Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex
Abstract
:1. Introduction
2. Results
2.1. Design and Synthesis of the Ligands
2.2. Screening of the Ligands
2.3. CD Experiments
2.4. Detection of Telomerase Activity in Cell Lysates
2.5. Cytotoxic Effects on Human Cells
3. Experimental Section
3.1. General Information
3.2. Chemistry
3.2.1. Synthesis of 2,2′-(pyridine-2,6-diyl)bis(quinoline-4-carboxylic acid) (4)
3.2.2. General Procedure for the Synthesis of 1a–f
3.2.3. General Procedure for the Synthesis of Ammonium Salts 1a–f
3.3. Biophysical Assays
FRET Melting Assay
3.4. Biology
3.4.1. Telomerase Assays
3.4.2. Cell Culture
3.4.3. Cytotoxicity Test
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Neidle, S.; Balasubramanian, S. Quadruplex Nucleic Acids; Royal Society of Chemistry: Cambridge, UK, 2006. [Google Scholar]
- Neidle, S. The structures of quadruplex nucleic acids and their drug complexes. Curr. Opin. Struct. Biol. 2009, 19, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Bedrat, A.; Lacroix, L.; Mergny, J.-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016, 44, 1746–1759. [Google Scholar] [CrossRef] [PubMed]
- Chambers, V.S.; Marsico, G.; Boutell, J.M.; Di Antonio, M.; Smith, G.P.; Balasubramanian, S. High-throughput sequencing of DNA G-quadruplex structures in the human genome. Nat. Biotechnol. 2015, 33, 877–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanian, S.; Hurley, L.H.; Neidle, S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev. Drug Discov. 2011, 10, 261–275. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Bugaut, A.; Huppert, J.L.; Balasubramanian, S. An RNA G-quadruplex in the 5′ UTR of the NRAS proto-oncogene modulates translation. Nat. Chem. Biol. 2007, 3, 218–221. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Smaldino, P.J.; Zhang, Q.; Miller, L.D.; Cao, P.; Stadelman, K.; Wan, M.; Giri, B.; Lei, M.; Nagamine, Y.; et al. Yin Yang 1 contains G-quadruplex structures in its promoter and 5′-UTR and its expression is modulated by G4 resolvase 1. Nucleic Acids Res. 2011, 40, 1033–1049. [Google Scholar] [CrossRef] [PubMed]
- Cammas, A.; Millevoi, S. RNA G-quadruplexes: Emerging mechanisms in disease. Nucleic Acids Res. 2017, 45, 1584–1595. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, M.; Ma, Y.; Nagasawa, K.; Toyoshima, F. A G-quadruplex structure at the 5′ end of the H19 coding region regulates H19 transcription. Sci. Rep. 2017, 7, 45815. [Google Scholar] [CrossRef] [PubMed]
- Kanoh, Y.; Matsumoto, S.; Fukatsu, R.; Kakusho, N.; Kono, N.; Renard-Guillet, C.; Masuda, K.; Iida, K.; Nagasawa, K.; Shirahige, K.; et al. Rif1 binds to G quadruplexes and suppresses replication over long distances. Nat. Struct. Mol. Biol. 2015, 22, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Yadav, V.K.; Baral, A.; Kumar, P.; Saha, D.; Chowdhury, S. Zinc-finger transcription factors are associated with guanine quadruplex motifs in human, chimpanzee, mouse and rat promoters genome-wide. Nucleic Acids Res. 2011, 39, 8005–8016. [Google Scholar] [CrossRef] [PubMed]
