Synthesis and Antimicrobial Activity of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biology
3. Materials and Methods
3.1. Compounds Synthesis
3.1.1. General Experimental Procedures
3.1.2. General Procedures for the Preparation of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives
3.2. Microbial Strains
3.3. MIC Determination
3.4. Haemolytic Assay
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Holpuch, A. UN meeting tackles the “fundamental threat” of antibiotic-resistant superbugs. Guardian 2016. [Google Scholar]
- Viswanathan, V.K. Off-label abuse of antibiotics by bacteria. Gut Microbes 2014, 5, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Read, A.F.; Woods, R.J. Antibiotic resistance management. Evol. Med. Public Health 2014, 2014, 147. [Google Scholar] [CrossRef] [PubMed]
- The antibiotic alarm. Nature 2013, 495, 151.
- Lushniak, B.D. Antibiotic resistance: A public health crisis. Public Health Rep. 2014, 129, 314–316. [Google Scholar] [CrossRef] [PubMed]
- Michael, C.A.; Dominey-Howes, D.; Labbate, M. The antimicrobial resistance crisis: Causes, consequences, and management. Front. Public Health 2014, 2, 145. [Google Scholar] [CrossRef] [PubMed]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.; Wertheim, H.F.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef]
- Chambers, H.F. Community-associated MRSA—Resistance and virulence converge. N. Engl. J. Med. 2005, 352, 1485–1487. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.J.; Krishnadasan, A.; Gorwitz, R.J.; Fosheim, G.E.; McDougal, L.K.; Carey, R.B.; Talan, D.A.; Group, E.I.N.S. Methicillin-resistant S. aureus infections among patients in the emergency department. N. Engl. J. Med. 2006, 355, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Frazee, B.W.; Lynn, J.; Charlebois, E.D.; Lambert, L.; Lowery, D.; Perdreau-Remington, F. High prevalence of methicillin-resistant Staphylococcus aureus in emergency department skin and soft tissue infections. Ann. Emerg. Med. 2005, 45, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Fridkin, S.K.; Hageman, J.C.; Morrison, M.; Sanza, L.T.; Como-Sabetti, K.; Jernigan, J.A.; Harriman, K.; Harrison, L.H.; Lynfield, R.; Farley, M.M.; et al. Methicillin-resistant Staphylococcus aureus disease in three communities. N. Engl. J. Med. 2005, 352, 1436–1444. [Google Scholar] [CrossRef] [PubMed]
- Moran, G.J.; Amii, R.N.; Abrahamian, F.M.; Talan, D.A. Methicillin-resistant Staphylococcus aureus in community-acquired skin infections. Emerg. Infect. Dis. 2005, 11, 928–930. [Google Scholar] [CrossRef] [PubMed]
- Hiramatsu, K. Vancomycin-resistant Staphylococcus aureus: A new model of antibiotic resistance. Lancet Infect. Dis. 2001, 1, 147–155. [Google Scholar] [CrossRef]
- Wilson, P.; Andrews, J.A.; Charlesworth, R.; Walesby, R.; Singer, M.; Farrell, D.J.; Robbins, M. Linezolid resistance in clinical isolates of Staphylococcus aureus. J. Antimicrob. Chemother. 2003, 51, 186–188. [Google Scholar] [CrossRef] [PubMed]
