Molecular Structure–Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Flavonoids in Lotus Leaf Extracts
2.2. Quenching Effects of Lotus Leaf Extract and Flavonoids on HSA and BSA Fluorescence
2.3. The Binding Constants and the Number of Binding Sites
2.4. Influence of Structural Alteration of Flavonoids on Their Affinities for HSA and BSA
2.4.1. Hydroxylation and Methylation
2.4.2. Glycosylation
2.4.3. Hydrogenation of the C2=C3 Double Bond
2.5. Relationship of Topological Polar Surface Area (TPSA) and the Affinity for HSA and BSA
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Preparation of Lotus Leaf Extracts
3.3. Analysis of Flavonoids in Lotus Leaf Extracts
3.4. Protein Fluorescence Quenching Study
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Xiao, J.; Kai, G.; Ni, X.; Yang, F.; Chen, X. Interaction of natural polyphenols with α-amylase in vitro: Molecular property-affinity relationship aspect. Mol. Biosyst. 2011, 7, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Cao, H.; Wang, Y.; Yamamoto, K.; Wei, X. Structure–affinity relationship of flavones on binding to serum albumins: Effect of hydroxyl groups on ring A. Mol. Nutr. Food Res. 2010, 54, S253–S260. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Ni, X.; Kai, G.; Chen, X. Advance in dietary polyphenols as aldose reductases inhibitors: Structure-activity relationship aspect. Crit. Rev. Food Sci. Nutr. 2015, 55, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, Z.; Yue, Y.; Li, Q.; Shao, S. Spectroscopic analysis on structure-affinity relationship in the interactions of different oleanane-type triterpenoids with bovine serum albumin. Luminescence 2015, 30, 780–789. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Capanoglu, E.; Jassbi, A.R.; Miron, A. Advance on the flavonoid C-glycosides and health benefits. Crit. Rev. Food Sci. Nutr. 2016, 56, S29–S45. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.; Qi, W.; Huang, R.; Su, R.; He, Z. Elucidating the influence of gold nanoparticles on the binding of salvianolic acid B and rosmarinic acid to bovine serum albumin. PLoS ONE 2015, 10, e0118274. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shen, J.; Chang, K.J.; Kim, S.H. Comparative analysis of antioxidant activity and functional components of the ethanol extract of lotus (Nelumbo nucifera) from various growing regions. J. Agric. Food Chem. 2014, 62, 6227–6235. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.F.; Chen, Y.W.; Yang, C.Y.; Lin, H.Y.; Way, T.D.; Chiang, W.; Liu, S.H. Extract of lotus leaf (Nelumbo nucifera) and its active constituent catechin with insulin secretagogue activity. J. Agric. Food Chem. 2011, 59, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.; Kuo, Y.H.; Lin, Y.L.; Chiang, W. Antioxidative effect and active components from leaves of lotus (Nelumbo nucifera). J. Agric. Food Chem. 2009, 57, 6623–6629. [Google Scholar] [CrossRef] [PubMed]
- Morikawa, T.; Kitagawa, N.; Tanabe, G.; Ninomiya, K.; Okugawa, S.; Motai, C.; Kamei, I.; Yoshikawa, M.; Lee, I.J.; Muraoka, O. Quantitative determination of alkaloids in lotus flower (flower buds of Nelumbo nucifera) and their melanogenesis inhibitory activity. Molecules 2016, 21, 930. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, Q.; Zhuang, W.; Lu, X.; Miron, A.; Chai, T.T.; Zheng, B.; Xiao, J. Cytotoxic, antitumor and immunomodulatory effects of the water-soluble polysaccharides from lotus (Nelumbo nucifera Gaertn.) seeds. Molecules 2016, 21, 1465. