Simultaneous Quantification of Multiple Representative Components in the Xian-Ling-Gu-Bao Capsule by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Selection of Quantitative Chemical Markers
2.2. Method Validation
2.2.1. LODs, LOQs, and Linearity
2.2.2. Intra- and Inter-Day Precision
2.2.3. Recovery and Stability
2.3. Sample Determination
2.4. Multivariate Statistical Analysis
3. Materials and Methods
3.1. Materials and Reagents
3.2. Sample Preparation
3.3. UPLC Conditions
3.4. Q-TOF/MS Conditions
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Normile, D. The new face of traditional Chinese medicine. Science 2003, 299, 188–190. [Google Scholar] [CrossRef] [PubMed]
- Cheung, F. TCM: Made in China. Nature 2011, 480, 141–142. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; David, B.; Tu, P.; Barbin, Y. Recent analytical approaches in quality control of traditional Chinese medicines—A review. Anal. Chim. Acta. 2010, 657, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Li, S.P.; Zhao, J.; Yang, B. Strategies for quality control of Chinese medicines. J. Pharm. Biomed. Anal. 2011, 55, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Shi, Z.Q.; Song, D.F.; Li, R.Q.; Yang, H.; Qi, L.W.; Xin, G.Z.; Wang, D.Q.; Song, H.P.; Chen, J.; Hao, H.; et al. Identification of effective combinatorial markers for quality standardization of herbal medicines. J. Chromatogr. A 2014, 1345, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, J.L.; Liu, P.; Sun, S.; Li, P. Chemical markers’ fishing and knockout for holistic activity and interaction evaluation of the components in herbal medicines. J. Chromatogr. A 2010, 1217, 5239–5245. [Google Scholar] [CrossRef] [PubMed]
- National Health and Family Planning Commission, the People’s Republic of China. Available online: http://www.moh.gov.cn/mohywzc/ (accessed on 1 June 2017).
- Gui, L.; Shen, H. Application of Xianlinggubao in bone and arthrosis disease. Chin. J. New Drugs Clin. Rem. 2007, 26, 619–622. [Google Scholar]
- Visser, F.; Sprij, A.J.; Brus, F. A randomized controlled trial on calcitriol combined with Xianling Gubao for the treatment of pain caused by osteoporosis. Pediatr. Res. 2010, 68, 572. [Google Scholar] [CrossRef]
- State Food and Drug Administration of China. National Standards Assembly of Chinese Patent Medicine; Standard No. WS-10269 (ZD-0269)-2002; State Food and Drug Administration of China: Beijing, China, 2002. [Google Scholar]
