Anti-Inflammatory and Anti-Urolithiasis Effects of Polyphenolic Compounds from Quercus gilva Blume
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Plant Material
3.2. Instruments
3.3. Extraction and Isolation of QGB Compounds
3.4. Measurement of 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity
3.5. Measurement of Nitroblue Tetrazolium (NBT)/Superoxide Scavenging Activity
3.6. Cell Culture
3.7. Nitric Oxide (NO) Production and NO Inhibitory Activity
3.8. Reverse Transcription-Polymerase Chain Reaction (RT-PCR)
3.9. Animal
3.10. Induction of Urolithiasis
3.11. Effect of QGB Extract on Urolithiasis
3.12. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Mandana Rodriguez, A.; Gausa Rull, P. Therapeutic effects of Quercus extract in urolithiasis. Arch. Esp. Urol. 1980, 33, 205–226. [Google Scholar] [PubMed]
- Sairam, K.; Scoffone, C.M.; Alken, P.; Turna, B.; Sodha, H.S.; Rioja, J.; Wolf, J.S., Jr.; de la Rosette, J.J. CROES PCNL Study Group. Percutaneous nephrolithotomy and chronic kidney disease: Results from the CROES PCNL Global Study. J. Urol. 2012, 188, 1195–1200. [Google Scholar] [CrossRef] [PubMed]
- Moriyama, M.T.; Miyazawa, K.; Noda, K.; Oka, M.; Tanaka, M.; Suzuki, K. Reduction in oxalate-induced renal tubular epithelial cell injury by an extract from Quercus salicina Blume/Quercus stenophylla Makino. Urol. Res. 2007, 35, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Butterweck, V.; Khan, S.R. Herbal medicines in the management of urolithiasis: Alternative or complementary? Planta Med. 2009, 75, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Clark, D.L.; Connors, B.A.; Evan, A.P.; Handa, R.K.; Gao, S. Effect of shock wave number on renal oxidative stress and inflammation. BJU Int. 2011, 107, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Nagata, M.; Takayama, T.; Mugiya, S.; Ohzono, S. Pharmacotherapy for preventing calcium containing stone formation. Clin. Calcium 2011, 21, 1530–1534. [Google Scholar] [PubMed]
- Sekkoum, K.; Cheriti, A.; Taleb, S.; Bourmita, Y.; Belboukhari, N. Traditional phytotherapy for urinary diseases in Bechar district (south west of Algeria). Electron. J. Environ., Agric. Food Chem. 2011, 10, 2616–2622. [Google Scholar]
- Itoh, Y.; Yasui, T.; Okada, A.; Tozawa, K.; Hayashi, Y.; Kohri, K. Preventive effects of green tea on renal stone formation and the role of oxidative stress in nephrolithiasis. J. Urol. 2005, 173, 271–275. [Google Scholar] [CrossRef] [PubMed]
- Box, E.O.; Fujiwara, K. Warm-Temperate Deciduous Forests: Concept and Global Overview. In Warm-Temperate Deciduous Forests around the Northern Hemisphere; Box, E.O., Fujiwara, K., Eds.; Springer: Cham, Switzerland, 2015; pp. 7–26. [Google Scholar]
- Tanouchi, H.; Sato, T.; Takeshita, K. Comparative studies on acorn and seedling dynamics of four Quercus species in an evergreen broad-leaved forest. J. Plant Res. 1994, 107, 153–159. [Google Scholar] [CrossRef]
- Young, H.Y.; Hae, R.K. Ecophysiological responses of Quercus gilva, endangered species and Q. glauca to long-term exposure to elevated CO2 concentration and temperature. J. Ecol. Environ. 2012, 35, 203–212. [Google Scholar]
- Noshiro, S.; Sasaki, Y. Identification of Japanese species of evergreen and Quercus and Lithocarpus (Fagaceae). IAWA J. 2011, 32, 383–393. [Google Scholar] [CrossRef]
