How Can Synergism of Traditional Medicines Benefit from Network Pharmacology?
Abstract
:1. Introduction
2. Synergistic Effects in Traditional Medicines
2.1. Synergistic Effects among Herbs or Other Components in TM Prescriptions
2.2. Synergistic Effects among Effective Parts
2.3. Synergism among Compounds
3. Network Pharmacology
4. Application of Network Pharmacology in TMs
4.1. Research into TM Compounds Using Network Pharmacology
4.2. Network Pharmacology Research into TMs Using New Methods or Databases
5. Discussion
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Abdullahi, A.A. Trends and challenges of traditional medicine in Africa. Afr. J. Tradit. Complement. Altern. Med. 2011, 8, 115–123. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. General Guidelines for Methodologies on Research and Evaluation of Traditional Medicine; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Qi, F.H.; Wang, Z.X.; Cai, P.P.; Zhao, L.; Gao, J.J.; Kokudo, N.; Li, A.Y.; Han, J.Q.; Tang, W. Traditional Chinese medicine and related active compounds: A review of their role on hepatitis B virus infection. Drug Discov. Ther. 2013, 7, 212–224. [Google Scholar] [CrossRef] [PubMed]
- Mogami, S.; Hattori, T. Beneficial effects of rikkunshito, a Japanese kampo medicine, on gastrointestinal dysfunction and anorexia in combination with Western drug: A systematic review. Evid.-Based Complement. Altern. Med. 2014, 2014, 519035. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Noble, D. Recent progress and prospects in Sasang constitutional medicine: A traditional type of physiome-based treatment. Prog. Biophys. Mol. Biol. 2014, 116, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Parasuraman, S.; Thing, G.S.; Dhanaraj, S.A. Polyherbal formation: Concept of ayurveda. Pharmacogn. Rev. 2014, 8, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.J. The role of traditional medicine practice in primary health care within Aboriginal Australia: A review of the literature. J. Ethnobiol. Ethnomed. 2013, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.H.; Sun, H.; Qiu, S.; Wang, X.J. Advancing drug discovery and development from active constituents of yinchenhao tang, a famous traditional Chinese medicine formula. Evid.-Based Complement. Altern. Med. 2013, 2013, 257909. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Traditional Medicine Strategy: 2014–2023; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Fabricant, D.S.; Farnsworth, N.R. The value of plants used in traditional medicine for drug discovery. Environ. Health Perspect. 2001, 109, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Ngo, L.T.; Okogun, J.I.; Folk, W.R. 21st Century natural product research and drug development and traditional medicines. Nat. Prod. Rep. 2013, 30, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.T.; Du, L.P.; Mei, D. Progress in the study on the pharmacokinetics of Bicyclol. Med. Res. J. 2011, 40, 18–20. [Google Scholar]
- Yuan, H.D.; Ma, Q.Q.; Ye, L.; Piao, G.C. The traditional medicine and modern medicine from natural products. Molecules 2016, 21, 559. [Google Scholar] [CrossRef] [PubMed]
- Guo, D.A.; Lu, A.; Liu, L. Modernization of traditional Chinese medicine. J. Ethnopharmacol. 2012, 141, 547–548. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Fang, Z.; Zhang, M.; Yi, Z.; Wen, C.; Shi, T. TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 2013, 41, D1089–D1095. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhang, Z.; Li, S.; Ye, X.; Li, X.; He, K. Synergy effects of herb extracts: Pharmacokinetics and pharmacodynamic basis. Fitoterapia 2014, 92, 133–147. [Google Scholar] [CrossRef] [PubMed]
- Kao, W.F.; Hung, D.Z.; Tsai, W.J.; Lin, K.P.; Deng, J.F. Podophyllotoxin intoxication: Toxic effect of Bajiaolian in herbal therapeutics. Hum. Exp. Toxicol. 1992, 11, 480–487. [Google Scholar] [CrossRef] [PubMed]