- Zhu, H.M.; Qin, L.; Garnero, P.; Genant, H.K.; Zhang, G.; Dai, K.R.; Yao, X.S.; Gu, G.S.; Hao, Y.Q.; Li, Z.S.; et al. The first multicenter and randomized clinical trial of herbal Fufang for treatment of postmenopausal osteoporosis. Osteoporos. Int. 2010, 23, 1317–1327. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.; Zhang, G.; Hung, W.Y.; Shi, Y.Y.; Leung, K.; Yeung, H.Y.; Leung, P. Phytoestrogen-rich herb formula "XLGB" prevents OVX-induced deterioration of musculoskeletal tissues at the hip in old rats. J. Bone Miner. Metab. 2005, 23, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.L.; Zhang, G.; He, Y.X.; Zheng, L.Z.; Tu, F.J.; Yao, X.S.; Qin, L. XLGB-B prevents bone loss in OVX mice by inhibiting bone remodeling. Bone 2010, 47, S433. [Google Scholar] [CrossRef]
- Li, Q.Q. Xianlinggubao capsule in promoting fracture healing efficacy. Chin. Mod. Med. 2010, 17, 96–97. [Google Scholar]
- Cheng, Y.M.; Liu, Y.Z.; Wang, H.; Li, J.; Ren, J.; Zhu, L.; Gong, L.K. A 26-week repeated dose toxicity study of Xian-ling-gu-bao in Sprague-Dawley rats. J. Ethnopharmacol. 2013, 145, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Gao, G.Y.; Wu, Y.; Ni, Y.N. Study on the content determination for Xianlingubao capsules by HPLC-MS. Drug Stand. Chin. 2011, 11, 498–501. [Google Scholar]
- Guan, X.Y.; Li, H.F.; Yang, W.Z.; Lin, C.H.; Sun, C.; Wang, B.R.; Guo, D.A.; Ye, M. HPLC-DAD-MS(n) analysis and HPLC quantitation of chemical constituents in Xian-ling-gu-bao capsules. J. Pharm. Biomed. Anal. 2011, 55, 923–933. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.P.; Guo, B.L. Quantitative analysis of total flavonoids and icariin in Xianlinggubao capsule. Chin. Tradit. Herb. Drugs 2000, 31, 741–742. [Google Scholar]
- Xie, Q.; Wang, J.M.; Huang, L.J.; Wang, Z.H. Study on quantitative determination of multicomponent in Xianlinggubao capsules. Chin. Tradit. Pat. Med. 2001, 23, 411–414. [Google Scholar]
- Liang, J.; Wu, W.Y.; Sun, G.X.; Wang, D.D.; Hou, J.J.; Yang, W.Z.; Jiang, B.H.; Liu, X.; Guo, D.A. A dynamic multiple reaction monitoring method for the multiple components quantification of complex traditional Chinese medicine preparations: Niuhuang Shangqing pill as an example. J. Chromatogr. A 2013, 1294, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Tu, F. Study on the Anti-osteoporosis Material Basis of TCM Prescription “Xian-Ling-Gu-Bao”. Ph.D Thesis, Shenyang Pharmaceutical University, Shenyang, China, 2011. [Google Scholar]
- Dai, Y.; Tu, F.J.; Yao, Z.H.; Ding, B.; Xu, W.; Qiu, X.H.; Yao, X.S. Rapid identification of chemical constituents in traditional Chinese medicine fufang preparation xianling gubao capsule by LC-linear ion trap/Orbitrap mass spectrometry. Am. J. Chin. Med. 2013, 41, 1181–1198. [Google Scholar] [CrossRef] [PubMed]
