Persimmon Fruit Powder May Substitute Indolbi, a Synthetic Growth Regulator, in Soybean Sprout Cultivation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Moisture and Vitamin C Contents
2.2. Color Value of Soybean Sprouts
2.3. Free Amino Acid Composition
2.4. Mineral Content
2.5. Isoflavone Content
2.6. DPPH and Superoxide Anion Radical Scavenging Activities and Total Phenolic Content
3. Materials and Methods
3.1. Experiment Materials and Reagents
3.2. Cultivation of Soybean Sprouts
3.3. Measurement of Sprout Yield
3.4. Determination of Moisture and Vitamin C Content
3.5. Color Measurement
3.6. Determination of Free Amino Acid Content
3.7. Determination of Mineral Content
3.8. Determination of Isoflavone Content
3.9. Determination of DPPH Free Radical Scavenging Potential
3.10. Determination of Superoxide Anion Scavenging Activity
3.11. Determination of Total Phenolic Content
3.12. Statistical Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Hwang, Y.H.; Jeong, Y.S.; Lee, J.D. Present status and future developmental direction of soy-related industries in Korea. Korea Soybean Digest 2004, 21, 28–44. [Google Scholar]
- Bau, H.M.; Villaume, C.; Nicolas, J.P.; Mejean, L. Effects of germination on chemical composition, biochemical constituents and antinutritional factors of soyabean seeds. J. Sci. Food Agric. 1997, 73, 1–9. [Google Scholar] [CrossRef]
- Shi, H.; Nam, P.K.; Ma, Y. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination. J. Agr. Food Chem. 2010, 58, 4970–4976. [Google Scholar] [CrossRef] [PubMed]
- Quinhone, E.; Ida, I. Profile of the contents of different forms of soybean isoflavones and the effect of germination time on these compounds and the physical parameters in soybean sprouts. Food Chem. 2015, 166, 173–178. [Google Scholar] [CrossRef] [PubMed]
- Gu, E.J.; Kim, D.W.; Jang, G.J.; Song, S.H.; Lee, J.I.; Lee, S.B.; Kim, B.M.; Cho, Y.; Lee, H.J.; Kim, H.J. Mass-based metabolomic analysis of soybean sprouts during germination. Food Chem. 2017, 217, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Frias, J.; Miranda, M.L.; Doblado, R.; Vidal-Valverde, C. Effect of germination and fermentation on the antioxidant vitamin content and antioxidant capacity of Lupinus albus L. var. Multolupa. Food Chem. 2005, 92, 211–220. [Google Scholar] [CrossRef]
- Granito, M.; Torres, A.; Frias, J.; Guerra, M.; Vidal-Valverde, C. Influence of fermentation on the nutritional value of two varieties of Vigna sinensis. Eur. Food Res. Technol. 2005, 220, 176–181. [Google Scholar] [CrossRef]
- Vidal-Valverde, C.; Frias, J.; Sierra, I.; Blazquez, I.; Lambein, F.; Kuo, Y.H. New functional legume foods by germination: Effect on the nutritive value of beans, lentils and peas. Eur. Food Res. Technol. 2002, 215, 472–477. [Google Scholar] [CrossRef]
- Doblado, R.; Frias, J.; Vidal-Valverde, C. Changes in vitamin C content and antioxidant capacity of raw and germinated cowpea (Vignasinensis var. Carilla) seeds induced by high pressure treatment. Food Chem. 2007, 101, 918–923. [Google Scholar] [CrossRef]