- Hamid, H.; Kaur, G.; Abdullah, S.T.; Ali, M.; Athar, M.; Alam, M.S. Two new compounds from the galls of Quercus infectoria. with nitric oxide and superoxide inhibiting ability. Pharm. Biol. 2005, 43, 317–323. [Google Scholar] [CrossRef]
- Indrianingsih, A.W.; Tachibana, S.; Dewi, R.T.; Itoh, K. Antioxidant and α-glucosidase inhibitor activities of natural compounds isolated from Quercus gilva Blume leaves. Asian Pac. J. Trop. Biomed. 2015, 5, 748–755. [Google Scholar] [CrossRef]
- Moon, M.; Baik, J.; Kim, S.; Jang, W.; Kim, M.; Lee, N. Identification of antioxidative constituents from the branches of Quercus gilva Blume. J. Soc. Cosmet. Sci. Korea 2009, 35, 251–256. [Google Scholar]
- Yamamoto, M.; Akita, T.; Koyama, Y.; Sueyoshi, E.; Matsunami, K.; Otsuka, H.; Shinzato, T.; Takashima, A.; Aramoto, M.; Takeda, Y. Euodionosides A–G: Megastigmane glucosides from leaves of Euodia meliaefolia. Phytochemistry 2008, 69, 1586–1596. [Google Scholar] [CrossRef] [PubMed]
- Tachi, Y.; Kamano, Y.; Sawada, J.; Tanaka, I.; Itokawa, H. Studies on the constituents of Quercus spp. VII. Triterpenes of Quercus gilva Blume (author’s transl). Yakugaku Zasshi 1976, 96, 1213–1216. [Google Scholar] [CrossRef] [PubMed]
- Itokawa, H.; Tachi, Y.; Kamano, Y.; Iitaka, Y. Structure of gilvanol, a new triterpene isolated from Quercus gilva Blume. Chem. Pharm. Bull. 1978, 26, 331–333. [Google Scholar] [CrossRef]
- Zhong, X.N.; Ide, T.; Otsuka, H.; Hirata, E.; Takeda, Y. (+)-Isolarisiresinol 3a-O-sulphate from leaves of Myrsine seguinii. Phytochemistry 1998, 49, 1777–1778. [Google Scholar] [CrossRef]
- Jiang, Z.H.; Tanaka, T.; Sakamoto, M.; Jiang, T.; Kouno, I. Studies on a medicinal parasitic plant: Lignans from the stems of Cynomorium songaricum. Chem. Pharm. Bull. 2001, 49, 1036–1038. [Google Scholar] [CrossRef] [PubMed]
- Ruberto, G.; Renda, A.; Daquino, C.; Amico, V.; Spatafora, C.; Tringali, C.; Tommasi, N.D. Polyphenol constituents and antioxidant activity of grape pomace extracts from five sicilian red grape cultivars. Food Chem. 2007, 100, 203–210. [Google Scholar] [CrossRef]
- Nonaka, G.; Nishioka, I. Tannins and related compounds. VII. Phenylpropanoid-substituted epicatechins, cinchonains from Cinchona succirubra. (1). Chem. Pharm. Bull. 1982, 30, 4268–4276. [Google Scholar] [CrossRef]
- Fan, J.; Ding, X.; Gu, W. Radical-scavenging proanthocyanidins from sea buckthorn seed. Food Chem. 2007, 102, 168–177. [Google Scholar] [CrossRef]
- Cai, Y.; Evans, F.J.; Roberts, M.F.; Phillipson, J.D.; Zenk, M.H.; Gleba, Y.Y. Polyphenolic compounds from Croton lechleri. Phytochemistry 1991, 30, 2033–2040. [Google Scholar] [CrossRef]
- Kehrer, J.P. Free radicals as mediators of tissue injury and disease. Crit. Rev. Toxicol. 1993, 23, 21–48. [Google Scholar] [CrossRef] [PubMed]
- Moskovitz, J.; Yim, M.B.; Chock, P.B. Free radicals and disease. Arch. Biochem. Biophys. 2002, 397, 354–359. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.Y.; Yen, C.L. Antioxidative Ability of Lactic Acid Bacteria. J. Agric. Food Chem. 1999, 47, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Hatano, T.; Yasuhara, T.; Yoshihara, R.; Agata, I.; Noro, T.; Okuda, T. Effects of interaction of tannins with co-existing substances. VII: Inhibitory effects of Tannins and related polyphenols on xanthine oxidase. Chem. Pharm. Bull. 1990, 38, 1224–1229. [Google Scholar] [CrossRef] [PubMed]