- Yao, Z.H.; Qin, Z.F.; He, L.L.; Wang, X.L.; Dai, Y.; Qin, L.; Gonzalez, F.J.; Ye, W.C.; Yao, X.S. Identification, bioactivity evaluation and pharmacokinetics of multiple components in rat serum after oral administration of Xian-Ling-Gu-Bao capsule by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1041, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Geng, J.L.; Dai, Y.; Yao, Z.H.; Qin, Z.F.; Wang, X.L.; Qin, L.; Yao, X.S. Metabolites profile of Xian-Ling-Gu-Bao capsule, a traditional Chinese medicine prescription, in rats by ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. J. Pharm. Biomed. Anal. 2014, 96, 90–103. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Yao, Z.; Dai, Y.; Geng, J.; Lin, S.; Wu, X.; Yao, X. HPLC-MS/MS analysis of the absorbed components in serum after intragastric administration of Xianlinggubao to rats. J. Instrum. Anal. 2013, 32, 420–426. [Google Scholar]
- Ouyang, L.Q.; Wu, H.L.; Nie, J.F.; Zhang, Y.; Zou, H.Y.; Fu, H.Y.; Yu, R.Q. Simultaneous determination of psoralen and isopsoralen in plasma and Chinese medicine Xian Ling Gu Bao capsule by using HPLC-DAD coupled with alternating trilinear decomposition algorithm. Anal. Chim. Acta. 2009, 650, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People Republic of China; Chinese Medical Science and Technology Press: Beijing, China, 2015. [Google Scholar]
- Li, J.P.; Wang, X.J.; Zeng, Y.; Lin, Q.; Mo, X.M.; Liu, S.J.; Yang, J. Study on effect of psoralidin on anti-experimental postmenopausal osteoporosis and its mechanism. Chin. J. Chin. Mater. Med. 2013, 38, 1816–1819. [Google Scholar]
- Li, W.D.; Yan, C.P.; Wu, Y.; Weng, Z.B.; Yin, F.Z.; Yang, G.M.; Cai, B.C.; Chen, Z.P. Osteoblasts proliferation and differentiation stimulating activities of the main components of Fructus Psoraleae corylifoliae. Phytomedicine 2014, 21, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Ha, T.Y.; Ahn, J.; Kim, S. Estrogenic activities of Psoralea corylifolia L. seed extracts and main constituents. Phytomedicine 2011, 18, 425–430. [Google Scholar] [CrossRef] [PubMed]
- Xin, D.; Wang, H.; Yang, J.; Su, Y.F.; Fan, G.W.; Wang, Y.F.; Zhu, Y.; Gao, X.M. Phytoestrogens from Psoralea corylifolia reveal estrogen receptor-subtype selectivity. Phytomedicine 2010, 17, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.F.; Wang, K.F.; Mao, X.; Liang, W.Y.; Chen, W.J.; Li, S.; Qi, Q.; Cui, Y.P.; Zhang, L.Z. Screening and analysis of the potential bioactive components of Poria cocos (Schw.) wolf by HPLC and HPLC-MSn with the aid of chemometrics. Molecules 2016, 21, 227. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Lin, P.; Dai, Y.; Yao, Z.; Wang, L.; Yao, X.; Liu, L.; Chen, H. Quantification and semiquantification of multiple representative components for the holistic quality control of Allii Macrostemonis Bulbus by ultra high performance liquid chromatography with quadrupole time-of-flight tandem mass spectrometry. J. Sep. Sci. 2016, 39, 1834–1841. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.K.; Xin, W.F.; Luo, G.A.; Wang, Y.M.; Cheng, Y.Y. An approach to develop two-dimensional fingerprint for the quality control of Qingkailing injection by high-performance liquid chromatography with diode array detection. J. Chromatogr. A 2005, 1090, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, N.M.A.; Nagaiah, K.; Waheed, M.A. Recent analytical techniques in quality control of indigenous system of medicine. Ann. Phytomed. 2013, 2, 44–58. [Google Scholar]
Sample Availability: Samples of the compounds are not available from the authors. |
No. | Compounds | Absorbed in Vivo | Activity in Vitro | CH.P Markers | Type | Res. | Ref. |
---|---|---|---|---|---|---|---|
1 | sweroside | √ | √ a | / | iridoid | R.D. | [21,23] |
2 | magnoflorine | √ | √ a | / | alkaloid | H.E. | [20,22] |
3 | psoralen | √ | √ a | √ | coumarin | F.P. | [20,22] |
4 | timosaponin BII | √ | / | √ | saponin | R.A. | |
5 | isopsoralen | √ | / a | √ | coumarin | F.P. | [20,22] |
6 | epimedin A | √ | √ a | / | prenylated flavonoid | H.E. | [20,22] |
7 | epimedin B | √ | √ a | / | prenylated flavonoid | H.E. | [20,22] |
8 | epimedin C | √ | √ a | / | prenylated flavonoid | H.E. | [20,22] |
9 | icariin | √ | √ a | √ | prenylated flavonoid | H.E. | [20,22] |
10 | asperosaponin VI | √ | √ a | √ | saponin | R.D. | [20,22] |
11 | isobavachin | √ | √ a | / | prenylated flavonoid | F.P. | [20,22] |
12 | neobavaisoflavone | √ | √ a | / | prenylated flavonoid | F.P. | [20,22] |
13 | icariside II | √ | √ a | / | prenylated flavonoid | H.E. | [20,22] |
14 | psoralidin | √ | √ b | / | coumarin | F.P. | [28] |
15 | isobavachalcone | √ | √ b | / | prenylated flavonoid | F.P. | [29] |
16 | bavachinin | √ | √ b | / | prenylated flavonoid | F.P. | [30] |
17 | corylifol A | √ | √ b | / | prenylated flavonoid | F.P. | [31] |
18 | tanshinone IIA | √ | / | √ | phenanthraquinone | R.S. |
No. | Compounds | Linear Range (μg/mL) | Calibration Curves | r2 | LODs (ng/mL) | LOQs (ng/mL) |
---|---|---|---|---|---|---|
1 | sweroside | 0.34–6.72 | y = 29.93x + 10.53 | 0.9995 | 18.40 | 46.00 |
2 | magnoflorine | 1.54–30.74 | y = 547.76x + 577.25 | 0.9990 | 4.59 | 10.20 |
3 | psoralen | 0.20–4.06 | y = 609.97x + 7.73 | 0.9993 | 7.64 | 22.92 |
4 | timosaponin BII | 0.42–8.44 | y = 180.05x + 1.04 | 0.9991 | 40.17 | 114.33 |
5 | isopsoralen | 0.26–5.10 | y = 483.61x + 41.92 | 0.9998 | 8.85 | 17.70 |
6 | epimedin A | 0.24–4.90 | y = 220.86x + 21.40 | 0.9995 | 2.90 | 8.68 |
7 | epimedin B | 0.22–4.39 | y = 275.24x + 38.12 | 0.9992 | 15.45 | 30.90 |