- Eddy, J.; Maizels, N. Gene function correlates with potential for G4 DNA formation in the human genome. Nucleic Acids Res. 2006, 34, 3887–3896. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Okamoto, K. Structural insights into G-quadruplexes: Towards new anticancer drugs. Future Med. Chem. 2010, 2, 619–646. [Google Scholar] [CrossRef] [PubMed]
- Collie, G.W.; Parkinson, G.N. The application of DNA and RNA G-quadruplexes to therapeutic medicines. Chem. Soc. Rev. 2011, 40, 5867–5892. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.V.; Danford, F.L.; Gokhale, V.; Hurley, L.H.; Brooks, T.A. Demonstration that drug-targeted down-regulation of MYC in non-Hodgkins lymphoma is directly mediated through the promoter G-quadruplex. J. Biol. Chem. 2011, 286, 41018–41027. [Google Scholar] [CrossRef] [PubMed]
- McLuckie, K.I.; Waller, Z.A.; Sanders, D.A.; Alves, D.; Rodriguez, R.; Dash, J.; McKenzie, G.J.; Venkitaraman, A.R.; Balasubramanian, S. G-quadruplex-binding benzo[a]phenoxazines down-regulate c-KIT expression in human gastric carcinoma cells. J. Am. Chem. Soc. 2011, 133, 2658–2663. [Google Scholar] [CrossRef] [PubMed]
- Cogoi, S.; Paramasivam, M.; Membrino, A.; Yokoyama, K.K.; Xodo, L.E. The KRAS promoter responds to Myc-associated zinc finger and poly(ADP-ribose) polymerase 1 proteins, which recognize a critical quadruplex-forming GA-element. J. Biol. Chem. 2010, 285, 22003–22016. [Google Scholar] [CrossRef] [PubMed]
- Ohnmacht, S.A.; Micco, M.; Petrucci, V.; Todd, A.K.; Reszka, A.P.; Gunaratnam, M.; Carvalho, M.A.; Zloh, M.; Neidle, S. Sequences in the HSP90 promoter form G-quadruplex structures with selectivity for disubstituted phenyl bis-oxazole derivatives. Bioorg. Med. Chem. Lett. 2012, 22, 5930–5935. [Google Scholar] [CrossRef] [PubMed]
- Chevret, E.; Andrique, L.; Prochazkova-Carlotti, M.; Ferrer, J.; Cappellen, D.; Laharanne, E.; Idrissi, Y.; Boettiger, A.; Sahraoui, W.; Ruiz, F.; et al. Telomerase functions beyond telomere maintenance in primary cutaneous T-cell lymphoma. Blood 2014, 123, 1850–1859. [Google Scholar] [CrossRef] [PubMed]
- Shay, J.W.; Wright, W.E. Role of telomeres and telomerase in cancer. Semin. Cancer Biol. 2011, 21, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Ohnmacht, S.A.; Neidle, S. Small-molecule quadruplex-targeted drug discovery. Bioorg. Med. Chem. Lett. 2014, 24, 2602–2612. [Google Scholar] [CrossRef] [PubMed]
- Han, F.X.; Wheelhouse, R.T.; Hurley, L.H. Interactions of TMPyP4 and TMPyP2 with quadruplex DNA. Structural basis for the differential effects on telomerase inhibition. J. Am. Chem. Soc. 1999, 121, 3561–3570. [Google Scholar] [CrossRef]
- Shi, D.-F.; Wheelhouse, R.T.; Sun, D.; Hurley, L.H. Quadruplex-interactive agents as telomerase inhibitors: Synthesis of porphyrins and structure- activity relationship for the inhibition of telomerase. J. Med. Chem. 2001, 44, 4509–4523. [Google Scholar] [CrossRef] [PubMed]
- Beniaminov, A.D.; Novikov, R.A.; Mamaeva, O.K.; Mitkevich, V.A.; Smirnov, I.P.; Livshits, M.A.; Shchyolkina, A.K.; Kaluzhny, D.N. Light-induced oxidation of the telomeric G4 DNA in complex with Zn(II) tetracarboxymethyl porphyrin. Nucleic Acids Res. 2016, 44, 10031–10041. [Google Scholar] [CrossRef] [PubMed]