- Ernst, M. Harmless herbs? A review of the recent literature. Am. J. Med. 1998, 104, 170–178. [Google Scholar] [CrossRef]
- Zhang, L.W.; Li, J. The present situation and development trend of the modernization of Chinese Materia Medica. J. Zhejiang Univ. (Med. Sci.) 2011, 40, 349–353. [Google Scholar]
- Xu, S.J.; Huang, C.M.; Liu, X.H.; Chen, J.N. The connotation of modernization of traditional Chinese medicine and some problems. J. New Chin. Med. 2013, 45, 160–161. [Google Scholar]
- Zhang, W.D. New research idea for the modernization of TCM experience of combining the medicinal chemistry of natural products with biology in natural products research. Chin. J. Nat. Med. 2008, 6, 2–5. [Google Scholar] [CrossRef]
- Xia, Y.F.; Liang, G.P. The modernization of traditional Chinese medicine under the background of big data. Asia-Pacific Tradit. Med. 2015, 11, 1–3. [Google Scholar]
- Zhang, L.; Yan, J.; Liu, X.; Ye, Z.; Yang, X.; Meyboom, R.; Chan, K.; Shaw, D.; Duez, P. Pharmacovigilance practice and risk control of Traditional Chinese Medicine drugs in China: Current status and future perspective. J. Ethnopharmacol. 2012, 140, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Shaw, D.; Graeme, L.; Pierre, D.; Elizabeth, W.; Kelvin, C. Pharmacovigilance of herbal medicine. J. Ethnopharmacol. 2012, 140, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Huang, Y.M.; Wang, H. Research progress of network pharmacology. West China J. Pharm. Sci. 2014, 29, 723–725. [Google Scholar]
- Pool, J.L. Is it time to move to multidrug combinations? Am. J. Hypertens. 2003, 16, 36–40. [Google Scholar] [CrossRef]
- Hurwitz, J.L.; Zhan, X.; Brown, S.A.; Bonsignori, M.; Stambas, J.; Lockey, T.D.; Sealy, R.; Surman, S.; Freiden, P.; Jones, B.; et al. HIV-1 vaccine development: Tackling virus diversity with a multi-envelope cocktail. Front. Biosci. 2008, 13, 609–620. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Qinghaosu (artemisinin): Chemistry and pharmacology. Acta Pharmacol. Sin. 2012, 33, 1141–1146. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Sun, H.; Yuan, Y.; Sun, W.; Jiao, G.; Wang, X. An in vivo analysis of the therapeutic and synergistic properties of Chinese medicinal formula Yin-Chen-Hao-Tang based on its active constituents. Fitoterapia 2011, 82, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Lau, K.M.; Lai, K.K.; Liu, C.L.; Tam, J.C.W.; To, M.H.; Kwok, H.F.; Lau, C.P.; Ko, C.H.; Leung, P.C.; Fung, K.P.; et al. Synergistic interaction between Astragali Radix and Rehmanniae Radix in a Chinese herbal formula to promote diabetic wound healing. J. Ethnopharmacol. 2012, 141, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Ncube, B.; Finnie, J.F.; Van Staden, J. In vitro antimicrobial synergism within plant extract combinations from three South African medicinal bulbs. J. Ethnopharmacol. 2012, 139, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Prakash, A.; Kalia, A.N.; Majeed, A.B. Synergistic hepatoprotective potential of ethanolic extract of Solanum xanthocarpum and Juniperus communis against paracetamol and azithromycin induced liver injury in rats. J. Tradit. Complement. Med. 2015, 6, 370–376. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.T.; Xu, Q.; Li, Y.C.; Yang, L.; Kong, L.D. Antidepressant-like synergism of extracts from magnolia bark and ginger rhizome alone and in combination in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry 2009, 33, 616–624. [Google Scholar] [CrossRef] [PubMed]
- Li, M.H.; Xua, Y.; Yang, W.J.; Li, J.K.; Xu, X.Y.; Zhang, X.; Chen, F.T.; Li, D.P. In vitro synergistic anti-oxidant activities of solvent-extracted fractions from Astragalus membranaceus and Glycyrrhiza uralensis. LWT—Food Sci. Technol. 2011, 44, 1745–1751. [Google Scholar] [CrossRef]