- Miyake, Y.; Tanaka, K.; Okubo, H.; Sasaki, S.; Furukawa, S.; Arakawa, M. Soy isoflavone intake and prevalence of depressive symptoms during pregnancy in Japan: baseline data from the Kyushu Okinawa Maternal and Child Health Study. Eur. J. Nutr. 2016, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, B.K.; Jaceldo-Siegl, K.; Knutsen, S.F.; Fan, J.; Oda, K.; Fraser, G.E. Soy isoflavone intake and the likelihood of ever becoming a mother: the Adventist Health Study-2. Int. J. Women’s Health 2014, 6, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blake, C.; Hansen, T.; Simmons, T.C.; Lephart, E.D. Long time exposure to soy/isoflavone-rich diet enhances testicular and prostate health in Long-Evans rats. J. Funct. Foods 2013, 5, 1494–1501. [Google Scholar] [CrossRef]
- Lee, A.H.; Su, D.; Pasalich, M.; Tang, L.; Binns, C.W.; Qiu, L. Soy and isoflavone intake associated with reduced risk of ovarian cancer in southern Chinese women. Nutr. Res. 2014, 34, 302–307. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Kim, J.G.; Kim, W.J. Changes in isoflavone and oligosaccharides of soybeans during germination. Korean J. Food Sci. Technol. 2004, 36, 294–297. [Google Scholar]
- Lai, J.; Xin, C.; Zhao, Y.; Feng, B.; He, C.; Dong, Y.; Fang, Y.; Wei, S. Study of active ingredients in black soybean sprouts and their safety in cosmetic use. Molecules 2012, 17, 11669–11679. [Google Scholar] [CrossRef] [PubMed]
- Paucar-Menacho, L.M.; Berhow, M.A.; Mandarino, J.M.G.; Chang, Y.K.; De Mejia, E.G. Effect of time and temperature on bioactive compounds in germinated Brazilian soybean cultivar BRS 258. Food Res. Int. 2010, 43, 1856–1865. [Google Scholar] [CrossRef]
- Wang, X.; Yang, R.; Jin, X.; Shen, C.; Zhou, Y.; Chen, Z.; Gu, Z. Effect of supplemental Ca2+ on yield and quality characteristics of soybean sprouts. Sci. Hortic. 2016, 198, 352–362. [Google Scholar] [CrossRef]
- Yang, H.; Gao, J.; Yang, A.; Chen, H. The ultrasound-treated soybean seeds improve edibility and nutritional quality of soybean sprouts. Food Res. Int. 2015, 77, 704–710. [Google Scholar] [CrossRef]
- Chen, Y.; Chang, S.K. Macronutrients, phytochemicals, and antioxidant activity of soybean sprout germinated with or without light exposure. J. Food Sci. 2015, 80, S1391–S1398. [Google Scholar] [CrossRef] [PubMed]
- Yun, J.; Li, X.; Fan, X.; Li, W.; Jiang, Y. Growth and quality of soybean sprouts (Glycine max L. Merrill) as affected by gamma irradiation. Radiat. Phys. Chem. 2013, 82, 106–111. [Google Scholar] [CrossRef]
- Zou, T.; Xu, N.; Hu, G.; Pang, J.; Xu, H. Biofortification of soybean sprouts with zinc and bioaccessibility of zinc in the sprouts. J. Sci. Food Agr. 2014, 94, 3053–3060. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Ahn, J.K.; Khanh, T.D.; Chun, S.C.; Kim, S.L.; Ro, H.M.; Song, H.K.; Chung, I.M. Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. J. Agr. Food Chem. 2007, 55, 9415–9421. [Google Scholar] [CrossRef] [PubMed]
