Comparative Study of Volatile Compounds in the Fruit of Two Banana Cultivars at Different Ripening Stages
Abstract
:1. Introduction
2. Results
2.1. Physiological Characteristics of Ripening Brazilian and Fenjiao Banana Fruit
2.2. Changes of Soluble Sugar Content at Different Maturation Stages Post-Harvest
2.3. Volatile Compounds of Banana Fruit (Musa AAA Group, Brazilian) at Different Stages of Ripening
2.4. Volatile Compounds of Banana Fruit (Musa ABB Group, Fenjiao) at Different Stages of Ripening
2.5. Comparison of the Main Volatile Compounds between Brazilian and Fenjiao Banana Fruits at Different Stages
2.6. PCA Analysis at Different Ripening Stage of Two Banana Varieties
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Fruit Ripening Evaluations
4.3. Changes in Sugar Content in Banana Fruit during Fruit Ripening
4.4. Volatiles Analysis
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dale, J.; Paul, J.-Y.; Dugdale, B.; Harding, R. Modifying bananas: From transgenics to organics? Sustainability 2017, 9, 333. [Google Scholar] [CrossRef]
- Xu, L.B.; Yang, H.; Huang, B.Z.; Wei, Y.R.; Molina, A.B.; Xu, L.B.; Roa, V.N.; Bergh, I.V.D.; Borromeo, K.H. Banana research and production in China. In Proceedings of the 3rd BAPNET Steering Committee Meeting, Guangzhou, China, 23–26 November 2004. [Google Scholar]
- Hu, W.; Zuo, J.; Hou, X.; Yan, Y.; Wei, Y.; Liu, J.; Li, M.; Xu, B.; Jin, Z. The auxin response factor gene family in banana: Genome-wide identification and expression analyses during development, ripening, and abiotic stress. Front. Plant Sci. 2015, 6, 742. [Google Scholar] [CrossRef]
- Fang, R.; Long, X.; Wang, W.-L.; Huang, Y.; Huang, W.-X.; Yao, J.-Y. Preliminary report on introduction experiment of nine banana cultivars in Guangxi. Guangdong Agric. Sci. 2013, 10, 30–32. [Google Scholar]
- Abbott, J.A. Quality measurement of fruits and vegetables. Postharvest Boil. Technol. 1999, 15, 207–225. [Google Scholar] [CrossRef]
- Esteras, C.; Rambla, J.L.; Sánchez, G.; Pilar López-Gresa, M.; Carmen González-Mas, M.; Fernández-Trujillo, J.P.; Bellés, J.M.; Granell, A.; Belén Picó, M. Fruit flesh volatile and carotenoid profile analysis within the Cucumis melo L. species reveals unexploited variability for future genetic breeding. J. Sci. Food Agric. 2018, 98, 3915–3925. [Google Scholar] [CrossRef] [PubMed]
- Brat, P.; Yahia, A.; Chillet, M.; Bugaud, C.; Bakry, F.; Brillouet, J.M. Influence of cultivar, growth altitude and maturity stage on banana volatile compound composition. Fruits 2004, 59, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Sdiri, S.; Rambla, J.L.; Besada, C.; Granell, A.; Salvador, A. Changes in the volatile profile of citrus fruit submitted to postharvest degreening treatment. Postharvest Boil. Technol. 2017, 133, 48–56. [Google Scholar] [CrossRef]
- Fellman, J.; Miller, T.; Mattinson, D.; Mattheis, J. Factors that influence biosynthesis of volatile flavor compounds in apple fruits. Hortscience 2000, 35, 1026–1033. [Google Scholar]
- El Hadi, M.A.M.; Zhang, F.-J.; Wu, F.-F.; Zhou, C.-H.; Tao, J. Advances in fruit aroma volatile research. Molecules 2013, 18, 8200–8229. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.-T.; Yang, T.-S. Optimization of solid-phase microextraction analysis for studying change of headspace flavor compounds of banana during ripening. J. Agric. Food Chem. 2002, 50, 653–657. [Google Scholar] [CrossRef] [PubMed]
