[3+2] Cycloaddition of Tosylmethyl Isocyanide with Styrylisoxazoles: Facile Access to Polysubstituted 3-(Isoxazol-5-yl)pyrroles
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental
3.1. General
3.2. Synthesis of 3aa–3fb
3.3. Crystal Structure Determination
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Bhardwaj, V.; Gumber, D.; Abbot, V.; Dhiman, S.; Sharma, P. Pyrrole: A resourceful small molecule in key medicinal hetero-aromatics. RSC Adv. 2015, 46, 15233–15266. [Google Scholar] [CrossRef]
- Rane, R.A.; Sahu, N.U.; Gutte, S.D.; Mahajan, A.A.; Shah, C.P.; Bangalore, P. Synthesis and evaluation of novel marine bromopyrrole alkaloidbased hybrids as anticancer agents. Eur. J. Med. Chem. 2013, 63, 793–799. [Google Scholar] [CrossRef] [PubMed]
- Gomha, S.M.; Eldebss, T.M.A.; Abdulla, M.M.; Mayhoub, A.S. Diphenylpyrroles: Novel p53 activators. Eur. J. Med. Chem. 2014, 82, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, R.J.; Pearce, B.C. 3-(3-Pyrrolyl)thiopyrrolidones as precursors of benzo[1,2-b:4,3-b’]dipyrroles. Synthesis of structures related to the phosphodiesterase inhibitors PDE-I and PDE-II. J. Org. Chem. 1985, 50, 425–432. [Google Scholar] [CrossRef]
- Frederich, J.H.; Matsui, J.K.; Chang, R.O.; Harran, P.G. Substituted 2,2′-bipyrroles and pyrrolylfurans via intermediate isoxazolylpyrroles. Tetrahedron Lett. 2013, 54, 2645–2647. [Google Scholar] [CrossRef] [PubMed]
- Jin, R.F.; Sun, W.D.; Tang, S.S. A DFT study of pyrrole-isoxazole derivatives as chemosensors for fluoride anion. Int. J. Mol. Sci. 2012, 13, 10986–10999. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.P.; Zhang, K.; Gong, F.B.; Li, S.Y.; Chen, J.; Ma, J.S.; Sobenina, L.N.; Mikhaleva, A.I.; Yang, G.Q.; Trofimov, B.A. A new fluorescent chemosensor for fluoride anion based on a pyrrole–isoxazole derivative. Beilstein J. Org. Chem. 2011, 7, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Padmavathi, V.; Reddy, K.V.; Sarma, M.R.; Sumathi, R.P.; Reddy, D.B. 1,3-dipolar cycloaddition of dipolar reagents to bischalcones in the presence of Chloramine-T. Indian J. Chem. 2004, 43, 2238–2242. [Google Scholar] [CrossRef]
- Sasada, T.; Sawada, T.; Ikeda, R.; Sakai, N.; Konakahara, T. Approach to trisubstituted 3-aminopyrrole derivatives by Yb(OTF)3-catalyzed [4+1] annulation of 2-azadiene with Me3SiCN. Eur. J. Med. Chem. 2010, 22, 4237–4244. [Google Scholar] [CrossRef]
- Chen, J.X.; Wu, H.Y.; Zheng, Z.G.; Jin, C.; Zhang, X.X.; Su, W.K. An approach to the Paal-Knorr pyrroles synthesis catalyzed by Sc(OTf)3 under solvent-free conditions. Tetrahedron Lett. 2006, 47, 5383–5387. [Google Scholar] [CrossRef]
- Van Leusen, A.M.; Siderius, H.; Hoogenboom, B.E.; Van Leusen, D. A new and simple synthesis of the pyrrole ring system from Michael acceptors and Tosylmethylisocyanides. Tetrahedron Lett. 1972, 13, 5337–5340. [Google Scholar] [CrossRef]