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Sun, X.Y.; Li, X.W.; Yang, T.; Qi, L.W. Enrichment and separation of quercetin-3-O-β-d-glucuronide from lotus leaves (Nelumbo nucifera Gaertn.) and evaluation of its anti-inflammatory effect. J. Chromatogr. B 2017, 1040, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.H.; Kong, L.T.; Yan, M.Z.; Cao, F.R.; Wang, L.S.; Liao, Y.H.; Pan, R.L.; Chang, Q. Lotus leaf alkaloid fraction can strongly inhibit CYP2D6 isoenzyme activity. J. Ethnopharmacol. 2016, 194, 913–917. [Google Scholar] [CrossRef] [PubMed]
- Zhu, M.Z.; Wu, W.; Jiao, L.L.; Yang, P.F.; Guo, M.Q. Analysis of Flavonoids in Lotus (Nelumbo nucifera) Leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules 2015, 20, 10553. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, Y.; Fang, J.B.; Liu, Y.L.; Li, S.H. Flavonoids in lotus (Nelumbo) leaves evaluated by HPLC-MSn at the germplasm level. Food Res. Int. 2013, 54, 796–803. [Google Scholar] [CrossRef]
- Chen, S.; Fang, L.; Xi, H.; Guan, L.; Fang, J.; Liu, Y.; Wu, B.; Li, S. Simultaneous qualitative assessment and quantitative analysis of flavonoids in various tissues of lotus (Nelumbo nucifera) using high performance liquid chromatography coupled with triple quad mass spectrometry. Anal. Chim. Acta 2012, 724, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Wu, B.H.; Fang, J.B.; Liu, Y.L.; Zhang, H.H.; Fang, L.C.; Guan, L.; Li, S.H. Analysis of flavonoids from lotus (Nelumbo nucifera) leaves using high performance liquid chromatography/photodiode array detector tandem electrospray ionization mass spectrometry and an extraction method optimized by orthogonal design. J. Chromatogr. A 2012, 1227, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Tang, F.; Xie, Y.; Cao, H.; Yang, H.; Chen, X.; Xiao, J. Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach. Food Chem. 2017, 219, 321–328. [Google Scholar] [CrossRef] [PubMed]
- He, L.L.; Wang, Z.X.; Wang, Y.X.; Liu, X.P.; Yang, Y.J.; Gao, Y.P.; Wang, X.; Liu, B.; Wang, X. Studies on the interaction between promethazine and human serum albumin in the presence of flavonoids by spectroscopic and molecular modeling techniques. Colloids Surf. B 2016, 145, 820–829. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Laganà, G.; Toscano, G.; Calandra, P.; Kiselev, M.A.; Lombardo, D.; Bellocco, E. The interaction and binding of flavonoids to human serum albumin modify its conformation, stability and resistance against aggregation and oxidative injuries. BBA Gen. Subjects 2017, 1861(Part B), 3531–3539. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tang, L.; Bi, H. Study on the interaction between pelargonidin-3-O-glucoside and bovine serum albumin using spectroscopic, transmission electron microscopy and molecular modeling techniques. Luminescence 2016, 31, 442–452. [Google Scholar] [CrossRef] [PubMed]
- Poureshghi, F.; Ghandforoushan, P.; Safarnejad, A.; Soltani, S. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): Application of spectroscopic techniques and molecular modeling methods. J. Photochem. Photobiol. B 2017, 166, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, Y.; He, L.L.; Liu, B.; Zhang, S.Y.; Ye, X.; Jing, J.J.; Zhang, J.F.; Gao, M.; Wang, X. Spectroscopic investigation on the food components-drug interaction: The influence of flavonoids on the affinity of nifedipine to human serum albumin. Food Chem. Toxicol. 