- Algar, E.; Ramos-Solano, B.; García-Villaraco, A.; Sierra, M.D.S.; Gómez, M.S.M.; Gutiérrez-Mañero, F.J. Bacterial bioeffectors modify bioactive profile and increase isoflavone content in soybean sprouts (Glycine max var. Osumi). Plant Food. Hum. Nutr. (Formerly Qual. Plant.) 2013, 68, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.D.; Kim, S.S.; Kim, S.R.; Lee, B.Y. Effect of irrigation solutions on growth and rot of soybean sprouts. Korean J. Food Sci. Technol. 2000, 32, 1122–1127. [Google Scholar]
- Choi, S.D.; Kim, Y.H.; Nam, S.H.; Shon, M.Y.; Choi, J. Changes in major taste components of soybean sprouts germinated with extract of Korean Panax ginseng. Korean J. Life Sci. 2003, 13, 273–278. [Google Scholar]
- Huang, S.-W.; Yang, J.; Sun, Y.-M.; Tang, Y.-W.; Yang, H.-J.; Liu, C.-H. Effects of 6-Benzylaminopurine on soybean sprouts growth and determination of its residue. J. South. Agric. 2015, 46, 255–259. [Google Scholar]
- Ebert, G.; Gross, J. Carotenoid changes in the peel of ripening persimmon (Diospyros kaki) cv. Triumph. Phytochemistry 1985, 24, 29–32. [Google Scholar] [CrossRef]
- Gorinstein, S.; Zemser, M.; Haruenkit, R.; Chuthakorn, R.; Grauer, F.; Martin-Belloso, O.; Trakhtenberg, S. Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon. J. Nutr. Biochem. 1999, 10, 367–371. [Google Scholar] [CrossRef]
- Celik, A.; Ercisli, S. Persimmon cv. Hachiya (Diospyros kaki Thunb.) fruit: Some physical, chemical and nutritional properties. Int. J. Food Sci. Nutr. 2007, 18, 1–8. [Google Scholar]
- Del Bubba, M.; Giordani, E.; Pippucci, L.; Cincinelli, A.; Checchini, L.; Galvan, P. Changes in tannins, ascorbic acid and sugar contents in astringent persimmons during on-tree growth and ripening and in response to different postharvest treatments. J. Food Compos. Anal. 2009, 22, 668–677. [Google Scholar] [CrossRef]
- Lu, X.; Jung, J.I.; Cho, H.J.; Lim, D.I.; Lee, H.S.; Chun, H.S.; Kwon, D.Y.; Park, J.H. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J. Nutr. 2005, 135, 2884–2890. [Google Scholar] [PubMed]
- Kim, I.D.; Dhungana, S.K.; Kim, J.H.; Ahn, H.; Kim, H.R.; Shin, D.H. Enhancement of yield and nutritional value of soybean sprouts by persimmon fruit powder. Afr. J. Biotechnol. 2016, 15, 2490–2496. [Google Scholar]
- Reeds, P.J. Dispensable and indispensable amino acids for humans. J. Nutr. 2000, 130, 1835S–1840S. [Google Scholar] [PubMed]
- Nikmaram, N.; Dar, B.N.; Roohinejad, S.; Koubaa, M.; Barba, F.J.; Ralf, G.; Johnson, S.K. Recent advances in γ-aminobutyric acid (GABA) properties in pulses: An overview. J. Sci. Food Agric. 2017, 97, 2681–2689. [Google Scholar] [CrossRef] [PubMed]
- Krogsgaard-Larsen, P. GABA receptors. In Receptor Phamacology and Function; Williams, M., Glennon, R.A., Timmermans, P.M.W.M., Eds.; Marcel Dekker Inc.: New York, NY, USA, 1989; p. 349383. [Google Scholar]
- Mody, I.; De Koninck, Y.; Otis, T.S.; Soltesz, I. Bridging the cleft at GABA synapses in the brain. Trend. Neurosci. 1994, 17, 517–525. [Google Scholar] [CrossRef]