- Parejo, I.; Viladomat, F.; Bastida, J.; Rosas-Romero, A.; Flerlage, N.; Burillo, J.; Codina, C. Comparison between the radical scavenging activity and antioxidant activity of six distilled and nondistilled mediterranean herbs and aromatic plants. J. Agric. Food Chem. 2002, 50, 6882–6890. [Google Scholar] [CrossRef] [PubMed]
- Kharitonov, S.A.; Yates, D.; Robbins, R.A.; Logan-Sinclair, R.; Shinebourne, E.A.; Barnes, P.J. Increased nitric oxide in exhaled air of Asthmatic Patients. Lancet 1994, 343, 133–135. [Google Scholar] [CrossRef]
- Cals-Grierson, M.M.; Ormerod, A.D. Nitric Oxide Function in the Skin. Nitric Oxide 2004, 10, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Akdeniz, N.; Aktaş, A.; Erdem, T.; Akyüz, M.; Özdemir, Ş. Nitric oxide levels in atopic dermatitis. Pain Clin. 2004, 16, 401–405. [Google Scholar] [CrossRef]
- Epe, B.; Ballmaier, D.; Roussyn, I.; Briviba, K.; Sies, H. DNA damage by peroxynitrite characterized with DNA repair enzymes. Nucleic Acids Res. 1996, 24, 4105–4110. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, A.J.; Higgs, A.; Moncada, S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. Toxicol. 1999, 39, 191–220. [Google Scholar] [CrossRef] [PubMed]
- Sautebin, L. Prostaglandins and nitric oxide as molecular targets for anti-inflammatory therapy. Fitoterapia 2000, 71 (Suppl. 1), S48–S57. [Google Scholar] [CrossRef]
- Kim, J.Y.; Kim, Y.S.; Chang, I.H.; Kim, T.H.; Kim, H.R. Interleukin-1β, calcium-sensing receptor, and urokinase gene polymorphisms in Korean Patients with urolithiasis. Korean J. Urol. 2011, 52, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wang, X.; Wu, J.; Lin, Y.; Chen, H.; Zheng, X.; Zhou, C.; Xie, L. Association of vitamin D receptor gene polymorphism and calcium urolithiasis in the Chinese Han population. Urol. Res. 2012, 40, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Chou, Y.H.; Woon, P.Y.; Chen, W.C.; Hsu, Y.W.; Chang, J.M.; Hwang, D.Y.; Chiu, Y.C.; Kuo, H.C.; Chang, W.P.; Hou, M.F; et al. A genetic polymorphism (rs17251221) in the calcium-sensing receptor gene (CASR) is associated with stone multiplicity in calcium nephrolithiasis. PLoS ONE 2011, 6, e25227. [Google Scholar] [CrossRef] [PubMed]
- Canaff, L.; Hendy, G.N. Calcium-sensing receptor gene transcription is up-regulated by the proinflammatory cytokine, interleukin-1β role of the NF-κB pathway and κB elements. J. Biol. Chem. 2005, 280, 14177–14188. [Google Scholar] [CrossRef] [PubMed]
- Kandhare, A.D.; Patil, M.V.; Bodhankar, S.L. l-Arginine attenuates the ethylene glycol induced urolithiasis in ininephrectomized hypertensive rats: Role of KIM-1, NGAL, and NOs. Ren. Fail. 2015, 37, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Mittal, R.D.; Bid, H.K.; Manchanda, P.K.; Kapoor, R. Association of interleukin-1β gene and receptor antagonist polymorphisms with calcium oxalate urolithiasis. J. Endourol. 2007, 21, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Nakada, S.Y.; Jerde, T.J.; Jacobson, L.M.; Saban, R.; Bjorling, D.E.; Hullett, D.A. Cyclooxygenase-2 expression is up-regulated in obstructed human ureter. J. Urol. 2002, 168, 1226–1229. [Google Scholar] [CrossRef]
- Grases, F.; Prieto, R.M.; Gomila, I.; Sanchis, P.; Costa-Bauzá, A. Phytotherapy and renal stones: The role of antioxidants. A pilot study in wistar rats. Urol. Res. 2008, 37, 35. [Google Scholar] [CrossRef] [PubMed]