- Hollenbeck, B.L.; Rice, L.B. Intrinsic and acquired resistance mechanisms in enterococcus. Virulence 2012, 3, 421–433. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). Antimicrobial Resistance: Global Report on Surveillance; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal infection—Treatment and antibiotic resistance. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Gilmore, M., Clewell, D., Ike, Y., Eds.; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Hueso-Falcón, I.; Amesty, Á.; Anaissi-Afonso, L.; Lorenzo-Castrillejo, I.; Machín, F.; Estévez-Braun, A. Synthesis and biological evaluation of naphthoquinone-coumarin conjugates as topoisomerase II inhibitors. Bioorg. Med. Chem. Lett. 2017, 27, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Alonso, S.; Pérez-Lomas, A.L.; Estévez-Braun, A.; Muñoz Martinez, F.; Chávez Orellana, H.; Ravelo, A.G.; Gamarro, F.; Castanys, S.; López, M. Bis-pyranobenzoquinones as a new family of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in mammalian cells and the protozoan parasite Leishmania. J. Med. Chem. 2008, 51, 7132–7143. [Google Scholar] [CrossRef] [PubMed]
- Weigt, S.; Huebler, N.; Strecker, R.; Braunbeck, T.; Broschard, T.H. Developmental effects of coumarin and the anticoagulant coumarin derivative warfarin on zebrafish (Danio rerio) embryos. Reprod. Toxicol. 2012, 33, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Jameel, E.; Umar, T.; Kumar, J.; Hoda, N. Coumarin: A privileged scaffold for the design and development of antineurodegenerative agents. Chem. Biol. Drug. Des. 2016, 87, 21–38. [Google Scholar] [CrossRef] [PubMed]
- Torres, F.C.; Brucker, N.; Andrade, S.F.; Kawano, D.F.; Garcia, S.C.; Poser, G.L.; Eifler-Lima, V.L. New insights into the chemistry and antioxidant activity of coumarins. Curr. Top. Med. Chem. 2014, 14, 2600–2623. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Kohli, S.; Sandhu, S.; Bansal, Y.; Bansal, G. Coumarin: A promising scaffold for anticancer agents. Anticancer. Agents Med. Chem. 2015, 15, 1032–1048. [Google Scholar] [CrossRef] [PubMed]
- Widelski, J.; Popova, M.; Graikou, K.; Glowniak, K.; Chinou, I. Coumarins from angelica lucida L.—Antibacterial activities. Molecules 2009, 14, 2729–2734. [Google Scholar] [CrossRef] [PubMed]
- Ouahouo, B.M.; Azebaze, A.G.; Meyer, M.; Bodo, B.; Fomum, Z.T.; Nkengfack, A.E. Cytotoxic and antimicrobial coumarins from Mammea africana. Ann. Trop. Med. Parasitol. 2004, 98, 733–739. [Google Scholar] [CrossRef] [PubMed]
- Walasek, M.; Grzegorczyk, A.; Malm, A.; Skalicka-Woźniak, K. Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food Chem. 2015, 186, 133–138. [Google Scholar] [PubMed]
- Tsassi, V.B.; Hussain, H.; Meffo, B.Y.; Kouam, S.F.; Dongo, E.; Schulz, B.; Greene, I.R.; Krohn, K. Antimicrobial coumarins from the stem bark of Afraegle paniculata. Nat. Prod. Commun. 2010, 5, 559–561. [Google Scholar] [PubMed]
- Baraza, L.D.; Neser, W.; Jackson, K.C.; Fredrick, J.B.; Dennis, O.; Wairimu, K.R.; Keya, A.O.; Heydenreich, M. Antimicrobial Coumarins from the Oyster Culinary-Medicinal Mushroom, Pleurotus ostreatus (Agaricomycetes), from Kenya. Int. J. Med. Mushrooms 2016, 18, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Vatmurge, N.S.; Hazra, B.G.; Pore, V.S.; Shirazi, F.; Chavan, P.S.; Deshpande, M.V. Synthesis and antimicrobial activity of beta-lactam-bile acid conjugates linked via triazole. Bioorg. Med. Chem. Lett. 2008, 18, 2043–2047. [Google Scholar] [CrossRef] [PubMed]
- Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click chemistry: 1,2,3-triazoles as pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef] [PubMed]