- Liao, Z.G.; Liang, X.L.; Zhu, J.Y.; Zhao, G.W.; Yang, M.; Wang, G.F.; Jiang, Q.Y.; Chen, X.L. Correlation between synergistic action of Radix Angelica dahurica extracts on analgesic effects of Corydalis alkaloid and plasma concentration of dl-THP. J. Ethnopharmacol. 2010, 129, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Chicca, A.; Raduner, S.; Pellati, F.; Strompen, T.; Altmann, K.H.; Schoop, R.; Gertsch, J. Synergistic immunomopharmacological effects of N-alkylamides in Echinacea purpurea herbal extracts. Int. Immunopharmacol. 2009, 9, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Uto, T.; Morinaga, O.; Tanaka, H.; Shoyama, Y. Analysis of the synergistic effect of glycyrrhizin and other constituents in licorice extract on lipopolysaccharide-induced nitric oxide production using knock-out extract. Biochem. Biophys. Res. Commun. 2012, 417, 473–478. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.Y.; Ye, X.L.; Cui, X.L.; He, K.; Jin, Y.N.; Chen, Z.; Li, X.G. Cytotoxicity and antihyperglycemic effect of minor constituents from Rhizoma Coptis in HepG2 cells. Fitoterapia 2012, 83, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Nagaprashantha, L.D.; Vatsyayan, R.; Singhal, J.; Fast, S.; Roby, R.; Awasthi, S.; Singhal, S.S. Anti-cancer effects of novel flavonoid vicenin-2 as a single agent and in synergistic combination with docetaxel in prostate cancer. Biochem. Pharmacol. 2011, 82, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhou, G.B.; Liu, P.; Song, J.H.; Liang, Y.; Yan, X.J.; Xu, F.; Wang, B.S.; Mao, J.H.; Shen, Z.X.; et al. Dissection of mechanisms of Chinese medicinal formula Realgar-Indigo naturalis as an effective treatment for promyelocytic leukemia. Proc. Natl. Acad. Sci. USA 2008, 105, 4826–4831. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhou, H. Application of Proteomics Technique in Study of Network Pharmacology. Prog. Pharm. Sci. 2014, 38, 89–96. [Google Scholar]
- Muqbil, I.; Bao, G.W.; El-Kharraj, R.; Shah, M.; Mohammad, R.M.; Sarkar, F.H.; Azmi, A.S. Systems and Network Pharmacology Approaches to Cancer Stem Cells Research and Therapy. J. Stem Cell Res. Ther. 2012. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.Y.; Zhou, W.X.; Zhang, Y.X. Network pharmacology-based strategy for antitumor drug discovery. J. Int. Pharm. Res. 2014, 41, 1–5. [Google Scholar]
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Peng, X.F.; Wang, L.; Bian, Y.H. Network pharmacology research technologies and applications. J. Tianjin Univ. TCM 2015, 34, 121–124. [Google Scholar]
- Zhou, W.X. Research progress and development prospect of network pharmacology. Chin. J. Pharmacol. Toxicol. 2015, 29, 760–762. [Google Scholar]
- Elgoyhen, A.B.; Langguth, B.; Vanneste, S.; De Ridder, D. Tinnitus: Network pathophysiology-network pharmacology. Front. Syst. Neurosci. 2012, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Azmi, A.S.; Wang, Z.; Philip, P.A.; Mohammad, R.M.; Sarkar, F.H. Proof of concept: Network and systems biology approaches aid in the discovery of potent anticancer drug combinations. Mol. Cancer Ther. 2010, 9, 3137–3144. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wu, X.; Pandey, R.; Li, J.; Zhao, G.; Ibrahim, S.; Chen, J.Y. C²Maps: A network pharmacology database with comprehensive disease-gene-drug connectivity relationships. BMC Genom. 2012, 13, S17. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Feng, F. Network pharmacology-based antioxidant effect study of Zhi-zi-da-huang decoction for alcoholic liver disease. Evid.-Based Complement. Altern. Med. 2015, 2015, 492470. [Google Scholar] [CrossRef] [PubMed]
- Alaimo, S.; Pulvirenti, A.; Giugno, R.; Ferro, A. Drug-target interaction prediction through domain-tuned network-based inference. Bioinformatics 2013, 29, 2004–2008. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Chen, J.L.; Xu, L.W.; Ji, G. Navigating traditional chinese medicine network pharmacology and computational tools. Evid.-Based Complement. Altern. Med. 2013, 2013, 731969. [Google Scholar] [CrossRef] [PubMed]