- Oh, C.H.; Oh, S.H. Effect of germinated brown rice extracts with enhanced levels of GABA on cancer cell proliferation and apoptosis. J. Med. Food 2004, 7, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Dhakal, R.; Bajpai, V.; Baek, K. Production of GABA (γ-aminobutyric acid) by microorganisms: a review. Braz. J. Microbiol. 2012, 43, 1230–1241. [Google Scholar] [CrossRef] [PubMed]
- Basarova, G.; Janousek, J. Importance of amino acids in beer technology and quality. Kvas. Prumysl 2000, 46, 314–318. [Google Scholar]
- Wang, X.; Yang, R.; Jin, X.; Zhou, Y.; Han, Y.; Gu, Z. Distribution of phytic acid and associated catabolic enzymes in soybean sprouts and indoleacetic acid promotion of Zn, Fe, and Ca bioavailability. Food Sci. Biotechnol. 2015, 24, 2161–2167. [Google Scholar] [CrossRef]
- Vitale, D.C.; Piazza, C.; Melilli, B.; Drago, F.; Salomone, S. Isoflavones: estrogenic activity, biological effect and bioavailability. Eur. J. Drug Metab. Pharmacokinet. 2013, 38, 15–25. [Google Scholar] [CrossRef] [PubMed]
- Setchell, K.D.R.; Cassidy, A. Dietary isoflavones: Biological effects and relevance to human health. J. Nutr. 1999, 129, 758s–767s. [Google Scholar] [PubMed]
- Messina, M.; Gugger, E.T.; Alekel, D.L. Soy protein, soybean isoflavones and bone health: a review of the animal and human data. In Handbook of Nutraceuticals and Functional Foods; CRC Press LLC: Boca Raton, FL, USA, 2001; pp. 77–98. [Google Scholar]
- Demonty, I.; Lamarche, B.; Jones, P.J.H. Role of isoflavones in the hypocholesterolemic effect of soy. Nutr. Rev. 2003, 61, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Jha, A.B.; Dubey, R.S. Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 2011, 248, 565–577. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Dubey, R.S. Manganese-excess induces oxidative stress, lowers the pool of antioxidants and elevates activities of key antioxidative enzymes in rice seedlings. Plant Growth Regul. 2011, 64, 1–16. [Google Scholar] [CrossRef]
- Jang, I.C.; Jo, E.K.; Bae, M.S.; Lee, H.J.; Jeon, G.I.; Park, E.; Yuk, H.G.; Ahn, G.H.; Lee, S.C. Antioxidant and antigenotoxic activities of different parts of persimmon (Diospyros kaki cv. Fuyu) fruit. J. Med. Plants Res. 2010, 4, 155–160. [Google Scholar]
- Jang, I.C.; Oh, W.G.; Ahn, G.H.; Lee, J.H.; Lee, S.C. Antioxidant activity of 4 cultivars of persimmon fruit. Food Sci. Biotechnol. 2011, 20, 71–77. [Google Scholar] [CrossRef]
- Rice-evans, C.A.; Miller, N.J.; Bolwell, P.G.; Bramley, P.M.; Pridham, J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 1995, 22, 375–383. [Google Scholar] [CrossRef] [PubMed]
- Maksimovic, Z.; Malencic, D.; Kovacevic, N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresour. Technol. 2005, 96, 873–877. [Google Scholar] [CrossRef] [PubMed]