- Prasad, D.J.; Ashok, M.; Karegoudar, P.; Poojary, B.; Holla, B.S.; Kumari, N.S. Synthesis and antimicrobial activities of some new triazolothiadiazoles bearing 4-methylthiobenzyl moiety. Eur. J. Med. Chem. 2009, 44, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Holla, B.S.; Gonsalves, R.; Shenoy, S. Studies on some N-bridged heterocycles derived from bis-[4-amino-5-mercapto-1,2,4-triazol-3-yl] alkanes. Farmaco 1998, 53, 574–578. [Google Scholar] [CrossRef]
- Turan-Zitouni, G.; Kaplancikli, Z.A.; Yildiz, M.T.; Chevallet, P.; Kaya, D. Synthesis and antimicrobial activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]thio-4H-1,2,4-triazole derivatives. Eur. J. Med. Chem. 2005, 40, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Masuda, K.; Toga, T.; Hayashi, N. Synthesis of 3-morpholino-N-ethoxycarbonyl sydnonimine-5-14C (sin-10-14C). J. Labell. Compd. 1975, 11, 301–304. [Google Scholar] [CrossRef]
- Almasirad, A.; Tabatabai, S.A.; Faizi, M.; Kebriaeezadeh, A.; Mehrabi, N.; Dalvandi, A.; Shafiee, A. Synthesis and anticonvulsant activity of new 2-substituted-5-[2-(2-fluorophenoxy)phenyl]-1,3,4-oxadiazoles and 1,2,4-triazoles. Bioorg. Med. Chem. Lett. 2004, 14, 6057–6059. [Google Scholar] [CrossRef] [PubMed]
- Holla, B.S.; Poojary, K.N.; Rao, B.S.; Shivananda, M.K. New bis-aminomercaptotriazoles and bis-triazolothiadiazoles as possible anticancer agents. Eur. J. Med. Chem. 2002, 37, 511–517. [Google Scholar] [CrossRef]
- Shivarama Holla, B.; Veerendra, B.; Shivananda, M.K.; Poojary, B. Synthesis characterization and anticancer activity studies on some Mannich bases derived from 1,2,4-triazoles. Eur. J. Med. Chem. 2003, 38, 759–767. [Google Scholar] [CrossRef]
- Pingaew, R.; Mandi, P.; Nantasenamat, C.; Prachayasittikul, S.; Ruchirawat, S.; Prachayasittikul, V. Design, synthesis and molecular docking studies of novel N-benzenesulfonyl-1,2,3,4-tetrahydroisoquinoline-based triazoles with potential anticancer activity. Eur. J. Med. Chem. 2014, 81, 192–203. [Google Scholar] [CrossRef] [PubMed]
- Manclús, J.J.; Moreno, M.J.; Plana, E.; Montoya, A. Development of monoclonal immunoassays for the determination of triazole fungicides in fruit juices. J. Agric. Food Chem. 2008, 56, 8793–8800. [Google Scholar] [CrossRef] [PubMed]
- Amir, M.; Shikha, K. Synthesis and anti-inflammatory, analgesic, ulcerogenic and lipid peroxidation activities of some new 2-[(2,6-dichloroanilino)phenyl]acetic acid derivatives. Eur. J. Med. Chem. 2004, 39, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Peña, R.; Martín, P.; Feresin, G.E.; Tapia, A.; Machín, F.; Estévez-Braun, A. Domino synthesis of embelin derivatives with antibacterial activity. J. Nat. Prod. 2016, 79, 970–977. [Google Scholar] [CrossRef] [PubMed]
- Casero, C.; Machín, F.; Méndez-Álvarez, S.; Demo, M.; Ravelo, Á.; Pérez-Hernández, N.; Joseph-Nathan, P.; Estévez-Braun, A. Structure and antimicrobial activity of phloroglucinol derivatives from Achyrocline satureioides. J. Nat. Prod. 2015, 78, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Peña, R.; Jiménez-Alonso, S.; Feresin, G.; Tapia, A.; Méndez-Alvarez, S.; Machín, F.; Ravelo, Á.; Estévez-Braun, A. Multicomponent synthesis of antibacterial dihydropyridin and dihydropyran embelin derivatives. J. Org. Chem. 2013, 78, 7977–7985. [Google Scholar] [CrossRef] [PubMed]