8 | epimedin C | 4.47–89.36 | y = 189.36x + 999.16 | 0.9991 | 5.40 | 10.80 |
9 | icariin | 1.46–29.11 | y = 498.73x − 239.20 | 0.9991 | 21.80 | 52.50 |
10 | asperosaponin VI | 2.26–45.17 | y = 12.72x + 27.954 | 0.9993 | 40.00 | 100.00 |
11 | isobavachin | 0.05–1.06 | y = 508.91x + 1.72 | 0.9994 | 1.56 | 5.20 |
12 | neobavaisoflavone | 0.20–4.07 | y = 845.42x + 64.26 | 0.9997 | 1.38 | 5.30 |
13 | icariside II | 0.15–2.97 | y = 1191.92x + 124.27 | 0.9993 | 5.50 | 16.50 |
14 | psoralidin | 0.02–0.47 | y = 1093.91x + 49.45 | 0.9991 | 0.98 | 1.96 |
15 | isobavachalcone | 0.11–2.28 | y = 1145.10x + 110.41 | 0.9990 | 23.60 | 59.00 |
16 | bavachinin | 0.30–5.91 | y = 76.00x + 6.84 | 0.9998 | 5.08 | 10.15 |
17 | corylifol A | 0.15–3.01 | y = 1111.52x − 8.71 | 0.9991 | 0.80 | 2.28 |
18 | tanshinone IIA | 0.01–0.19 | y = 9055.01x + 117.51 | 0.9994 | 0.42 | 1.19 |
No. | Compounds | Conc. (μg/mL) | Intra-day (n = 6) | Inter-day (n = 3) | ||
---|---|---|---|---|---|---|
Mean ± SD (μg/mL) | RSD (%) | Mean ± SD (μg/mL) | RSD (%) | |||
1 | sweroside | 0.34 | 0.35 ± 0.01 | 1.5 | 0.32 ± 0.01 | 1.7 |
1.34 | 1.38 ± 0.03 | 2.3 | 1.28 ± 0.04 | 3.1 | ||
4.03 | 4.23 ± 0.10 | 2.4 | 3.96 ± 0.05 | 1.2 | ||
2 | magnoflorine | 1.54 | 1.56 ± 0.04 | 2.3 | 1.46 ± 0.03 | 2.3 |
6.15 | 6.26 ± 0.09 | 1.5 | 6.06 ± 0.03 | 0.5 | ||
18.44 | 18.81 ± 0.15 | 0.8 | 17.62 ± 0.60 | 3.4 | ||
3 | psoralen | 0.20 | 0.22 ± 0.01 | 3.6 | 0.19 ± 0.00 | 0.9 |
0.81 | 0.87 ± 0.01 | 0.8 | 0.81 ± 0.02 | 2.4 | ||
2.44 | 2.56 ± 0.07 | 2.6 | 2.23 ± 0.06 | 2.6 | ||
4 | timosaponin BII | 0.42 | 0.45 ± 0.01 | 2.4 | 0.42 ± 0.01 | 2.1 |
1.69 | 1.78 ± 0.07 | 3.9 | 1.72 ± 0.02 | 1.2 | ||
5.06 | 5.46 ± 0.10 | 1.8 | 5.04 ± 0.07 | 1.3 | ||
5 | isopsoralen | 0.26 | 0.28 ± 0.01 | 1.8 | 0.25 ± 0.00 | 1.5 |
1.02 | 1.12 ± 0.03 | 2.6 | 0.99 ± 0.03 | 2.6 | ||
3.06 | 3.56 ± 0.10 | 2.6 | 3.26 ± 0.02 | 0.7 | ||
6 | epimedin A | 0.24 | 0.25 ± 0.01 | 3.1 | 0.21 ± 0.00 | 1.8 |
0.98 | 0.99 ± 0.02 | 2.2 | 0.91 ± 0.02 | 1.9 | ||
2.94 | 3.02 ± 0.06 | 2.0 | 2.91 ± 0.07 | 2.5 | ||
7 | epimedin B | 0.22 | 0.26 ± 0.00 | 1.5 | 0.23 ± 0.01 | 2.9 |
0.88 | 0.92 ± 0.02 | 1.9 | 0.86 ± 0.01 | 0.8 | ||
2.63 | 2.84 ± 0.09 | 3.1 | 2.64 ± 0.05 | 1.9 | ||
8 | epimedin C | 4.47 | 4.57 ± 0.11 | 2.5 | 4.27 ± 0.07 | 1.7 |
17.87 | 18.57 ± 0.61 | 3.3 | 18.07 ± 0.20 | 1.1 | ||
53.62 | 55.72 ± 0.84 | 1.5 | 53.23 ± 0.28 | 2.4 | ||
9 | icariin | 1.46 | 1.56 ± 0.04 | 2.7 | 1.46 ± 0.03 | 2.3 |
5.82 | 5.94 ± 0.12 | 2.0 | 5.12 ± 0.03 | 2.5 | ||
17.45 | 18.17 ± 0.50 | 2.7 | 17.86 ± 0.29 | 1.6 | ||
10 | asperosaponin VI | 2.26 | 2.35 ± 0.04 | 1.6 | 2.15 ± 0.04 | 1.8 |
9.03 | 9.54 ± 0.20 | 2.1 | 9.06 ± 0.17 | 1.9 | ||
27.10 | 28.21 ± 0.25 | 0.9 | 27.92 ± 0.73 | 2.6 | ||
11 | isobavachin | 0.05 | 0.06 ± 0.00 | 3.4 | 0.05 ± 0.00 | 1.7 |