- Váradi, A.; Palmer, T.C.; Dardashti, R.N.; Majumdar, S. Isocyanide-based multicomponent reactions for the synthesis of heterocycles. Molecules 2016, 21, 19. [Google Scholar] [CrossRef] [PubMed]
- Kaur, T.; Wadhwa, P; Sharma, A. Arylsulfonylmethyl isocyanides: A novel paradigmin organic synthesis. RSC Adv. 2015, 5, 52769–52787. [Google Scholar] [CrossRef]
- Eckert, H. Diversity oriented syntheses of conventional heterocycles by smart multi component reactions (MCRS) of the last decade. Molecules 2012, 17, 1074–1102. [Google Scholar] [CrossRef] [PubMed]
- Sadjadi, S.; Heravi, M.M. Recent application of isocyanides in synthesis of heterocycles. Tetrahedron 2011, 67, 2707–2752. [Google Scholar] [CrossRef]
- Lygin, A.V.; Meijere, A.D. Isocyanides in the synthesis of nitrogen heterocycles. Angew. Chem. Int. Ed. 2010, 49, 9094–9124. [Google Scholar] [CrossRef] [PubMed]
- Tandon, V.K.; Rai, S. p-Toluenesulfonylmethyl isocyanide: A versatile synthon in organic chemistry. Sulfur Rep. 2003, 24, 307–385. [Google Scholar] [CrossRef]
- Ugi, I.; Werner, B.; Dömling, A. The chemistry of isocyanides, their multicomponent reactions and their libraries. Molecules 2003, 8, 53–66. [Google Scholar] [CrossRef]
- Lu, X.M.; Li, J.; Cai, Z.J.; Wang, R.; Wang, S.Y.; Ji, S.J. One pot synthesis of pyrrolo[3,4-c]quinolinone/pyrrolo[3,4-c]quinolone derivatives from 2-aminoarylacrylates/2-aminochalcones and tosylmethyl isocyanide (TosMIC). Org. Biomol. Chem. 2014, 12, 9471–9477. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.T.; Shao, J.A.; Li, Z.; Giulianotti, M.A.; Yu, Y.P. Synthesis of 2,3,4-trisubstituted pyrroles via a facile reaction of vinyl azides and tosylmethyl isocyanide. Can. J. Chem. 2012, 90, 214–221. [Google Scholar] [CrossRef]
- Poulard, C.; Cornet, J.; Legoupy, S.; Dujardin, G.; Dhal, R.; Huet, F. Synthesis of polysubstituted pyrroles. Lett. Org. Chem. 2009, 6, 359–361. [Google Scholar] [CrossRef]
- Chang, J.H.; Shin, H. Practical one-pot syntheses of ethyl 4-substituted-1H-pyrrole-3-carboxylates from aldehydes. Org. Process Res. Dev. 2008, 12, 291–293. [Google Scholar] [CrossRef]
- Krishna, P.R.; Ramana Reddy, V.V.; Srinivas, R. A new synthetic route to oxazole and pyrrole 2-deoxy-C-ribosides. Tetrahedron 2007, 63, 9871–9880. [Google Scholar] [CrossRef]
- Santo, R.D.; Costi, R.; Massa, S.; Artico, M. Pyrrole-annulated heterocyclic systems. Synthesis of 2H-pyrrolo[3,4-b][1,5]benzothiazepine 4,4-dioxide derivatives. Synth. Commun. 1998, 28, 2517–2530. [Google Scholar] [CrossRef]
- Pavri, N.P.; Trudell, M.L. An efficient method for the synthesis of 3-arylpyrroles. J. Org. Chem. 1997, 62, 2649–2651. [Google Scholar] [CrossRef] [PubMed]