- Vermeir, S.; Hertog, M.; Vankerschaver, K.; Swennen, R.; Nicolai, B.; Lammertyn, J. Instrumental based flavour characterisation of banana fruit. LWT-Food Sci. Technol. 2009, 42, 1647–1653. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.P.; Yuan, R.C.; Chen, Y.F.; Chen, W.X. Changes in volatile compounds and associated relationships with other ripening events in banana fruit. J. Hortic. Sci. Biotechnol. 2010, 85, 283–288. [Google Scholar] [CrossRef]
- Nogueira, J.; Fernandes, P.; Nascimento, A. Composition of volatiles of banana cultivars from Madeira Island. Phytochem. Anal. 2003, 14, 87–90. [Google Scholar] [CrossRef] [PubMed]
- Shiota, H. New esteric components in the volatiles of banana fruit (Musa sapientum L.). J. Agric. Food Chem. 1993, 41, 2056–2062. [Google Scholar] [CrossRef]
- Aurore, G.; Ginies, C.; Ganou-Parfait, B.; Renard, C.M.; Fahrasmane, L. Comparative study of free and glycoconjugated volatile compounds of three banana cultivars from French West Indies: Cavendish, Frayssinette and Plantain. Food Chem. 2011, 129, 28–34. [Google Scholar] [CrossRef]
- Hu, W.; Ding, Z.; Tie, W.; Yan, Y.; Liu, Y.; Wu, C.; Liu, J.; Wang, J.; Peng, M.; Xu, B. Comparative physiological and transcriptomic analyses provide integrated insight into osmotic, cold, and salt stress tolerance mechanisms in banana. Sci. Rep. 2017, 7, 43007. [Google Scholar] [CrossRef]
- Mccarthy, A.I.; Palmer, J.K.; Shaw, C.P.; Anderson, E.E. Correlation of gas chromatographic data with flavor profiles of fresh banana fruit. J. Food Sci. 1963, 28, 379–384. [Google Scholar] [CrossRef]
- Cano, M.P.; de Ancos, B.; Matallana, M.C.; Cámara, M.; Reglero, G.; Tabera, J. Differences among Spanish and Latin-American banana cultivars: Morphological, chemical and sensory characteristics. Food Chem. 1997, 59, 411–419. [Google Scholar] [CrossRef]
- Lichtemberg, L.A.; Malburg, J.L.; Hinz, R.H. Cold Damage in Bananas. Rev. Bras. Frutic. 2001, 23, 568–572. [Google Scholar] [CrossRef]
- De Vasconcelos Facundo, H.V.; dos Santos Garruti, D.; dos Santos Dias, C.T.; Cordenunsi, B.R.; Lajolo, F.M. Influence of different banana cultivars on volatile compounds during ripening in cold storage. Food Res. Int. 2012, 49, 626–633. [Google Scholar] [CrossRef]
- Lee, L.; Arul, J.; Lencki, R.; Castaigne, F. A review on modified atmosphere packaging and preservation of fresh fruits and vegetables: Physiological basis and practical aspects—Part I. Packag. Technol. Sci. 2010, 8, 315–331. [Google Scholar] [CrossRef]
- Liu, M.; Chervin, C. Ethylene and Fruit Ripening. J. Plant Growth Regul. 2007, 26, 143. [Google Scholar]
- Zhu, X.; Shen, L.; Fu, D.; Si, Z.; Wu, B.; Chen, W.; Li, X. Effects of the combination treatment of 1-MCP and ethylene on the ripening of harvested banana fruit. Postharvest Boil. Technol. 2015, 107, 23–32. [Google Scholar] [CrossRef]
- Marriott, J.; Robinson, M.; Karikari, S.K. Starch and sugar transformation during the ripening of plantains and bananas. J. Sci. Food Agric. 1981, 32, 1021–1026. [Google Scholar] [CrossRef]
- Wang, H.; Huang, H.; Huang, X.; Hu, Z. Sugar and acid compositions in the arils of Litchi chinensis Sonn: Cultivar differences and evidence for the absence of succinic acid. J. Hortic. Sci. Biotechnol. 2006, 81, 57–62. [Google Scholar] [CrossRef]
- Malundo, T.M.M.; Shewfelt, R.L.; Scott, J.W. Flavor quality of fresh tomato (Lycopersicon esculentum Mill.) as affected by sugar and acid levels. Postharvest Boil. Technol. 1995, 6, 103–110. [Google Scholar] [CrossRef]
- Beckles, D.M. Factors affecting the postharvest soluble solids and sugar content of tomato (Solanum lycopersicum L.) fruit. Postharvest Boil. Technol. 2012, 63, 129–140. [Google Scholar] [CrossRef]