- Park, K.Y.; Yun, H.T.; Moon, J.K.; Ku, J.H.; Hwang, J.J.; Lee, S.H.; Seung, Y.K.; Ryu, Y.H.; Chung, W.K.; Lee, Y.H.; et al. A new soybean cultivar for sprout with good storability and disease resistance, ‘Sowonkong’. Korean J. Breed. 2000, 32, 298–299. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 16th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1995. [Google Scholar]
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Kim, I.D.; Lee, J.W.; Kim, S.J.; Cho, J.W.; Dhungana, S.K.; Lim, Y.S.; Shin, D.H. Exogenous application of natural extracts of persimmon (Diospyros kaki Thunb.) can help in maintaining nutritional and mineral composition of dried persimmon. Afr. J. Biotechnol. 2014, 13, 2231–2239. [Google Scholar]
- Je, J.Y.; Park, P.J.; Jung, W.K.; Kim, S.K. Amino acid changes in fermented oyster (Crassostrea gigas) sauce with different fermentation periods. Food Chem. 2005, 91, 15–18. [Google Scholar] [CrossRef]
- Skujins, S. Handbook for ICP-AES (Varian-Vista). A Short Guide to Vista Series. ICP-AES Operation; Version 1.0; Varian Int. AG: Zug, Switzerland, 1998. [Google Scholar]
- Jiao, C.; Yang, R.; Zhou, Y.; Gu, Z. Nitric oxide mediates isoflavone accumulation and the antioxidant system enhancement in soybean sprouts. Food Chem. 2016, 204, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Li, X. Improved pyrogallol autoxidation method: A reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J. Agric. Food Chem. 2012, 60, 6418–6424. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
Sample Availability: Samples of Indolbi and persimmon fruit powder are available from the authors. |
Sample 1 | Total Weight (g) | Moisture (%) | Vitamin C (mg/100 g Fresh Weight) |
---|---|---|---|
Control | 5523 ± 51d 2 (100.0%) | 87.21 ± 0.04a | 16.11 ± 0.21c |
INB | 5995 ± 52b (108.5%) | 87.00 ± 0.18a | 16.76 ± 0.52b |
PT-1 | 5900 ± 30c (106.8%) | 86.88 ± 1.05a | 16.52 ± 0.39bc |
PT-2 | 6140 ± 38b (111.1%) | 87.11 ± 1.11a | 16.99 ± 0.31b |
PT-3 | 6300 ± 61a (114.0%) | 86.99 ± 1.00a | 18.11 ± 0.62a |
PT-4 | 6402 ± 50a (115.9%) | 87.12 ± 0.09a | 17.29 ± 0.32ab |
Sample 1 | Color Value 2 | ||
---|---|---|---|
L* | a* | b* | |
Control | 62.05 ± 0.05a 3 | −1.42 ± 0.07a | 20.82 ± 0.03a |
INB | 59.13 ± 0.06b | −1.37 ± 0.03a | 19.52 ± 0.21c |
PT-1 | 59.18 ± 0.13b | −2.34 ± 0.04e | 18.95 ± 0.05e |
PT-2 | 59.42 ± 0.22b | −1.98 ± 0.02c | 19.19 ± 0.03d |
PT-3 | 58.66 ± 0.81b | −1.60 ± 0.01b | 20.05 ± 0.04b |
PT-4 | 59.45 ± 0.71b | −2.03 ± 0.04d | 19.53 ± 0.06c |
Amino Acid | Sample 1 | |||||
---|---|---|---|---|---|---|
Control | INB | PT-1 | PT-2 | PT-3 | PT-4 | |
Essential Amino Acid | ||||||
l-Histidine | 22.98 ± 2.0ab | 26.26 ± 1.7a | 18.20 ± 1.8c | 21.95 ± 0.8b | 24.98 ± 2.9a | 20.68 ± 0.8bc |
l-Isoleucine | 15.20 ± 0.0c | 18.59 ± 0.8a | 9.89 ± 1.12f | 13.31 ± 0.7d | 16.62 ± 0.3b | 12.11 ± 0.1e |
l-Leucine | 10.70 ± 0.1b 2 | 13.03 ± 0.2a | 6.72 ± 0.2e | 8.86 ± 0.1c | 11.52 ± 1.0b | 7.67 ± 0.4d |
l-Lysine | 8.09 ± 0.3b | 9.67 ± 0.4a | 6.63 ± 0.5bc | 7.24 ± 0.6b | 7.93 ± 0.4b | 6.29 ± 0.2c |
l-Methionine | 2.31 ± 0.0c | 2.69 ± 0.0a | 1.99 ± 0.0c | 2.08 ± 0.0d | 2.44 ± 0.0b | 1.93 ± 0.0f |