0.21 | 0.23 ± 0.00 | 1.7 | 0.21 ± 0.01 | 2.7 | ||
0.64 | 0.67 ± 0.02 | 2.4 | 0.58 ± 0.01 | 2.3 | ||
12 | neobavaisoflavone | 0.20 | 0.25 ± 0.00 | 1.9 | 0.21 ± 0.10 | 2.5 |
0.81 | 0.85 ± 0.02 | 2.7 | 0.80 ± 0.03 | 3.4 | ||
2.44 | 2.54 ± 0.02 | 0.7 | 2.44 ± 0.01 | 0.5 | ||
13 | icariside II | 0.15 | 0.17 ± 0.00 | 1.5 | 0.16 ± 0.00 | 0.5 |
0.60 | 0.62 ± 0.01 | 1.9 | 0.58 ± 0.00 | 1.2 | ||
1.78 | 1.85 ± 0.05 | 2.8 | 1.73 ± 0.03 | 1.8 | ||
14 | psoralidin | 0.02 | 0.02 ± 0.00 | 2.1 | 0.02 ± 0.00 | 2.6 |
0.09 | 0.10 ± 0.00 | 3.4 | 0.09 ± 0.00 | 0.7 | ||
0.28 | 0.30 ± 0.01 | 2.0 | 0.20 ± 0.00 | 1.1 | ||
15 | isobavachalcone | 0.11 | 0.13 ± 0.00 | 2.0 | 0.12 ± 0.00 | 1.8 |
0.46 | 0.48 ± 0.11 | 2.3 | 0.42 ± 0.01 | 2.6 | ||
1.37 | 1.45 ± 0.04 | 3.1 | 1.25 ± 0.04 | 3.2 | ||
16 | bavachinin | 0.30 | 0.33 ± 0.01 | 2.5 | 0.31 ± 0.10 | 2.9 |
1.18 | 1.29 ± 0.02 | 1.9 | 1.04 ± 0.01 | 1.3 | ||
3.55 | 3.68 ± 0.07 | 1.8 | 3.28 ± 0.04 | 1.3 | ||
17 | corylifol A | 0.15 | 0.18 ± 0.01 | 1.9 | 0.17 ± 0.00 | 1.5 |
0.60 | 0.62 ± 0.01 | 2.2 | 0.57 ± 0.02 | 3.7 | ||
1.81 | 1.95 ± 0.07 | 3.6 | 1.84 ± 0.05 | 2.6 | ||
18 | tanshinone IIA | 0.01 | 0.01 ± 0.00 | 2.7 | 0.01 ± 0.00 | 3.2 |
0.04 | 0.04 ± 0.00 | 1.6 | 0.03 ± 0.00 | 0.5 | ||
0.11 | 0.14 ± 0.00 | 1.8 | 0.13 ± 0.00 | 1.2 |
No. | Compounds | Recovery (%) (n = 3) | Stability (n = 6) | ||||||
---|---|---|---|---|---|---|---|---|---|
Low | Medium | High | Mean ± SD (mg/g) | RSD (%) | |||||
Mean | RSD | Mean | RSD | Mean | RSD | ||||
1 | sweroside | 98.2 | 0.6 | 102.7 | 1.8 | 102.7 | 2.2 | 0.96 ± 0.02 | 2.1 |
2 | magnoflorine | 100.9 | 4.3 | 104.3 | 0.9 | 99.5 | 4.6 | 8.53 ± 0.04 | 0.5 |
3 | psoralen | 96.3 | 1.7 | 101.6 | 2.4 | 103.3 | 0.3 | 0.97 ± 0.03 | 3.0 |
4 | timosaponin BII | 98.3 | 4.6 | 100.3 | 1.8 | 100.5 | 3.4 | 2.86 ± 0.06 | 2.0 |
5 | isopsoralen | 98.6 | 1.6 | 104.0 | 1.3 | 103.5 | 0.2 | 0.80 ± 0.02 | 2.8 |
6 | epimedin A | 101.9 | 2.8 | 103.0 | 1.1 | 100.7 | 2.4 | 0.36 ± 0.01 | 2.4 |
7 | epimedin B | 103.0 | 1.7 | 100.5 | 1.2 | 100.8 | 2.4 | 0.28 ± 0.01 | 2.4 |
8 | epimedin C | 104.5 | 0.6 | 102.8 | 0.8 | 101.9 | 2.7 | 9.26 ± 0.16 | 1.7 |
9 | icariin | 96.6 | 1.0 | 101.6 | 1.8 | 100.4 | 3.7 | 1.57 ± 0.05 | 3.0 |
10 | asperosaponin VI | 100.3 | 3.2 | 99.0 | 0.9 | 99.7 | 3.5 | 4.32 ± 0.13 | 3.0 |
11 | isobavachin | 103.4 | 1.4 | 98.4 | 3.3 | 103.8 | 0.4 | 0.14 ± 0.00 | 2.6 |
12 | neobavaisoflavone | 102.4 | 0.6 | 98.6 | 1.9 | 103.2 | 1.5 | 0.43 ± 0.01 | 2.4 |
13 | icariside II | 98.1 | 3.1 | 102.5 | 1.4 | 102.3 | 2.3 | 0.24 ± 0.01 | 2.4 |
14 | psoralidin | 99.8 | 1.5 | 99.7 | 4.9 | 101.5 | 3.5 | 0.11 ± 0.00 | 0.8 |
15 | isobavachalcone | 100.1 | 2.2 | 99.2 | 2.1 | 101.3 | 4.2 | 0.25 ± 0.00 | 2.9 |