- Farcuh, M.; Rivero, R.M.; Sadka, A.; Blumwald, E. Ethylene regulation of sugar metabolism in climacteric and non-climacteric plums. Postharvest Boil. Technol. 2018, 139, 20–30. [Google Scholar] [CrossRef]
- Wyllie, S.G.; Fellman, J.K. Formation of volatile branched chain esters in bananas (Musa sapientum L.). J. Agric. Food Chem. 2000, 48, 3493–3496. [Google Scholar] [CrossRef]
- Shivashankara, K. Metabolite Profiling in Banana. In Banana: Genomics and Transgenic Approaches for Genetic Improvement; Springer: Singapore, 2016; pp. 107–123. [Google Scholar]
- Zhang, Y.-T.; Wang, G.-X.; Jing, D.; Zhong, C.-F.; Jin, K.; Li, T.-Z.; Han, Z.-H. Analysis of volatile components in strawberry cultivars Xingdu 1 and Xingdu 2 and their parents. Agric. Sci. China 2009, 8, 441–446. [Google Scholar] [CrossRef]
- López, M.; Lavilla, M.; Riba, M.; Vendrell, M. Comparison of volatile compounds in two seasons in apples: Golden Delicious and Granny Smith. J. Food Qual. 1998, 21, 155–166. [Google Scholar] [CrossRef]
- Yang, X.; Song, J.; Du, L.; Forney, C.; Campbell-Palmer, L.; Fillmore, S.; Wismer, P.; Zhang, Z. Ethylene and 1-MCP regulate major volatile biosynthetic pathways in apple fruit. Food Chem. 2016, 194, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Golding, J.; Shearer, D.; McGlasson, W.; Wyllie, S. Relationships between respiration, ethylene, and aroma production in ripening banana. J. Agric. Food Chem. 1999, 47, 1646–1651. [Google Scholar] [CrossRef] [PubMed]
- Alexander, L.; Grierson, D. Ethylene biosynthesis and action in tomato: A model for climacteric fruit ripening. J. Exp. Bot. 2002, 53, 2039–2055. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Qi, H.; Jin, Y.; Tian, X.; Sui, L.; Qiu, Y. Role of ethylene in biosynthetic pathway of related-aroma volatiles derived from amino acids in oriental sweet melons (Cucumis melo var. makuwa Makino). Sci. Hortic. 2016, 201, 24–35. [Google Scholar] [CrossRef]
- Shalit, M.; Katzir, N.; Tadmor, Y.; Larkov, O.; Burger, Y.; Shalekhet, F.; Lastochkin, E.; Ravid, U.; Amar, O.; Edelstein, M. Acetyl-CoA: Alcohol acetyltransferase activity and aroma formation in ripening melon fruits. J. Agric. Food Chem. 2001, 49, 794–799. [Google Scholar] [CrossRef]
- Balbontín, C.; Gaete-Eastman, C.; Fuentes, L.; Figueroa, C.R.; Herrera, R.L.; Manriquez, D.; Latché, A.; Pech, J.-C.; Moya-León, M.A.A. VpAAT1, a gene encoding an alcohol acyltransferase, is involved in ester biosynthesis during ripening of mountain papaya fruit. J. Agric. Food Chem. 2010, 58, 5114–5121. [Google Scholar] [CrossRef]
- Echeverrıa, G.; Graell, J.; López, M.; Lara, I. Volatile production, quality and aroma-related enzyme activities during maturation of ‘Fuji’apples. Postharvest Boil. Technol. 2004, 31, 217–227. [Google Scholar] [CrossRef]
- Ban, Y.; Oyama-Okubo, N.; Honda, C.; Nakayama, M.; Moriguchi, T. Emitted and endogenous volatiles in ‘Tsugaru’apple: The mechanism of ester and (E, E)-α-farnesene accumulation. Food Chem. 2010, 118, 272–277. [Google Scholar] [CrossRef]
- Xi, W.-P.; Zhang, B.; Shen, J.-Y.; Xu, C.-J.; Chen, K.-S. Intermittent warming alleviated the loss of peach fruit aroma-related esters by regulation of AAT during cold storage. Postharvest Boil. Technol. 2012, 74, 42–48. [Google Scholar] [CrossRef]
- Defilippi, B.G.; Kader, A.A.; Dandekar, A.M. Apple aroma: Alcohol acyltransferase, a rate limiting step for ester biosynthesis, is regulated by ethylene. Plant Sci. 2005, 168, 1199–1210. [Google Scholar] [CrossRef]