- Dhanalakshmi, P.; Shanmugam, S. Convenient one-pot multicomponent strategy for the synthesis of 6-pyrrolylpyrimidines. RSC Adv. 2014, 4, 29493–29501. [Google Scholar] [CrossRef]
- Padmavathi, V.; Premakumari, C.; Venkatesh, B.C.; Padmaja, A. Synthesis and antimicrobial activity of amido linked pyrrolyl and pyrazolyl-oxazoles, thiazoles and imidazoles. Eur. J. Med. Chem. 2011, 46, 5317–5326. [Google Scholar] [CrossRef] [PubMed]
- Donohoe, T.J.; Guyo, P.M.; Harji, R.R.; Heiliwell, M. The birch reduction of 3-substituted pyrroles. Tetrahedron Lett. 1998, 39, 3075–3078. [Google Scholar] [CrossRef]
- Kumar, K.; More, S.S.; Goyal, S.; Gangar, M.; Khatik, G.L.; Rawal, R.K.; Nair, V.A. A convenient synthesis of 4-alkyl-3-benzoylpyrroles from α,β-unsaturated ketones and tosylmethyl isocyanide. Tetrahedron Lett. 2016, 57, 2315–2319. [Google Scholar] [CrossRef]
- Divakar, M.A.; Shanmugam, S. Live cell imaging of bacterial cells: Pyrenoylpyrrole-based fluorescence labeling. Chem. Biol. Drug Des. 2017. [Google Scholar] [CrossRef] [PubMed]
- Hormaza, A.; Perez, O.F.A. Síntesis de una nueva serie de pirroles vía cicloadición. Rev. Soc. Quím. Perú 2009, 75, 12–16. [Google Scholar]
- Surya PrakashRao, H.; Sivakumar, S. Aroylketene dithioacetal chemistry: Facile synthesis of 4-aroyl-3-methylsulfanyl-2-tosylpyrroles from aroylketene dithioacetals and TosMIC. Beilstein J. Org. Chem. 2007, 3, 1–5. [Google Scholar]
- Dannhardt, G.; Kiefer, W.; Krämer, G.; Maehrlein, S.; Nowe, U.; Fiebich, B. The pyrrole moiety as a template for COX-1/COX-2 inhibitors. Eur. J. Med. Chem. 2000, 35, 499–510. [Google Scholar] [CrossRef]
- Qiu, F.L.; Wu, J.W.; Zhang, Y.H.; Hu, M.; Yu, F.; Zhang, G.L.; Yu, Y.P. A novel synthesis of multisubstituted pyrroles via trisubstituted olefins and TosMIC derivatives. Lett. Org. Chem. 2012, 9, 305–308. [Google Scholar]
- Dijkstra, H.P.; Have, R.T.; Van Leusen, A.M. A direct synthesis of 2-(trimethylstannyl)pyrroles from Michael acceptors and stannylated tosylmethyl Isocyanide. J. Org. Chem. 1998, 63, 5332–5338. [Google Scholar] [CrossRef]
- Smith, N.D.; Huang, D.; Cosford, N.D.P. One-step synthesis of 3-aryl- and 3,4-diaryl-(1H)-pyrroles using tosylmethyl Isocyanide (TosMIC). Org. Lett. 2002, 20, 3537–3539. [Google Scholar] [CrossRef]
- Chauhan, P.; Kaya, U.; Enders, D. Advances in organocatalytic 1,6-addition reactions: Enantioselective construction of remote stereogenic centers. Adv. Synth. Catal. 2017, 359, 888–912. [Google Scholar] [CrossRef]
- Liu, K.; Xiong, Y.; Wang, Z.F.; Tao, H.Y.; Wang, C.J. Ligand-controlled stereodivergent 1,3-dipolar cycloaddition of azomethine ylides with 3-methyl-4-nitro-5-styrylisoxazoles. Chem. Commun. 2016, 52, 9458–9461. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.W.; Yao, Z.; Yang, J.; Chen, Z.Y.; Liu, X.L.; Zhao, Z.; Lu, Y.; Zhou, Y.; Cao, Y. 1,3-Dipolar cycloaddition enabled isoxazole-fused spiropyrrolidine oxindoles syntheses from 3-methyl-4-nitro-5-alkenyl-isoxazoles and azomethine ylides. Tetrahedron 2016, 72, 1364–1374. [Google Scholar] [CrossRef]