- Ruan, T.L.; Davis, S.J.; Powell, B.M.; Harbeck, C.P.; Habdas, J.; Habdas, P.; Yatsunyk, L.A. Lowering the overall charge on TMPyP4 improves its selectivity for G-quadruplex DNA. Biochimie 2017, 132, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Shin-ya, K.; Wierzba, K.; Matsuo, K.; Ohtani, T.; Yamada, Y.; Furihata, K.; Hayakawa, Y.; Seto, H. Telomestatin, a novel telomerase inhibitor from streptomyces anulatus. J. Am. Chem. Soc. 2001, 123, 1262–1263. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Ma, Y.; Iida, K. Design, synthesis and evaluation of an L-Dopa-derived macrocyclic hexaoxazole (6OTD) as a G-quadruplex-selective ligand. Heterocycles 2016, 92, 305–315. [Google Scholar]
- Nakamura, T.; Iida, K.; Tera, M.; Shin-ya, K.; Seimiya, H.; Nagasawa, K. A caged ligand for a telomeric G-quadruplex. ChemBioChem 2012, 13, 774–777. [Google Scholar] [CrossRef] [PubMed]
- Iida, K.; Nakamura, T.; Yoshida, W.; Tera, M.; Nakabayashi, K.; Hata, K.; Ikebukuro, K.; Nagasawa, K. Fluorescent-ligand mediated screening of G-quadruplex structures using a DNA microarray. Angew. Chem. Int. Ed. 2013, 52, 12052–12055. [Google Scholar] [CrossRef] [PubMed]
- Sakuma, M.; Ma, Y.; Tsushima, Y.; Iida, K.; Hirokawa, T.; Nagasawa, K. Design and synthesis of unsymmetric macrocyclic hexaoxazole compounds with an ability to induce distinct G-quadruplex topologies in telomeric DNA. Org. Biomol. Chem. 2016, 14, 5109–5116. [Google Scholar] [CrossRef] [PubMed]
- Campbell, N.H.; Patel, M.; Tofa, A.B.; Ghosh, R.; Parkinson, G.N.; Neidle, S. Selectivity in ligand recognition of G-quadruplex loops. Biochemistry 2009, 48, 1675–1680. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-R.; Zhou, C.-X.; Wu, W.-B.; Ou, T.-M.; Tan, J.-H.; Li, D.; Gu, L.-Q.; Huang, Z.-S. 12-N-Methylated 5,6-dihydrobenzo[c]acridine derivatives: A new class of highly selective ligands for c-myc G-quadruplex DNA. Eur. J. Med. Chem. 2012, 53, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.-L.; Su, H.-F.; Wang, N.; Liao, S.-R.; Lu, Y.-T.; Ou, T.-M.; Tan, J.-H.; Li, D.; Huang, Z.-S. Synthesis and evaluation of 7-substituted-5,6-dihydrobenzo[c]acridine derivatives as new c-KIT promoter G-quadruplex binding ligands. Eur. J. Med. Chem. 2017, 130, 458–471. [Google Scholar] [CrossRef] [PubMed]
- De Cian, A.; Delemos, E.; Mergny, J.-L.; Teulade-Fichou, M.P.; Monchaud, D. Highly efficient G-quadruplex recognition by bisquinolinium compounds. J. Am. Chem. Soc. 2007, 129, 1856–1857. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, L.; Zhang, N.; Liu, Y.; Zheng, W.; Chang, A.; Wang, F.; Li, S.; Shangguan, D. A bis(methylpiperazinylstyryl)phenanthroline as a fluorescent ligand for G-quadruplexes. Chem. Eur. J. 2016, 22, 6037–6047. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.C.; Larsen, A.F.; Abdikadir, F.H.; Ulven, T. Phenanthroline-2,9-bistriazoles as selective G-quadruplex ligands. Eur. J. Med. Chem. 2014, 72, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Gueddouda, N.M.; Hurtado, M.R.; Moreau, S.; Ronga, L.; Das, R.N.; Savrimoutou, S.; Rubio, S.; Marchand, A.; Mendoza, O.; Marchivie, M.; et al. Design, synthesis, and evaluation of 2,9-bis[(substituted-aminomethyl) phenyl]-1,10-phenanthroline derivatives as G-quadruplex ligands. ChemMedChem 2017, 12, 146–160. [Google Scholar] [CrossRef] [PubMed]