2015, 78, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Duan, L.; Ma, Q.; Lv, Z.; Ruohua, Z.; Zhang, Z. Fluorescence spectroscopy and molecular simulation on the interaction of caffeic acid with human serum albumin. Luminescence 2016, 31, 1496–1502. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, A.C.; Badea, M.; Olar, R.; Silvestro, L.; Dulea, C.; Negut, C.D.; Uivarosi, V. Synthesis and structural investigation of new bio-relevant complexes of lanthanides with 5-hydroxyflavone: DNA binding and protein interaction studies. Molecules 2016, 21, 1737. [Google Scholar] [CrossRef] [PubMed]
- Rimac, H.; Debeljak, Z.; Sakic, D.; Weitner, T.; Gabricevic, M.; Vrcek, V.; Zorc, B.; Bojic, M. Structural and electronic determinants of flavonoid binding to human serum albumin: An extensive ligand-based study. RSC Adv. 2016, 6, 75014–75022. [Google Scholar] [CrossRef]
- Fu, L.; Sun, Y.; Ding, L.; Wang, Y.; Gao, Z.; Wu, Z.; Wang, S.; Li, W.; Bi, Y. Mechanism evaluation of the interactions between flavonoids and bovine serum albumin based on multi-spectroscopy, molecular docking and Q-TOF HR-MS analyses. Food Chem. 2016, 203, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Roy, A.S.; Dinda, A.K.; Pandey, N.K.; Dasgupta, S. Effects of urea, metal ions and surfactants on the binding of baicalein with bovine serum albumin. J. Pharm. Anal. 2016, 6, 256–267. [Google Scholar] [CrossRef]
- Khan, M.K.; Rakotomanomana, N.; Dufour, C.; Dangles, O. Binding of citrus flavanones and their glucuronides and chalcones to human serum albumin. Food Funct. 2011, 2, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, A.; Green, R.J.; Frazier, R.A. Interaction of flavonoids with bovine serum albumin: A fluorescence quenching study. J. Agric. Food Chem. 2005, 53, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Cao, H. Molecular structure–affinity relationship of dietary flavonoids for bovine serum albumin. Rev. Bras. Farmacogn. 2011, 21, 594–600. [Google Scholar] [CrossRef]
- Namazi, M.; Amir Ali Akbari, S.; Mojab, F.; Talebi, A.; AlaviMajd, H.; Jannesari, S. Effects of citrus aurantium (bitter orange) on the severity of first-stage labor pain. Iran. J. Pharm. Res. 2014, 13, 1011–1018. [Google Scholar] [PubMed]
- Ikeda, M.; Ueda-Wakagi, M.; Hayashibara, K.; Kitano, R.; Kawase, M.; Kaihatsu, K.; Kato, N.; Suhara, Y.; Osakabe, N.; Ashida, H. Substitution at the C-3 position of catechins has an influence on the binding affinities against serum albumin. Molecules 2017, 22, 314. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Chen, L.; Xiao, J. Binding Citrus flavanones to human serum albumin: Effect of structure on affinity. Mol. Biol. Rep. 2011, 38, 2257–2262. [Google Scholar] [CrossRef] [PubMed]
- Dufour, C.; Dangles, O. Flavonoid-serum albumin complexation: Determination of binding constants and binding sites by fluorescence spectroscopy. BBA Gen. Subjects 2005, 1721, 164–173. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Saha, C. A review on structure-affinity relationship of dietary flavonoids with serum albumins. J. Biomol. Struct. Dyn. 2014, 32, 1132–1147. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Xu, Y.; Chen, Y.; Wu, J.; Yu, Y.; Zou, B.; An, K.; Xiao, G. Evaluation of bioactive flavonoids and antioxidant activity in Pericarpium Citri Reticulatae (Citrus reticulata ‘Chachi’) during storage. Food Chem. 2017, 230, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Khan, H.; Ali, F.; Ali, N.; Khan, F.U.; Khan, S.U. Antioxidant, cholinesterase inhibition activities and essential oil analysis of Nelumbo nucifera seeds. Nat. Prod. Res. 2016, 30, 1335–1338. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Zhang, Y.; Wang, Y.; Cheng, Y. Hollow fiber based affinity selection combined with high performance liquid chromatography-mass spectroscopy for rapid screening lipase inhibitors from lotus leaf. Anal. Chim. Acta 2013, 785, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, S.S.; Ibrahim, S.A.; Li, E.H.; Yang, H.; Huang, W. Identification and antioxidant properties of polyphenols in lotus seed epicarp at different ripening stages. Food Chem. 2015, 185, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.H.; He, X.X.; Kong, L.T.; Liao, Y.H.; Pan, R.L.; Xiao, B.X.; Liu, X.M.; Chang, Q. Identification and characterization of potent CYP2D6 inhibitors in lotus leaves. J. Ethnopharmacol. 2014, 153, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, Y.; Liu, L.; Lin, C. Study on the synthesis of sulfonamide derivatives and their interaction with bovine serum albumin. Luminescence 2015, 30, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Suzuki, M.; Jiang, X.; Chen, X.; Yamamoto, K.; Ren, F.; Xu, M. Influence of B-ring hydroxylation on interactions of flavonols with bovine serum albumin. J. Agric. Food Chem. 2008, 56, 2350–2356. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Chen, T.; Cao, H.; Chen, L.; Yang, F. Molecular property–affinity relationship of flavanoids and flavonoids for HSA in vitro. Mol. Nutr. Food Res. 2011, 55, 310–317. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Zhao, Y.; Wang, H.; Yuan, Y.; Yang, F.; Zhang, C.; Kai, G. Non-covalent interaction of dietary polyphenols with total plasma proteins of type II diabetes: Molecular structure/property-affinity relationships. Integr. Biol. 2011, 3, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J. 226-Stability of dietary polyphenols under cell culture conditions. Free Radic. Biol. Med. 2014, 76, S96. [Google Scholar]
- Bose, A. Interaction of tea polyphenols with serum albumins: A fluorescence spectroscopic analysis. J. Lumin. 2016, 169(Part A), 220–226. [Google Scholar] [CrossRef]
- Xiao, J.; Zhao, Y.; Wang, H.; Yuan, Y.; Yang, F.; Zhang, C.; Yamamoto, K. Noncovalent interaction of dietary polyphenols with common human plasma proteins. J. Agric. Food Chem. 2011, 59, 10747–10754. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.L.; Cen, Y.; Liu, F.; Yu, J.G.; Jiang, X.Y.; Chen, X.Q. Analysis of alpha-amylase inhibitor from corni fructus by coupling magnetic cross-linked enzyme aggregates of alpha-amylase with HPLC-MS. Chromatogr. B 2015, 995, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Parvez, M.K.; Arbab, A.H.; Al-Dosari, M.S. Quantitative analysis of rutin, quercetin, naringenin, and gallic acid by validated RP- and NP-HPTLC methods for quality control of anti-HBV active extract of Guiera senegalensis. Pharm. Biol. 2017, 55, 1317–1323. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Flavonoids | Substitutions | Retention Time (min) | Content (mg/g) | ||
---|---|---|---|---|---|
OH | OCH3 | Others | |||
Apigenin | 5,7,4′ | 38.84 | 0.216 ± 0.022 | ||
Naringenin | 5,7,4′ | Flavanone | 39.46 | 1.446 ± 0.012 | |
Luteolin | 5,7,3′,4′ | 33.36 | 0.491 ± 0.039 | ||
Kaempferol | 3,5,7,4′ | 40.27 | 0.063 ± 0.009 | ||