- Liu, X.L.; Han, W.Y.; Zhang, X.M.; Yuan, W.C. Highly efficient and stereocontrolled construction of 3,3′-pyrrolidonyl spirooxindoles via organocatalytic domino michael/cyclization reaction. Org. Lett. 2013, 15, 1246–1249. [Google Scholar] [CrossRef] [PubMed]
- Disetti, P.; Moccia, M.; Illera, D.S.; Suresh, S.; Adamo, M.F.A. Catalytic enantioselective addition of isocyanoacetate to 3-methyl-4-nitro-5-styrylisoxazoles under phase transfer catalysis conditions. Org. Biomol. Chem. 2015, 13, 10609–10612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Feng, C.J.; Jiang, T.; Li, Y.F.; Pan, L.; Xu, X.X. Expedient and divergent tandem one-pot synthesis of benz[e]indole and spiro[indene-1,3′-pyrrole] derivatives from alkyne-tethered chalcones/cinnamates and TosMIC. Org. Lett. 2015, 17, 3576–3579. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Xu, X.X.; Li, Y.F.; Pan, L.; Liu, Q. [3+3]-cycloaddition reactions of α-acidic isocyanides with 1,3-dipolar azomethine lmines. Org. Lett. 2014, 16, 4004–4007. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Zhang, X.M.; Lu, Z.C.; Zhang, D.W.; Xu, X.X. Accessing benzo[f]indole-4,9-diones via a ring expansion strategy: Silver-catalyzed tandem reaction of tosylmethyl isocyanide (TosMIC) with 2-methyleneindene-1,3-diones. Tetrahedron 2016, 72, 7926–7930. [Google Scholar] [CrossRef]
- Li, Y.F.; Xu, X.X.; Shi, H.; Pan, L.; Liu, Q. Bicyclization of isocyanides with alkenoyl bis(ketene dithioacetals): Access to 6,7-dihydro-1H-indol-4(5H)-ones. J. Org. Chem. 2014, 79, 5929–5933. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Xu, X.X.; Tan, J.; Pan, L.; Xia, W.M.; Liu, Q. Tandem Michael addition/intramolecular isocyanide [3+2] cycloaddition: Highly diastereoselective one pot synthesis of fused oxazolines. Chem. Commun. 2010, 46, 3357–3359. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Xu, X.X.; Xia, W.M.; Liu, Q. Bicyclization of isocyanides: A synthetic strategy for fused pyrroles. Adv. Synth. Catal. 2011, 353, 2619–2623. [Google Scholar] [CrossRef]
- Qiu, F.L; Wu, J.W.; Zhang, Y.H.; Hu, M.; Yu, Y.P. One-pot cascade approach to 1,3′-bipyrrole derivatives from trisubstituted olefins with tosylmethyl-isocyanide (TosMIC). Tetrahedron Lett. 2012, 53, 446–448. [Google Scholar] [CrossRef]
- Zhang, J.L.; Liu, X.H.; Ma, X.J.; Wang, R. Organocatalyzed asymmetric vinylogous Michael addition of α,β–unsaturated γ-butyrolactam. Chem. Commun. 2013, 49, 9329–9331. [Google Scholar] [CrossRef] [PubMed]