- Duan, W.; Rangan, A.; Vankayalapati, H.; Kim, M.-Y.; Zeng, Q.; Sun, D.; Han, H.; Fedoroff, O.Y.; Nishioka, D.; Rha, S.Y.; et al. Design and synthesis of fluoroquinophenoxazines that interact with human telomeric G-quadruplexes and their biological effects. Mol. Cancer Ther. 2001, 1, 103–120. [Google Scholar] [PubMed]
- Han, H.; Hurley, L.H.; Salazar, M. A DNA polymerase stop assay for G-quadruplex-interactive compounds. Nucleic Acids Res. 1999, 27, 537–542. [Google Scholar] [CrossRef] [PubMed]
- De Cian, A.; Guittat, L.; Kaiser, M.; Saccà, B.; Amrane, S.; Bourdoncle, A.; Alberti, P.; Teulade-Fichou, M.-P.; Lacroix, L.; Mergny, J.-L. Fluorescence-based melting assays for studying quadruplex ligands. Methods 2007, 42, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Marin, I.; Turta, C.; Benniston, A.C.; Harrington, W.; Clegg, W. Homoleptic and heteroleptic ruthenium(II) complexes based on 2,6-bis(quinolin-2-yl)pyridine ligands-multiple-charged-state modules for potential density memory storage. Eur. J. Inorg. Chem. 2015, 2015, 786–793. [Google Scholar] [CrossRef]
- Amrane, S.; Adrian, M.; Heddi, B.; Serero, A.; Nicolas, A.; Mergny, J.-L.; Phan, A.T. Formation of Pearl-Necklace monomorphic G-quadruplexes in the human CEB25 minisatellite. J. Am. Chem. Soc. 2012, 134, 5807–5816. [Google Scholar] [CrossRef] [PubMed]
- Ambrus, A.; Chen, D.; Dai, J.; Jones, R.A.; Yang, D. Solution structure of the biologically relevant G-Quadruplex element in the human c-MYC promoter. Implications for G-Quadruplex stabilization. Biochemistry 2005, 44, 2048–2058. [Google Scholar] [CrossRef] [PubMed]
- Phan, A.T.; Kuryavyi, V.; Burge, S.; Neidle, S.; Patel, D.J. Structure of an unprecedented G-Quadruplex scaffold in the human c-kit promoter. J. Am. Chem. Soc. 2007, 129, 4386–4392. [Google Scholar] [CrossRef] [PubMed]
- Marathias, V.M.; Bolton, P.H. Structures of the potassium-saturated, 2:1, and intermediate, 1:1, forms of a quadruplex DNA. Nucleic Acids Res. 2000, 28, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- Amrane, S.; Ang, R.W.L.; Tan, Z.M.; Li, C.; Lim, J.K.C.; Lim, J.M.W.; Lim, K.W.; Phan, A.T. A novel chair-type G-quadruplex formed by a Bombyx mori telomeric sequence. Nucleic Acids Res. 2009, 37, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.W.; Alberti, P.; Guédin, A.; Lacroix, L.; Riou, J.-F.; Royle, N.J.; Mergny, J.-L.; Phan, A.T. Sequence variant (CTAGGG)n in the human telomere favors a G-quadruplex structure containing a G•C•G•C tetrad. Nucleic Acids Res. 2009, 37, 6239–6248. [Google Scholar] [CrossRef] [PubMed]
- De Cian, A.; Grellier, P.; Mouray, E.; Depoix, D.; Bertrand, H.; Monchaud, D.; Teulade-Fichou, M.-P.; Mergny, J.-L.; Alberti, P. Plasmodium telomeric sequences: Structure, stability and quadruplex targeting by small compounds. ChemBioChem 2008, 9, 2730–2739. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere length measurement by a novel monochrome multiplex quantitative PCR method. Nucleic Acids Res. 2009, 37, e21. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Not available. |
Compound a | Salt b,c | Elemental Analyses | Feature | Yield (%) d |
---|---|---|---|---|
1a | 2(COOH)2 | Anal. Calcd. for C39H43N7O10: C, 60.85; H, 5.63; N, 12.74. Found: C, 60.94; H, 5.54; N, 12.86 | Yellow powder | 81 |