- Ke, Z.P.; Zhang, X.Z.; Ding, Y.; Cao, L.; Li, N.; Ding, G.; Wang, Z.Z.; Xiao, W. Study on effective substance basis and molecular mechanism of qi-gui-tong-feng tablet using network pharmacology method. China J. Chin. Mater. Med. 2015, 40, 2837–2842. [Google Scholar]
- Hu, Q.N.; Deng, Z.; Tu, W.; Yang, X.; Meng, Z.B.; Deng, Z.X.; Liu, J. VNP: Interactive Visual Network Pharmacology of Diseases, Targets, and Drugs. CPT Pharmacomet. Syst. Pharmacol. 2014, 3, e105. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Lu, C.; Jiang, M.; Niu, X.; Guo, H.; Li, L.; Bian, Z.; Lin, N.; Lu, A. Traditional Chinese medicine-based network pharmacology could lead to new multicompound drug discovery. Evid.-Based Complement. Altern. Med. 2012, 2012, 149762. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, M.A.; Goh, K.I.; Cusick, M.E.; Barabási, A.L.; Vidal, M. Drug—Target network. Nat. Biotechnol. 2007, 25, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Iyengar, R. Systems pharmacology: Network analysis to identify multiscale mechanisms of drug action. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 505–521. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Sun, X.B. Network pharmacology: New opportunity for the modernization of traditional Chinese medicine. Acta Pharm. Sin. 2012, 47, 696–703. [Google Scholar]
- Liu, P.; Duan, J.A.; Bai, G.; Su, S.L. Network pharmacology study on major active compounds of si-wu decoction analogous formulae for treating primary dysmenorrhea of gynecology blood stasis syndrome. China J. Chin. Mater. Med. 2014, 39, 113–120. [Google Scholar]
- Jia, D.M.; He, X.J.; Jiang, M.; Yi, X.L.; Zhao, N.; Tan, Y.; Li, L.; Lv, A.P. Prediction of molecular mechanism of Radix Angelicae Pubescentis in treatment of rheumatoid arthritis by network pharmacology. Liaoning J. Tradit. Chin. Med. 2015, 42, 1838–1841. [Google Scholar]
- Pei, L.; Bao, Y.; Liu, S.; Zheng, J.; Chen, X. Material basis of Chinese herbal formulas explored by combining pharmacokinetics with network pharmacology. PLoS ONE 2013, 8, e57414. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, Y.; Li, Z.; Zhang, B.; Cheng, Y.; Fan, X. Identifying roles of “Jun-Chen-Zuo-Shi” component herbs of QiShenYiQi formula in treating acute myocardial ischemia by network pharmacology. Chin. Med. 2014, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, X.; Li, S. An Integrative platform of TCM network pharmacology and its application on a herbal formula, Qing-Luo-Yin. Evid.-Based Complement. Altern. Med. 2013, 2013, 456747. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.H.; Cai, Y.P.; Cai, X.J.; Zheng, X.Y.; Cao, D.S.; Ye, F.Q.; Xiang, Z. A network pharmacology approach to understanding the mechanisms of action of traditional medicine: Bushenhuoxue formula for treatment of chronic kidney disease. PLoS ONE 2014, 9, e89123. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, L.; Zhang, B.; Jiang, Y.; Wang, X.; Guo, Y.; Liu, H.; Li, S.; Tong, X. A network pharmacology approach to determine active compounds and action mechanisms of ge-gen-qin-lian decoction for treatment of type 2 diabetes. Evid.-Based Complement. Altern. Med. 2014, 2014, 495840. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhang, Y.; Lei, Y.; Gao, X.; Zhai, H.; Lin, N.; Tang, S.; Liang, R.; Ma, Y.; Li, D.; et al. A systems biology-based approach to uncovering the molecular mechanisms underlying the effects of dragon's blood tablet in colitis, involving the integration of chemical analysis, ADME prediction, and network pharmacology. PLoS ONE 2014, 9, e101432. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.L.; Ma, X.H.; Yan, L.L.; Xu, X.J.; Sun, H. Network pharmacological studies of huo-xiang-zheng-qi pill in treating functional dyspepsia. Chin. J. New Drugs 2014, 23, 1371–1377. [Google Scholar]