- Casero, C.; Estévez-Braun, A.; Ravelo, A.G.; Demo, M.; Méndez-Álvarez, S.; Machín, F. Achyrofuran is an antibacterial agent capable of killing methicillin-resistant vancomycin-intermediate Staphylococcus aureus in the nanomolar range. Phytomedicine 2013, 20, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Janeczko, M.; Demchuk, O.M.; Strzelecka, D.; Kubiński, K.; Masłyk, M. New family of antimicrobial agents derived from 1,4-naphthoquinone. Eur. J. Med. Chem. 2016, 124, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective “ligation” of azides and terminal alkynes. Angew. Chem. Int. Ed. Engl. 2002, 41, 2596–2599. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Jiang, M.; Wang, J.; Fu, H. General copper-catalyzed transformations of functional groups from arylboronic acids in water. Chem. Eur. J. 2011, 17, 5652–5660. [Google Scholar] [CrossRef] [PubMed]
- Tao, C.-Z.; Cui, X.; Li, J.; Liu, A.-X.; Liu, L.; Guo, Q.-X. Copper-catalyzed synthesis of aryl azides and 1-aryl-1, 2, 3-triazoles from boronic acids. Tetrahedron Lett. 2007, 48, 3525–3529. [Google Scholar] [CrossRef]
- Yuhong, J.; Dalip, K.; Rajender, S.V. Revisiting nucleophilic substitution reactions: Microwave-Assisted synthesis of azides, thiocyanates, and sulfones in an aqueous medium. J. Org. Chem. 2006, 71, 6697–6700. [Google Scholar]
- Díaz, L.; Bujons, J.; Casas, J.; Llebaria, A.; Delgado, A. Click chemistry approach to new N-substituted aminocyclitols as potential pharmacological chaperones for Gaucher disease. J. Med. Chem. 2010, 53, 5248–5255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.H.; Wang, Y. Recent researches in triazole compounds as medicinal drugs. Curr. Med. Chem. 2012, 19, 239–280. [Google Scholar] [CrossRef] [PubMed]
- Khaligh, P.; Salehi, P.; Bararjanian, M.; Aliahmadi, A.; Khavasi, H.R.; Nejad-Ebrahimi, S. Synthesis and in Vitro Antibacterial Evaluation of Novel 4-Substituted 1-Menthyl-1,2,3-triazoles. Chem. Pharm. Bull. 2016, 64, 1589–1596. [Google Scholar] [CrossRef] [PubMed]
- Kant, R.; Kumar, D.; Agarwal, D.; Gupta, R.D.; Tilak, R.; Awasthi, S.K.; Agarwal, A. Synthesis of newer 1,2,3-triazole linked chalcone and flavone hybrid compounds and evaluation of their antimicrobial and cytotoxic activities. Eur. J. Med. Chem. 2016, 113, 34–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.R.; Xue, D.Q.; He, P.; Shao, K.P.; Chen, P.J.; Gu, Y.F.; Ren, J.L.; Shan, L.H.; Liu, H.M. Synthesis and antimicrobial activities of novel 1,2,4-triazolo [3,4-a] phthalazine derivatives. Bioorg. Med. Chem. Lett. 2014, 24, 1236–1238. [Google Scholar] [CrossRef] [PubMed]
- Perrin, D.D.; Armarego, W.L.F. Purification of Laboratory Chemicals, 3rd ed.; Pergamon Press: Oxford, UK, 1988. [Google Scholar]
- Wan, X.; Wang, D.; Liu, S. Fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles with tunable redox-responsive release capability. Langmuir 2010, 26, 15574–15579. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Qi, P.P.; Shi, X.J.; Huang, R.; Guo, H.; Zheng, Y.C.; Yu, D.Q.; Liu, H.M. Efficient synthesis of new antiproliferative steroidal hybrids using the molecular hybridization approach. Eur. J. Med. Chem. 2016, 117, 241–255. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Jamatia, R.; Mahato, M.; Pal, A.K. Metalloprotein-inspired ruthenium polymeric complex: A highly efficient catalyst in parts per million level for 1,3-dipolar huisgen’s reaction in aqueous medium at room temperature. Indust. Engin. Chem. Res. 2017, 56, 2375–2382. [Google Scholar] [CrossRef]