- Magnus, P.; Gallagher, T.; Schultz, J.; Or, Y.S.; Ananthanarayan, T.P. Studies on the synthesis of the antitumor agent CC-1065: Synthesis of the unprotected cyclopropapyrroloindole A portion using the 3,3′-bipyrrole strategy. J. Am. Chem. Soc. 1987, 109, 2706–2711. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Cryst. 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 3aa–fb are available from the authors. |
Entry | 1a:2b | Base (equiv) | Solvent | Time (h) | Yield (%) a |
---|---|---|---|---|---|
1 | 1.3:1 | DBU (1.5) | CH3CN | 1.0 | 84 |
2 | 1.3:1 | DBU (1.5) | CH3CN | 6.0 | 87 |
3 | 1.1:1 | DBU (1.5) | CH3CN | 1.5 | 83 |
4 | 1.5:1 | DBU (1.5) | CH3CN | 1.5 | 84 |
5 | 1.3:1 | K2CO3 (1.5) | CH3CN | 8.0 | 82 |
6 | 1.3:1 | KOH (1.5) | CH3CN | 2.5 | 90 |
7 | 1.3:1 | TMG (1.5) | CH3CN | 0.5 | 82 |
8 | 1.3:1 | t-BuOK (1.5) | CH3CN | 1.5 | 77 |
9 | 1.3:1 | NaOH (1.5) | CH3CN | 1.0 | 82 |
10 | 1.3:1 | KOH (1.5) | EtOH | 2.0 | 80 |
11 | 1.3:1 | KOH (1.5) | DMF | 1.5 | 63 |
12 | 1.3:1 | KOH (1.5) | THF | 2.0 | 70 |
Entry | R2 | Time (h) | 3 | Yield (%) a |
---|---|---|---|---|
1 | Ph | 4.0 | aa | 93 |
2 | 4-ClC6H4 | 2.5 | ab | 90 |
3 | 4-BrC6H4 | 5.5 | ac | 88 |
4 | 4-NO2C6H4 | 4.5 | ad | 90 |
5 | 4-CH3C6H4 | 3.5 | ae | 97 |
6 | 3-CH3C6H4 | 4.0 | af | 87 |
7 | 3-OCH3C6H4 | 1.5 | ag | 86 |
8 | 3-ClC6H4 | 3.5 | ah | 86 |
9 | 2-CH3C6H4 | 1.5 | ai | 92 |
10 | 2-ClC6H4 | 5.0 | aj | 89 |
11 | 2,3-ClC6H3 | 3.5 | ak | 57 |
12 | 3,4-Cl2C6H3 | 4.5 | al | 78 |
13 | 2,5-(OCH3)2C6H3 | 4.0 | am | 86 |
14 | 2-furyl | 3.5 | an | 84 |
15 | 2-thienyl | 3.5 | ao | 81 |
16 | 2-naphthyl | 5.0 | ap | 90 |
17 | C6H5CH=CH | 3.0 | aq | 82 |
Entry | R1 | Time (h) | 3 | Yield (%) a |
---|---|---|---|---|
1 | CH3CH2 | 8.0 | bb | 67 |
2 | allyl | 9.0 | cb | 56 |
3 | C6H5 | 4.0 | db | 81 |
4 | C6H5CH2 | 7.0 | eb | 78 |
5 | 4-CH3C6H4CH2 | 5.0 | fb | 83 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Xu, X.; Zhang, D. [3+2] Cycloaddition of Tosylmethyl Isocyanide with Styrylisoxazoles: Facile Access to Polysubstituted 3-(Isoxazol-5-yl)pyrroles. Molecules 2017, 22, 1131. https://doi.org/10.3390/molecules22071131
Zhang X, Xu X, Zhang D. [3+2] Cycloaddition of Tosylmethyl Isocyanide with Styrylisoxazoles: Facile Access to Polysubstituted 3-(Isoxazol-5-yl)pyrroles. Molecules. 2017; 22(7):1131. https://doi.org/10.3390/molecules22071131
Chicago/Turabian StyleZhang, Xueming, Xianxiu Xu, and Dawei Zhang. 2017. "[3+2] Cycloaddition of Tosylmethyl Isocyanide with Styrylisoxazoles: Facile Access to Polysubstituted 3-(Isoxazol-5-yl)pyrroles" Molecules 22, no. 7: 1131. https://doi.org/10.3390/molecules22071131
APA StyleZhang, X., Xu, X., & Zhang, D. (2017). [3+2] Cycloaddition of Tosylmethyl Isocyanide with Styrylisoxazoles: Facile Access to Polysubstituted 3-(Isoxazol-5-yl)pyrroles. Molecules, 22(7), 1131. https://doi.org/10.3390/molecules22071131