- Wang, L.L.; Zhao, X.P.; Zhao, Z.Y.; Fan, X.H.; Li, Z. Network pharmacology study of mechanism on xue-sai-tong injection against retinal vein occlusion. China J. Chin. Mater. Med. 2014, 39, 2322–2325. [Google Scholar]
- Pan, Y.; Li, S.X.; Huang, D.; Pan, M.Q. Network pharmacology approach to predict the anti-cancer active ingredients of gan-fu-le against hepatocellular carcinoma. China J. Chin. Mater. Med. 2014, 29, 1490–1498. [Google Scholar]
- Yu, X.C.; Yang, W.; Wu, B.L.; Yang, Y.X.; Li, C.Y. Predication of Anti-Diabetes Effects of Corydalis yanhusuo Alkaloids with Pharmacological Network Technology and Experimental Validation in ICR Mice. Chin. Pharm. J. 2014, 49, 913–918. [Google Scholar]
- Li, S.; Zhang, B.; Jiang, D.; Wei, Y.; Zhang, N. Herb network construction and co-module analysis for uncovering the combination rule of traditional Chinese herbal formulae. BMC Bioinform. 2010, 11, S6. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Gui, Y.; Chen, L.; Yuan, G.; Xu, X. CVDHD: A cardiovascular disease herbal database for drug discovery and network pharmacology. J. Cheminform. 2013, 5, 51. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.Q.; Li, X.; Zeng, M.L.; Huang, X.L.; Yu, H.Y. A network pharmacology based study of regulation effects of the main active components in hong-hua injection on cerebrovascular disease network. Chin. Pharm. J. 2015, 50, 1402–1407. [Google Scholar]
- Chen, J.; Gu, J.F.; Wang, C.F.; Yuan, J.R.; Zhao, B.J.; Zhang, L.; Cheng, X.D.; Feng, L.; Jia, X.B. Structural components of Chinese medicine and pharmacology network: Systematical overall regulation on pathological network. China J. Chin. Mater. Med. 2015, 40, 758–764. [Google Scholar]
- Liu, Q.S.; Chen, X.Y.; Zhuang, S.J. Research progress of gene expression profiles based on the application of it in traditional Chinese medicine network pharmacology. Lishizhen Med. Mater. Med. Res. 2014, 25, 502–504. [Google Scholar]
- Gu, J.; Gui, Y.; Chen, L.; Yuan, G.; Lu, H.Z.; Xu, X. Use of natural products as chemical library for drug discovery and network pharmacology. PLoS ONE 2013, 8, e62839. [Google Scholar] [CrossRef] [PubMed]
- Hsin, K.Y.; Ghosh, S.; Kitano, H. Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS ONE 2013, 8, e83922. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Zhang, H.; Chen, L.; Xu, S.; Yuan, G.; Xu, X. Drug-target network and polypharmacology studies of a Traditional Chinese Medicine for type II diabetes mellitus. Comput. Biol. Chem. 2011, 35, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, B.; Zhang, N. Network target for screening synergistic drug combinations with application to traditional Chinese medicine. BMC Syst. Biol. 2011, 5, S10. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.B.; Li, Q.Y.; Chen, Q.L.; Su, S.B. Network pharmacology: A new approach for Chinese herbal medicine research. Evid.-Based Complement. Altern. Med. 2013, 2013, 621423. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.S.; Lin, Z.C.; Xu, H.F.; Zeng, J.W.; Xu, X.J.; Liu, X.X.; Ye, H.Z. Pharmacological research on osteoarthritis treated by tou-gu-xiao-tong capsule. J. Fujian Univ. TCM 2011, 21, 43–47. [Google Scholar]
- Hoeng, J.; Deehan, R.; Pratt, D.; Martin, F.; Sewer, A.; Thomson, T.M.; Drubin, D.A.; Waters, C.A.; de Graaf, D.; Peitsch, M.C. A network-based approach to quantifying the impact of biologically active substances. Drug Discov. Today 2012, 17, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Fang, H.Y.; Zhang, W.D. Bioinformatics approaches in research on network pharmacology of traditional Chinese medicine. Prog. Pharm. Sci. 2014, 38, 97–103. [Google Scholar]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhu, J.; Lum, P.Y.; Yang, X.; Pinto, S.; MacNeil, D.J.; Zhang, C.; Lamb, J.; Edwards, S.; Sieberts, S.K.; et al. Variations in DNA elucidate molecular networks that cause disease. Nature 2008, 452, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, X.J. Drug targets discovery based on dynamic signal transduction networks. Acta Pharm. Sin. 2010, 45, 1–8. [Google Scholar]