- Janeczko, M.; Kazimierczuk, Z.; Orzeszko, A.; Niewiadomy, A.; Krol, E.; Szyszka, R.; Maslyk, M. In Search of the Antimicrobial Potential of Benzimidazole Derivatives. Pol. J. Microbiol. 2016, 65, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Janeczko, M.; Masłyk, M.; Kubiński, K.; Golczyk, H. Emodin, a natural inhibitor of protein kinase CK2, suppresses growth, hyphal development, and biofilm formation of Candida albicans. Yeast 2017, 34, 253–265. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds 8a–l, and 9a–l are available from the authors. |
Entry | Azide | Ar | Yield a |
---|---|---|---|
1 | 7a | Ph | 58 |
2 | 7b | 2-OMe–Ph | 61 |
3 | 7c | 3-OMe–Ph | 97 |
4 | 7d | 4-OMe–Ph | 96 |
5 | 7e | 3-F, 4-OMe–Ph | 96 |
6 | 7f | 4-F–Ph | 41 |
7 | 7g | 3-CF3–Ph | 31 |
8 | 7h | 3-NO2–Ph | 82 |
9 | 7i | 5-1H-indol | 35 |
10 | 7j | 3-furyl | - b |
Entry | Azide | R | Yield a |
---|---|---|---|
1 | 7k | (CH2)10CH3 | 86 |
2 | 7l | (CH2)13CH3 | 73 |
3 | 7m | CH2Ph | 82 |
Compound | Candida albicans | Staphylococcus aureus | Enterococcus faecalis | Escherichia coli | Klebsiella pneumoniae | Pseudomonas aeruginosa |
---|---|---|---|---|---|---|
8a | 1600 | 400 | 50 | 1600 | - | 1600 |
8b | 800 | 200 | 12.5 | 1600 | 1600 | 1600 |
8c | 1600 | 800 | 100 | 1600 | 800 | 1600 |
8d | - | - | 200 | 1600 | 800 | 1600 |
8e | 400 | 400 | 100 | 200 | 800 | 800 |
8f | 1600 | 1600 | 50 | 1600 | 400 | 800 |
8g | 800 | 1600 | 100 | 800 | 400 | 800 |
8h | 800 | 400 | 400 | 1600 | 800 | 1600 |
8i | 1600 | 1600 | 200 | 1600 | 1600 | 1600 |
8j | 1600 | 800 | 800 | 1600 | 1600 | 1600 |
8k | - | - | 400 | 1600 | 1600 | 1600 |
8l | - | - | 400 | 1600 | 1600 | 800 |
9a | 1600 | 1600 | 400 | 1600 | 1600 | - |
9b | - | 1600 | 800 | 1600 | 800 | 1600 |
9c | 200 | 800 | 400 | 1600 | 1600 | 800 |
9d | 200 | 400 | 100 | 800 | 800 | 800 |
9e | 200 | 200 | 100 | 800 | 800 | 800 |
9f | 200 | - | 1600 | 1600 | 1600 | - |
9g | - | 200 | - | - | - | - |
9h | 1600 | 100 | 50 | 800 | 800 | 800 |
9i | 1600 | 1600 | 100 | 1600 | 800 | 1600 |
9j | - | 800 | 800 | 1600 | 1600 | - |
9k | 1600 | 200 | 50 | - | - | - |
9l | 1600 | - | 800 | 1600 | 1600 | 1600 |
CAM | n.d. | 5 | 5 | 1.2 | 5 | 5 |
KET | 8 | n.d. | n.d. | n.d. | n.d. | n.d. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Rojas, P.; Janeczko, M.; Kubiński, K.; Amesty, Á.; Masłyk, M.; Estévez-Braun, A. Synthesis and Antimicrobial Activity of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives. Molecules 2018, 23, 199. https://doi.org/10.3390/molecules23010199
López-Rojas P, Janeczko M, Kubiński K, Amesty Á, Masłyk M, Estévez-Braun A. Synthesis and Antimicrobial Activity of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives. Molecules. 2018; 23(1):199. https://doi.org/10.3390/molecules23010199
Chicago/Turabian StyleLópez-Rojas, Priscila, Monika Janeczko, Konrad Kubiński, Ángel Amesty, Maciej Masłyk, and Ana Estévez-Braun. 2018. "Synthesis and Antimicrobial Activity of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives" Molecules 23, no. 1: 199. https://doi.org/10.3390/molecules23010199
APA StyleLópez-Rojas, P., Janeczko, M., Kubiński, K., Amesty, Á., Masłyk, M., & Estévez-Braun, A. (2018). Synthesis and Antimicrobial Activity of 4-Substituted 1,2,3-Triazole-Coumarin Derivatives. Molecules, 23(1), 199. https://doi.org/10.3390/molecules23010199