial | 15 Days | 30 Days | |
Control | 0.48 ab | 0.61 a | 1.24 abc | 0.37 b | 0.60 a | 1.13 a |
Cs-PVA | 0.45 ab | 0.85 a | 1.48 a | 0.45 ab | 0.35 b | 0.76 b |
Cs-PVA + 0.02 mg nCu | 0.35 b | 0.72 a | 1.01 c | 0.35 b | 0.61 a | 0.74 b |
Cs-PVA + 0.2 mg nCu | 0.60 ab | 0.73 a | 1.36 ab | 0.60 a | 0.55 ab | 0.87 b |
Cs-PVA + 2.0 mg nCu | 0.65 a | 0.82 a | 1.08 c | 0.65 a | 0.37 b | 0.87 b |
Cs-PVA + 10 mg nCu | 0.37 b | 0.74 a | 1.11 bc | 0.37 b | 0.55 ab | 0.74 b |
CV (%) | 24.63 | 19.76 | 12.56 | 5.61 | 25.05 | 23.92 |
Treatment | Room Temperature | Refrigerated | ||||
---|---|---|---|---|---|---|
Initial | 15 Days | 30 Days | Initial | 15 Days | 30 Days | |
Control | 5.72 a | 5.49 a | 5.22 a | 5.72 a | 5.51 a | 5.21 a |
Cs-PVA | 5.53 a | 5.15 b | 5.45 a | 5.53 a | 5.31 b | 5.23 a |
Cs-PVA + 0.02 mg nCu | 5.50 a | 5.08 bc | 5.67 a | 5.50 a | 5.26 b | 5.32 a |
Cs-PVA + 0.2 mg nCu | 5.72 a | 5.16 b | 4.57 b | 5.72 a | 5.21 b | 5.32 a |
Cs-PVA + 2.0 mg nCu | 5.70 a | 5.08 c | 5.35 a | 5.70 a | 5.20 b | 5.19 a |
Cs-PVA + 10 mg nCu | 5.88 a | 5.17 b | 5.46 a | 5.88 a | 5.26 b | 5.30 a |
CV (%) | 4.52 | 1.23 | 4.77 | 4.52 | 1.62 | 1.52 |
Treatment | Room temperature | Refrigerated | ||||||
---|---|---|---|---|---|---|---|---|
ABTS | DPPH | TP | Fl | ABTS | DPPH | TP | Fl | |
Control | 117.10 bc | 107.27 c | 61.07 b | 245.92 d | 120.22 a | 87.68 d | 62.22 b | 292.85 c |
Cs-PVA | 115.94 cd | 105.15 c | 61.85 b | 248.74 d | 103.08 c | 96.16 c | 31.93 e | 300.54 b |
Cs-PVA + 0.02 mg nCu | 121.79 a | 78.03 e | 54.29 c | 277.20 a | 102.27 c | 108.69 a | 56.44 d | 343.23 a |
Cs-PVA + 0.2 mg nCu | 118.93 b | 94.34 d | 61.67 b | 270.80 b | 104.72 bc | 82.93 e | 63.18 a | 262.59 e |
Cs-PVA + 2.0 mg nCu | 113.49 d | 109.90 b | 64.71 a | 184.90 e | 95.94 d | 94.85 c | 29.93 f | 299.51 b |
Cs-PVA + 10 mg nCu | 114.10 d | 114.35 a | 55.44 c | 261.31 c | 108.66 b | 103.74 b | 59.93 c | 276.95 d |
CV (%) | 1.25 | 1.25 | 1.32 | 0.66 | 2.19 | 1.63 | 1.01 | 0.55 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinedo-Guerrero, Z.H.; Hernández-Fuentes, A.D.; Ortega-Ortiz, H.; Benavides-Mendoza, A.; Cadenas-Pliego, G.; Juárez-Maldonado, A.A. Cu Nanoparticles in Hydrogels of Chitosan-PVA Affects the Characteristics of Post-Harvest and Bioactive Compounds of Jalapeño Pepper. Molecules 2017, 22, 926. https://doi.org/10.3390/molecules22060926
Pinedo-Guerrero ZH, Hernández-Fuentes AD, Ortega-Ortiz H, Benavides-Mendoza A, Cadenas-Pliego G, Juárez-Maldonado AA. Cu Nanoparticles in Hydrogels of Chitosan-PVA Affects the Characteristics of Post-Harvest and Bioactive Compounds of Jalapeño Pepper. Molecules. 2017; 22(6):926. https://doi.org/10.3390/molecules22060926
Chicago/Turabian StylePinedo-Guerrero, Zeus H., Alma Delia Hernández-Fuentes, Hortensia Ortega-Ortiz, Adalberto Benavides-Mendoza, Gregorio Cadenas-Pliego, and And Antonio Juárez-Maldonado. 2017. "Cu Nanoparticles in Hydrogels of Chitosan-PVA Affects the Characteristics of Post-Harvest and Bioactive Compounds of Jalapeño Pepper" Molecules 22, no. 6: 926. https://doi.org/10.3390/molecules22060926
APA StylePinedo-Guerrero, Z. H., Hernández-Fuentes, A. D., Ortega-Ortiz, H., Benavides-Mendoza, A., Cadenas-Pliego, G., & Juárez-Maldonado, A. A. (2017). Cu Nanoparticles in Hydrogels of Chitosan-PVA Affects the Characteristics of Post-Harvest and Bioactive Compounds of Jalapeño Pepper. Molecules, 22(6), 926. https://doi.org/10.3390/molecules22060926