l-Phenylalanine | 22.83 ± 1.4b | 30.18 ± 2.1a | 11.15 ± 1.0d | 17.91 ± 0.3c | 23.50 ± 1.6b | 15.69 ± 2.0c |
l-Threonine | 12.57 ± 1.0a | 12.96 ± 0.9a | 13.44 ± 1.3a | 11.36 ± 2.0a | 13.59 ± 1.0a | 10.18 ± 1.2b |
l-Valine | 21.62 ± 1.3c | 26.60 ± 1.8a | 13.74 ± 1.8c | 19.06 ± 1.0c | 23.96 ± 0.5b | 16.99 ± 1.0d |
Sub-total | 116.30 | 139.98 | 81.76 | 101.77 | 124.54 | 91.54 |
Non-essential Amino Acid | ||||||
Glycine | 2.97 ± 0.3ab | 3.68 ± 0.4a | 2.54 ± 0.5b | 2.91 ± 0.2b | 3.29 ± 0.4a | 1.99 ± 0.4c |
l-Alanine | 28.63 ± 2.1a | 30.09 ± 2.1a | 19.85 ± 0.9c | 24.29 ± 1.3b | 29.04 ± 1.0a | 19.35 ± 0.9c |
l-Arginine | 51.08 ± 1.9b | 62.85 ± 2.0a | 37.37 ± 1.9d | 43.67 ± 1.7c | 49.52 ± 2.8b | 43.65 ± 1.6c |
l-Aspartic acid | 25.15 ± 1.0a | 27.13 ± 1.0a | 20.69 ± 0.8c | 23.74 ± 0.9b | 26.93 ± 0.8a | 25.84 ± 2.1ab |
l-Glutamic acid | 200.61 ± 5.1b | 221.39 ± 6.0a | 144.06 ± 3.7d | 165.49 ± 5.2c | 216.39 ± 4.2b | 157.59 ± 3.7c |
l-Serine | 20.37 ± 1.0a | 21.85 ± 1.1a | 15.81 ± 1.0c | 19.14 ± 0.9a | 21.86 ± 1.3a | 18.15 ± 0.9b |
l-Tyrosine | 2.79 ± 0.1b | 3.39 ± 0.3a | 2.54 ± 0.3b | 2.59 ± 0.3b | 2.99 ± 0.5ab | 2.18 ± 0.1c |
Proline | 7.32 ± 0.9b | 8.59 ± 0.3a | 5.12 ± 0.2d | 5.90 ± 0.4c | 0.66 ± 0.9b | 5.41 ± 3.4cd |
Sub-total | 338.92 | 379.97 | 248.98 | 287.73 | 350.68 | 274.16 |
Other Free Amino Acid | ||||||
1-Methyl-l-histidine | 1.29 ± 0.1b | 1.81 ± 0.1a | 0.90 ± 0.0d | 1.11 ± 0.0c | 1.32 ± 0.2b | 0.88 ± 0.2d |
Aminoisobutyric acid | 0.35 ± 0.0c | 0.39 ± 0.1c | 0.57 ± 0.0b | 0.63 ± 0.2ab | 0.70 ± 0.1a | 0.58 ± 0.1ab |
Ethanolamine | 3.03 ± 0.0c | 3.80 ± 0.1a | 3.11 ± 0.3b | 3.41 ± 0.2b | 3.03 ± 0.3bc | 3.21 ± 1.0ab |
l-Anserine | 3.46 ± 0.1b | 3.78 ± 0.3b | 2.78 ± 0.3c | 3.60 ± 0.6b | 4.51 ± 0.5a | 2.62 ± 0.4c |
l-Carnosine | ND 3 | 0.14 ± 0.1b | 0.10 ± 0.0c | 0.14 ± 0.0b | 0.17 ± 0.0a | 0.07 ± 0.0d |
l-α-Aminoadipic acid | 2.54 ± 0.0b | 3.28 ± 0.1a | 2.47 ± 0.1b | 2.48 ± 0.2b | 2.51 ± 0.3b | 2.57 ± 0.1b |
l-α-Amino-n-butyric acid | 0.98 ± 0.0b | 1.05 ± 0.1b | 0.74 ± 0.0d | 1.06 ± 0.0b | 1.37 ± 0.0a | 0.88 ± 0.0c |
O-Phosphoethanolamine | 0.51 ± 0.0c | 0.32 ± 0.0e | 0.41 ± 0.0d | 0.52 ± 0.0c | 0.61 ± 0.0b | 0.72 ± 0.0a |
Urea | 22.01 ± 0.2a | 22.81 ± 0.6a | 14.83 ± 0.5d | 18.47 ± 0.3b | 21.53 ± 0.7a | 16.85 ± 0.4c |
β-Alanine | 2.38 ± 0.1b | 2.56 ± 0.2a | 1.71 ± 0.5c | 2.08 ± 0.3ab | 2.49 ± 0.3ab | 1.63 ± 0.3c |
γ-Amino-n-butyric acid | 14.09 ± 1.3bc | 21.10 ± 1.0a | 12.56 ± 1.0c | 12.93 ± 0.7c | 14.27 ± 1.0bc | 15.71 ± 1.0b |
Sub-total | 50.64 | 61.04 | 40.18 | 45.95 | 58.53 | 45.70 |
Total | 505.86 | 579.99 | 369.92 | 435.45 | 533.75 | 411.40 |
Element | Sample 1 | |||||
---|---|---|---|---|---|---|
Control | INB | PT-1 | PT-2 | PT-3 | PT-4 | |
Ca | 3021.90 ± 10.2a 2 | 2840.81 ± 12.0b | 2110.90 ± 9.2d | 2510.31 ± 15.1c | 2831.41 ± 18.1b | 3165.31 ± 8.1a |
Cu | 45.21 ± 0.4a | 21.09 ± 0.1d | 29.35 ± 0.1b | 21.54 ± 0.0c | 24.94 ± 0.1b | 19.06 ± 0.0e |