Astragalin | 5,7,4′ | 3-O-glucoside | 12.86 | 13.347 ± 0.150 | |
Quercetin | 3,5,7,3′,4′ | 33.77 | 2.628 ± 0.058 | ||
Taxifolin | 3,5,7,3′,4′ | Flavanone | 20.41 | 10.597 ± 0.240 | |
Isorhamnetin | 3,5,7,4′ | 3′ | 40.92 | 0.390 ± 0.043 | |
Isoquercitrin | 5,7,3′,4′ | 3-O-glucoside | 19.29 | 29.778 ± 0.180 | |
Hyperoside | 5,7,3′,4′ | 3-O-galactoside | 18.58 | 3.292 ± 0.055 | |
Rutin | 5,7,3′,4′ | 3-O-rutinoside | 17.25 | 1.588 ± 0.045 |
Flavonoids | HSA Affinity | BSA Affinity | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Kq (1014) | Ksv (106) | R2 | logKa | n | R2 | Kq (1014) | Ksv (106) | R2 | logKa | n | R2 | |
Apigenin | 4.695 | 2.911 | 0.999 | 6.655 | 0.962 | 0.998 | 3.710 | 2.300 | 0.998 | 7.086 | 0.870 | 0.999 |
Naringenin | 3.100 | 1.922 | 0.999 | 6.493 | 0.974 | 0.999 | 1.408 | 0.873 | 0.996 | 6.982 | 0.925 | 0.999 |
Luteolin | 1.781 | 1.104 | 0.995 | 7.064 | 0.904 | 0.999 | 1.285 | 0.797 | 0.994 | 7.110 | 0.923 | 0.998 |
Kaempferol | 3.923 | 2.432 | 0.999 | 6.830 | 0.918 | 0.999 | 1.923 | 1.192 | 0.996 | 7.106 | 0.911 | 0.995 |
Astragalin | 0.918 | 0.569 | 0.997 | 6.234 | 0.994 | 0.993 | 1.224 | 0.759 | 0.997 | 6.359 | 0.963 | 0.998 |
Quercetin | 3.594 | 2.228 | 0.998 | 7.089 | 0.868 | 0.999 | 2.018 | 1.251 | 0.991 | 7.299 | 0.858 | 0.999 |
Taxifolin | 1.802 | 1.117 | 0.993 | 6.748 | 0.907 | 0.997 | 1.334 | 0.827 | 0.990 | 7.067 | 0.909 | 0.998 |
Isorhamnetin | 1.445 | 0.896 | 0.994 | 6.798 | 0.923 | 0.999 | 1.066 | 0.661 | 0.995 | 6.828 | 0.941 | 0.999 |
Isoquercitrin | 1.423 | 0.882 | 0.995 | 6.584 | 0.936 | 0.997 | 0.919 | 0.570 | 0.993 | 7.095 | 0.938 | 0.999 |
Hyperoside | 1.434 | 0.889 | 0.996 | 6.802 | 0.960 | 0.995 | 1.148 | 0.712 | 0.997 | 6.891 | 0.950 | 0.996 |
Rutin | 0.827 | 0.513 | 0.999 | 5.896 | 0.992 | 0.999 | 0.731 | 0.453 | 0.995 | 6.686 | 0.962 | 0.998 |
Structural Alteration | Examples | Effects (Times) | |
---|---|---|---|
HSA Affinity | BSA Affinity | ||
2,3-hydrogenation | Apigenin → Naringenin | 1.45↓ | 1.27↓ |
Quercetin → Taxifolin | 2.19↓ | 1.71↓ | |
3’H → OH | Apigenin → Luteolin | 2.56↑ | 1.06↑ |
Kaempferol → Quercetin | 1.82↑ | 1.56↑ | |
Astragalin → Isoquercitrin | 2.24↑ | 5.45↑ | |
3H → OH | Apigenin → Kaempferol | 1.50↑ | 1.05↑ |
3, 3’H → OH | Apigenin → Quercetin | 2.72↑ | 1.63↑ |
Naringenin → Taxifolin | 7.80↑ | 1.22↑ | |
3’OH → OCH3 | Quercetin → Isorhamnetin | 1.95↓ | 2.96↓ |
3-O-glycosylation | Quercetin → Isoquercitrin | 3.20↓ | 1.60↓ |
Quercetin → Hyperoside | 1.94↓ | 2.56↓ | |
Quercetin → Rutin | 15.60↓ | 4.10↓ | |
Kaempferol → Astragalin | 3.94↓ | 5.58↓ |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Tang, P.; Liu, L. Molecular Structure–Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method. Molecules 2017, 22, 1036. https://doi.org/10.3390/molecules22071036
Tang X, Tang P, Liu L. Molecular Structure–Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method. Molecules. 2017; 22(7):1036. https://doi.org/10.3390/molecules22071036
Chicago/Turabian StyleTang, Xiaosheng, Ping Tang, and Liangliang Liu. 2017. "Molecular Structure–Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method" Molecules 22, no. 7: 1036. https://doi.org/10.3390/molecules22071036
APA StyleTang, X., Tang, P., & Liu, L. (2017). Molecular Structure–Affinity Relationship of Flavonoids in Lotus Leaf (Nelumbo nucifera Gaertn.) on Binding to Human Serum Albumin and Bovine Serum Albumin by Spectroscopic Method. Molecules, 22(7), 1036. https://doi.org/10.3390/molecules22071036