- Csermely, P.; Agoston, V.; Pongor, S. The efficiency of multi-target drugs: The network approach might help drug design. Trends Pharmacol. Sci. 2005, 26, 178–182. [Google Scholar] [CrossRef] [PubMed]
- Mayer, L.D.; Janoff, A.S. Optimizing combination chemotherapy by controlling drug ratios. Mol. Interv. 2007, 7, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Ihnatova, I.; Budinska, E. ToPASeq: An R package for topology-based pathway analysis of microarray and RNA-Seq data. BMC Bioinform. 2015, 16, 350. [Google Scholar] [CrossRef] [PubMed]
TMs | Main Targets or Active Compounds | Employed Methodologies | Databases |
---|---|---|---|
si-wu decoction [59] | serine/threonine protein kinases | Cytoscape software | Kyoto Encyclopedia of Genes and Genomes pathway database, PharmMapper database |
Radix angelicae pubescentis [60] | aryl hydrocarbon receptor, histone H3 | Ingenuity Pathway Analysis software | Taiwanese TCM database, the PubChem database, Gene database |
zhi-zi-da-huang decoction [50] | cytochrome P450 2E1, xanthine oxidase, etc. | Discovery Studio 2.5 Cytoscape 3.0.2 | RCSB Protein Data Bank |
bu-shen-zhuang-gu formula [61] | psoralen, psoralidin, isopsoralen, bergapten | Cytoscape 2.8.2 | Entrez Gene, PubMed, CNKI |
qing-luo-yin formula [63] | AKT1, PTK2, NF-κB | Principal Component Analysis (PCA) | HerbBioMap database, OMIM Morbid Map, DrugBank |
bu-shen-huo-xue formula [64] | tanshinone IIA, calycosin | Cytoscape 2.8 | Online Mendelian Inheritance in Man (OMIM), Genetic Association Database (GAD), Drugbank and Protein Data Bank |
ge-gen-qin-lian decoction [65] | berberine and guaifenesin | drugCIPHER | Herb BioMap database, DAVID database |
dragon’s blood tablets [66] | Hsp90, ADRB1, ADRB2 | Therapeutic Targets Database 4.3.02, Navigator 2.2.1, Cytoscape 2.8.1 | DrugBank, Human Annotated and Predicted Protein Interaction Database (HAPPI), Reactome, Online Predicted Human Interaction Database (OPHID), InAct, etc. |
huo-xiang-zheng-qi pill [67] | 14 compounds, 23 targets | Discovery Studio 3.0, Cytoscape 3.1.0 | DrugBank, PDB database |
xue-sai-tong injection [68] | IL-1β, VEGF, and IL-6 | compound-target network | PubMed |
gan-fu-le formula [69] | PI3K-Akt, mTOR, Wnt, Jak-STAT | Cytoscape 3.0.2, STRING 9.05 | OMIM, RCSB protein Data Bank |
Corydalis yanhusuo [70] | NOS3, KCNJ11 | cytoscape 2.8.2. | OMIM, CNKI, VIP, PubMed, Wanfang databases |
qi-gui-tong-feng tablets [53] | xanthine dehydrogenase, xanthine oxidase, etc. | DS 2.5 | Therapeutic Target Database (TTD), RCSB |
hong-hua injection [73] | Quercetin, hydroxysafflor yellow A | Cytoscape 3.1.0 | PubMed, HPRD, BioGRID databases |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Ma, Q.; Cui, H.; Liu, G.; Zhao, X.; Li, W.; Piao, G. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules 2017, 22, 1135. https://doi.org/10.3390/molecules22071135
Yuan H, Ma Q, Cui H, Liu G, Zhao X, Li W, Piao G. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules. 2017; 22(7):1135. https://doi.org/10.3390/molecules22071135
Chicago/Turabian StyleYuan, Haidan, Qianqian Ma, Heying Cui, Guancheng Liu, Xiaoyan Zhao, Wei Li, and Guangchun Piao. 2017. "How Can Synergism of Traditional Medicines Benefit from Network Pharmacology?" Molecules 22, no. 7: 1135. https://doi.org/10.3390/molecules22071135
APA StyleYuan, H., Ma, Q., Cui, H., Liu, G., Zhao, X., Li, W., & Piao, G. (2017). How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules, 22(7), 1135. https://doi.org/10.3390/molecules22071135