16 | bavachinin | 97.3 | 2.7 | 99.7 | 3.1 | 101.4 | 2.9 | 0.63 ± 0.02 | 1.1 |
17 | corylifol A | 96.8 | 2.1 | 96.8 | 1.8 | 102.3 | 3.7 | 0.32 ± 0.01 | 2.8 |
18 | tanshinone IIA | 99.8 | 2.8 | 101.7 | 4.1 | 101.8 | 0.6 | 0.04 ± 0.00 | 2.0 |
No. | Compounds | tR (min) | Precursor Ion (m/z) | Daughter Ion (m/z) | Collision Energy (eV) |
---|---|---|---|---|---|
1 | sweroside | 3.12 | 197.0824 | 127.0390 | 20 |
2 | magnoflorine | 3.24 | 342.1704 | / | / |
3 | psoralen | 5.83 | 187.0395 | / | / |
4 | timosaponin BII | 5.95 | 903.4953 | / | / |
5 | isopsoralen | 6.10 | 187.0395 | / | / |
6 | epimedin A | 6.44 | 839.2974 | 369.1338 | 30 |
7 | epimedin B | 6.57 | 809.2868 | 369.1338 | 30 |
8 | epimedin C | 6.78 | 823.3025 | 369.1338 | 35 |
9 | icariin | 6.89 | 677.2445 | 369.1338 | 35 |
10 | asperosaponin VI | 9.86 | 929.5110 | 437.3420 | 20 |
11 | isobavachin | 12.54 | 325.1440 | 149.0238 | 20 |
12 | neobavaisoflavone | 13.89 | 323.1283 | 267.0660 | 20 |
13 | icariside II | 15.02 | 369.1338 | 313.0710 | 25 |
14 | psoralidin | 15.83 | 337.1076 | 281.0468 | 20 |
15 | isobavachalcone | 16.08 | 325.1440 | 149.0246 | 20 |
16 | bavachinin | 16.15 | 339.1596 | 219.1026 | 25 |
17 | corylifol A | 16.23 | 391.1909 | 267.0660 | 20 |
18 | tanshinone IIA | 16.44 | 317.1154 | / | / |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.-H.; Qin, Z.-F.; Cheng, H.; Wu, X.-M.; Dai, Y.; Wang, X.-L.; Qin, L.; Ye, W.-C.; Yao, X.-S. Simultaneous Quantification of Multiple Representative Components in the Xian-Ling-Gu-Bao Capsule by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. Molecules 2017, 22, 927. https://doi.org/10.3390/molecules22060927
Yao Z-H, Qin Z-F, Cheng H, Wu X-M, Dai Y, Wang X-L, Qin L, Ye W-C, Yao X-S. Simultaneous Quantification of Multiple Representative Components in the Xian-Ling-Gu-Bao Capsule by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. Molecules. 2017; 22(6):927. https://doi.org/10.3390/molecules22060927
Chicago/Turabian StyleYao, Zhi-Hong, Zi-Fei Qin, Hong Cheng, Xiao-Meng Wu, Yi Dai, Xin-Luan Wang, Ling Qin, Wen-Cai Ye, and Xin-Sheng Yao. 2017. "Simultaneous Quantification of Multiple Representative Components in the Xian-Ling-Gu-Bao Capsule by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry" Molecules 22, no. 6: 927. https://doi.org/10.3390/molecules22060927
APA StyleYao, Z. -H., Qin, Z. -F., Cheng, H., Wu, X. -M., Dai, Y., Wang, X. -L., Qin, L., Ye, W. -C., & Yao, X. -S. (2017). Simultaneous Quantification of Multiple Representative Components in the Xian-Ling-Gu-Bao Capsule by Ultra-Performance Liquid Chromatography Coupled with Quadrupole Time-of-Flight Tandem Mass Spectrometry. Molecules, 22(6), 927. https://doi.org/10.3390/molecules22060927