1b | 2(COOH)2 | Anal. Calcd. for C45H51N7O10: C, 63.59; H, 6.05; N, 11.54. Found: C, 63.67; H, 5.91; N, 11.43 | Yellow powder | 84 |
1c | 4(COOH)2 | Anal. Calcd. for C49H61N9O18: C, 55.31; H, 5.78; N, 11.85. Found: C, 55.20; H, 5.94; N, 11.74 | Brown powder | 75 |
1d | 2(COOH)2 | Anal. Calcd. for C43H47N7O10: C, 62.84; H, 5.76; N, 11.93. Found: C, 62.95; H, 5.66; N, 11.98 | Yellow powder | 78 |
1e | 4(COOH)2 | Anal. Calcd. for C43H47N7O10: C, 62.84; H, 5.76; N, 11.93. Found: C, 62.95; H, 5.66; N, 11.98 | Yellow powder | 80 |
1f | 2 (COOH)2 | Anal. Calcd. for C43H47N7O12: C, 60.49; H, 5.55; N, 11.48. Found: C, 60.64; H, 5.42; N, 11.67 | Yellow powder | 82 |
Compound | ∆Tm (°C) a in K+ Condition | ∆Tm (°C) b in Na+ Condition | ||
---|---|---|---|---|
2 µM | 5 µM | 2 µM | 5 µM | |
1a | 15.5 ± 2.1 | 19.7 ± 0.3 | 4.7 ± 0.4 | 7.7 ± 1.0 |
1b | 13.8 ± 0.5 | 18.9 ± 1.6 | 5.1 ± 0.2 | 7.8 ± 0.7 |
1c | 18.7 ± 1.1 | 23.5 ± 0.8 | 10.9 ± 0.1 | 15.5 ± 1.4 |
1d | 13.5 ± 0.5 | 19.1 ± 1.9 | 4.1 ± 0.9 | 6.2 ± 0.9 |
1e | 6.8 ± 1.5 | 12.8 ± 1.6 | 2.9 ± 1.1 | 2.6 ± 0.8 |
1f | 1.3 ± 0.4 | 1.9 ± 0.8 | 0.6 ± 0.2 | 0.4 ± 0.1 |
G4 Oligonucleotides | 1a ∆Tm (°C) | 1b ∆Tm (°C) | 1c ∆Tm (°C) | 1d ∆Tm (°C) |
---|---|---|---|---|
FdxT | 0.7 | 0.7 | 1.7 | 0.1 |
F25Cebt | 14.8 | 13.8 | 17.5 | 14.9 |
FmycT | 19.9 | 19.6 | 22.2 | 19.9 |
Fkit1T | 16.8 | 18.9 | 15.6 | 17.1 |
F21T | 19.7 | 18.9 | 23.5 | 19.1 |
F21CTAT | 9.2 | 9.0 | 12.2 | 8.9 |
FTBAT | 7.8 | 6.9 | 17.6 | 10.4 |
FBom17T | 11.3 | 7.3 | 22.8 | 12.3 |
FPf1T | 6.5 | 3.8 | 10.3 | 9.2 |
FPf8T | 4.2 | 5.9 | 13.7 | 9.7 |
Ligands | K562 IC50 (µM) | HL60 IC50 (µM) | Cytotoxicity on Activated Human Peripheral Blood Mononuclear Cells (PBMNC) PBMNC + PHA IC50 (µM) |
---|---|---|---|
1a | >50 | >50 | >50 |
1b | 3.0 ± 0.5 | 18 ± 2.0 | 5 ± 0.3 |
1c | >50 | >50 | >50 |
Sequence Name | Sequence(5′–3′) |
---|---|
ds26 | CAATCGGATCGAATTCGATCCGATTG |
F21T | Fam-G3TTAG3TTAG3TTAG3-Tamra |
Fbom17T | Fam-G2TTAG2TTAG2TTG2-Tamra |
FdxT | Fam-TATAGCTAT-hexaethyleneglycol-TATAGCTATA-Tamra |
FmycT | Fam-TTGAG3TG3TAG3TG3TAA-Tamra |
F25cebT | Fam-AG3TG3TGTAAGTGTG3TG3T-Tamra |
FtbaT | Fam-G2TTG2TGTG2TTG-Tamra |
c-myc | TTGAG3TG3TAG3TG3TAA |
22AG | AG3TTAG3TTAG3TTAG3 |
24TTG | TTGGGTTAGGGTTAGGGTTAGGGA |
22CTA | AGGGCTAGGGCTAGGGCTAGGG |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Das, R.N.; Chevret, E.; Desplat, V.; Rubio, S.; Mergny, J.-L.; Guillon, J. Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex. Molecules 2018, 23, 81. https://doi.org/10.3390/molecules23010081
Das RN, Chevret E, Desplat V, Rubio S, Mergny J-L, Guillon J. Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex. Molecules. 2018; 23(1):81. https://doi.org/10.3390/molecules23010081
Chicago/Turabian StyleDas, Rabindra Nath, Edith Chevret, Vanessa Desplat, Sandra Rubio, Jean-Louis Mergny, and Jean Guillon. 2018. "Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex" Molecules 23, no. 1: 81. https://doi.org/10.3390/molecules23010081
APA StyleDas, R. N., Chevret, E., Desplat, V., Rubio, S., Mergny, J. -L., & Guillon, J. (2018). Design, Synthesis and Biological Evaluation of New Substituted Diquinolinyl-Pyridine Ligands as Anticancer Agents by Targeting G-Quadruplex. Molecules, 23(1), 81. https://doi.org/10.3390/molecules23010081