Fe | 57.63 ± 0.94b | 54.57 ± 1.07c | 61.48 ± 0.51a | 51.46 ± 0.30d | 54.95 ± 0.73c | 48.51 ± 0.04d |
K | 21127.18 ± 32.1a | 18191.02 ± 82.1c | 20591.88 ± 30.9b | 16798.96 ± 85.7d | 18069.51 ± 115.2c | 15553.43 ± 163.2e |
Mg | 1202.32 ± 49.2b | 1283.74 ± 10.6a | 1218.83 ± 16.4b | 1208.52 ± 18.6b | 1220.60 ± 3.6b | 1151.98 ± 5.3c |
Mn | 48.67 ± 0.8c | 48.30 ± 1.1c | 54.86 ± 0.5a | 43.00 ± 0.3d | 50.76 ± 0.7b | 42.48 ± 0.6d |
Na | 560.35 ± 16.3c | 422.84 ± 5.9e | 668.67 ± 1.1a | 476.27 ± 5.7d | 581.64 ± 2.7b | 407.40 ± 6.5f |
Zn | 64.01 ± 1.1b | 55.04 ± 0.9d | 68.42 ± 0.9a | 54.74 ± 0.9d | 62.39 ± 0.9c | 47.69 ± 0.9e |
Total | 26127.27 | 22917.41 | 24804.39 | 21164.80 | 22896.20 | 20435.86 |
Sample 1 | Isoflavone Content (mg/kg) | ||||||
---|---|---|---|---|---|---|---|
Daidzin | Daidzein | Genistin | Glycitin | Glycitein | Genistein | Total | |
Control | 344.4 ± 9.3b 2 | 18.4 ± 5.4b | 273.1 ± 3.6c | 85.9 ± 6.1ab | 10.5 ± 1.3a | 34.7 ± 2.9a | 767.0 ± 28.6b |
INB | 331.6 ± 6.5b | 20.7 ± 6.9ab | 260.2 ± 4.9d | 83.0 ± 5.3b | 11.0 ± 2.0a | 36.1 ± 4.2a | 742.6 ± 28.2b |
PT-1 | 383.4 ± 5.9a | 25.0 ± 3.1a | 281.0 ± 5.0c | 94.3 ± 7.0ab | 9.6 ± 3.1a | 23.4 ± 5.1bc | 816.7 ± 29.0a |
PT-2 | 370.1 ± 8.4a | 22.3 ± 2.6ab | 297.3 ± 8.6b | 92.7 ± 6.2ab | 9.7 ± 1.1a | 24.3 ± 2.1bc | 816.4 ± 28.7a |
PT-3 | 373.9 ± 14.0a | 18.7 ± 1.8b | 311.7 ± 2.3a | 86.7 ± 5.4ab | 10.3 ± 1.0a | 22.2 ± 1.9c | 823.5 ± 26.6a |
PT-4 | 386.7 ± 12.1a | 21.6 ± 2.2ab | 316.4 ± 6.0a | 95.0 ± 6.7a | 9.8 ± 2.1a | 26.9 ± 1.8b | 856.4 ± 30.5a |
Sample 1 | % Inhibition 2 | Total Phenol Content (µg GAE 3/g of Sample) | |
---|---|---|---|
DPPH | O2- | ||
Control | 75.90 ± 1.2d 4 | 9.13 ± 0.6e | 326.20 ± 3.1c |
INB | 78.18 ± 0.4c | 11.06 ± 0.2d | 343.48 ± 1.4b |
PT-1 | 77.41 ± 0.8cd | 13.94 ±0.3c | 298.92 ± 2.1e |
PT-2 | 79.88 ± 1.0bc | 11.54 ± 0.1d | 328.41 ± 2.3c |
PT-3 | 83.19 ± 0.3a | 15.77 ± 0.5b | 355.46 ± 0.9a |
PT-4 | 80.03 ± 0.4b | 20.04 ± 0.1a | 313.44 ± 0.5d |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, I.-D.; Dhungana, S.K.; Park, Y.-S.; Kim, D.J.; Shin, D.-H. Persimmon Fruit Powder May Substitute Indolbi, a Synthetic Growth Regulator, in Soybean Sprout Cultivation. Molecules 2017, 22, 1462. https://doi.org/10.3390/molecules22091462
Kim I-D, Dhungana SK, Park Y-S, Kim DJ, Shin D-H. Persimmon Fruit Powder May Substitute Indolbi, a Synthetic Growth Regulator, in Soybean Sprout Cultivation. Molecules. 2017; 22(9):1462. https://doi.org/10.3390/molecules22091462
Chicago/Turabian StyleKim, Il-Doo, Sanjeev Kumar Dhungana, Yong-Sung Park, Dong Joon Kim, and Dong-Hyun Shin. 2017. "Persimmon Fruit Powder May Substitute Indolbi, a Synthetic Growth Regulator, in Soybean Sprout Cultivation" Molecules 22, no. 9: 1462. https://doi.org/10.3390/molecules22091462
APA StyleKim, I. -D., Dhungana, S. K., Park, Y. -S., Kim, D. J., & Shin, D. -H. (2017). Persimmon Fruit Powder May Substitute Indolbi, a Synthetic Growth Regulator, in Soybean Sprout Cultivation. Molecules, 22(9), 1462. https://doi.org/10.3390/molecules22091462