- Grases, F.; Prieto, R.M.; Fernandez-Cabot, R.A.; Costa-Bauza, A.; Tur, F.; Torres, J.J. Effects of polyphenols from grape seeds on renal lithiasis. Oxid. Med. Cell. Longev. 2015, 2015, 813737. [Google Scholar] [CrossRef] [PubMed]
- Feelisch, M.; Stamler, J. Methods in Nitric Oxide Research; Wiley-Blackwell: New York, NY, USA, 1996. [Google Scholar]
Sample Availability: Samples of the compounds are available from the authors. |
Extract | IC50 (μg/mL) | Compound | IC50 (μM) |
---|---|---|---|
Leave | 19.15 ± 0.22 | 1 | >100 h |
Branch | 33.07 ± 0.34 | 2 | >100 g |
Bark | 10.58 ± 0.85 | 3 | 74.23 ± 0.39 f |
Wood | 16.14 ± 0.80 | 4 | 43.37 ± 0.57 e |
l-ascorbic acid | 6.04 ± 0.27 | 5 | 28.80 ± 1.02 d |
6 | 15.10 ± 0.34 b | ||
7 | 12.15 ± 0.18 a | ||
l-ascorbic acid | 27.41 ± 1.28 c |
Extract | IC50 (μg/mL) | Compound | IC50 (μM) |
---|---|---|---|
Leave | 7.50 ± 0.47 | 1 | >100 d |
Branch | 20.07 ± 2.24 | 2 | >100 c |
Bark | 4.43 ± 0.16 | 3 | >100 b |
Wood | 7.07 ± 0.98 | 4 | 15.44 ± 1.44 a |
Allopurinol | 1.08 ± 0.22 | 5 | 11.01 ± 0.16 a |
6 | 7.21 ± 0.38 a | ||
7 | 8.67 ± 0.22 a | ||
Allopurinol | 5.43 ± 0.40 a |
Sample | NO Production Inhibitory Activity (μM) |
---|---|
1 | >100 f |
2 | 63.99 ± 12.53 d |
3 | 9.14 ± 0.45 b |
4 | >100 e |
5 | 14.47 ± 5.29 c |
6 | 7.07 ± 0.40 b |
7 | 1.44 ± 1.03 a |
l-NMMA | 2.72± 0.80 a |
Group No. | Treatment | Upper Pole | Mid Pole | Lower Pole | Average |
---|---|---|---|---|---|
Group 2 | 0.2% EG (acute) | 35 | 57 | 38 | 44.33 a |
Group 3 | 0.4% EG (acute) | 80 | 112.17 | 90 | 90.05 b |
Group 5 | 0.2% EG (chronic) | 43.5 | 46.5 | 38 | 42.67 a |
Group 6 | 0.4% EG (chronic) | 70.92 | 74.67 | 70.92 | 72.16 a,b |
Group No. | Treatment | Upper Pole | Mid Pole | Lower Pole | Average |
---|---|---|---|---|---|
B | EG | 111.83 | 92.67 | 105.33 | 119.33 |
C | EG + low drug | 5 | 4.67 | 2 | 2.33 * |
D | EG + high drug | 14 | 7.5 | 15 | 12.17 * |
(A) | ||
---|---|---|
Group No. | Day | Treatment |
1 | 2 weeks | Normal Control (sterilized water) |
2 | 0.2% EG, as acute model | |
3 | 0.4% EG, as acute model | |
4 | 4 weeks | Normal Control (sterilized water) |
5 | 0.2% EG, as chronic model | |
6 | 0.4% EG, as chronic model | |
(B) | ||
Group No. | Day | Treatment (IP) |
A | 2 weeks | Normal Control (saline) |
B | Control (0.4% EG) | |
C | 0.4% EG + low drug | |
D | 0.4% EG + high drug |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Youn, S.H.; Kwon, J.H.; Yin, J.; Tam, L.T.; Ahn, H.S.; Myung, S.C.; Lee, M.W. Anti-Inflammatory and Anti-Urolithiasis Effects of Polyphenolic Compounds from Quercus gilva Blume. Molecules 2017, 22, 1121. https://doi.org/10.3390/molecules22071121
Youn SH, Kwon JH, Yin J, Tam LT, Ahn HS, Myung SC, Lee MW. Anti-Inflammatory and Anti-Urolithiasis Effects of Polyphenolic Compounds from Quercus gilva Blume. Molecules. 2017; 22(7):1121. https://doi.org/10.3390/molecules22071121
Chicago/Turabian StyleYoun, Sung Hye, Joo Hee Kwon, Jun Yin, Le Thi Tam, Hye Shin Ahn, Soon Chul Myung, and Min Won Lee. 2017. "Anti-Inflammatory and Anti-Urolithiasis Effects of Polyphenolic Compounds from Quercus gilva Blume" Molecules 22, no. 7: 1121. https://doi.org/10.3390/molecules22071121
APA StyleYoun, S. H., Kwon, J. H., Yin, J., Tam, L. T., Ahn, H. S., Myung, S. C., & Lee, M. W. (2017). Anti-Inflammatory and Anti-Urolithiasis Effects of Polyphenolic Compounds from Quercus gilva Blume. Molecules, 22(7), 1121. https://doi.org/10.3390/molecules22071121