- Defilippi, B.G.; Dandekar, A.M.; Kader, A.A. Relationship of ethylene biosynthesis to volatile production, related enzymes, and precursor availability in apple peel and flesh tissues. J. Agric. Food Chem. 2005, 53, 3133–3141. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Luo, J.; Li, Q.; Li, J.; Liu, T.; Wang, R.; Chen, W.; Li, X. Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Boil. Technol. 2018, 146, 68–78. [Google Scholar] [CrossRef]
- Beekwilder, J.; Alvarez-Huerta, M.; Neef, E.; Verstappen, F.W.; Bouwmeester, H.J.; Aharoni, A. Functional characterization of enzymes forming volatile esters from strawberry and banana. Plant Physiol. 2004, 135, 1865–1878. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-L.; Li, X.-P.; Chen, W.-X. Determination of Sugar Components in Pineapple during Storage by Ion Chromatography. Storage Process. 2010, 3, 37–41. [Google Scholar]
- Song, J.; Gardner, B.D.; Holland, J.F.; Beaudry, R.M. Rapid analysis of volatile flavor compounds in apple fruit using SPME and GC/time-of-flight mass spectrometry. J. Agric. Food Chem. 1997, 45, 1801–1807. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds butanoic acid, 3-methyl-, 3-methylbutyl ester, 1-butanol, 3-methyl-, acetate, acetic acid, hexyl ester, hexanal, 1-hexanol are available from the authors. |
Maturity | Glucose | Fructose | Sucrose | |||
---|---|---|---|---|---|---|
Fenjiao | Brazilian | Fenjiao | Brazilian | Fenjiao | Brazilian | |
Green | 29.2 ± 14.1 a | 0.5 ± 0.1 b | 33.3 ± 11.3 a | 0.2 ± 0 b | 19.2 ± 4.7 a | 1.1 ± 0.3 b |
Turning | 87.4 ± 3.3 a | 33.4 ± 7.3 b | 75.8 ± 2.9 a | 25.5 ± 5.6 b | 64.2 ± 8.5 a | 61.3 ± 20.5 a |
Full-Ripening | 112.5 ± 2.5 a | 74.5 ± 4.1 b | 99.3 ± 4.7 a | 57.1 ± 3.5 b | 23.6 ± 5.0 b | 75.9 ± 16.7 a |
Relative Content (%) 1 | ||||
---|---|---|---|---|
Categories | Compounds | Green | Turning | Full-Ripening |
Esters | ||||
1 | Pentyl butanoate | 0.26 b | -- | 3.05 a |
2 | Ethyl acetate | -- | 0.22 b | 2.74 a |
3 | 2-Methylpentyl acetate | -- | 0.32 a | 0.13 b |
4 | Isobutyl isobutyrate | -- | 0.21 b | 0.31 a |
5 | Pentyl 3-methyl butanoate | -- | 0.30 b | 0.48 a |
6 | Pentanoic acid, 3-methyl butanoate | -- | 0.45 a | -- |
7 | Hexyl butyrate | -- | 0.28 b | 0.49 a |
8 | Butanoic acid, 4-hexen-1yl ester | -- | 0.15 b | 0.34 a |
9 | Butanoic acid, 2-methyl cyclohexyl ester | -- | 0.15 a | -- |
10 | Pentanoic acid, 4-hexen-1yl ester | -- | 0.68 a | -- |
11 | Butanoic acid, 2-ethenyl hexyl ester | -- | 0.05 a | -- |
12 | Acetic acid, 1,4,-dimethylpent-4-enyl ester | -- | 0.48 a | -- |
13 | Isoamyl-2-methyl butyrate | -- | 0.30 b | 0.45 a |
14 | Acetic acid, 2-methyl propyl ester | -- | 3.13 a | 3.09 a |
15 | 2-Pentanol, acetate | -- | 4.35 a | 4.17 a |
16 | 1-Butanol, 3-methyl-, acetate | -- | 14.34 a | 11.55 a |
17 | Butanoic acid, butyl ester | -- | 1.62 a | 2.08 a |
18 | Isobutyl isovalerate | -- | 2.73 a | 1.63 b |
19 | Butanoic acid, 3-methylbutyl ester | -- | 18.7 a | 11.9 b |
20 | 1-methyl-hexyl acetate | -- | 6.78 a | 5.3 b |
21 | 3-methyl-butyl butyrate | -- | 0.73 a | 0.71 a |
22 | Butanoic acid, 2-methylpropyl ester | -- | -- | 3.51 a |
23 | Butanoic acid, 3-methyl-, 3-methylbutyl ester | -- | 14.03 a | 13.71 a |
24 | Butanoic acid, 1-methyl hexyl ester | -- | 1.61 a | 0.08 b |
25 | Butanoic acid, 3-methyl hexyl ester | -- | 0.71 a | 0.74 a |
26 | Propanoic acid, 3-methyl-, hexyl ester | -- | -- | 0.05 a |
27 | Isobutyl hexanoate | -- | -- | 0.10 a |
28 | Isopentyl hexanoate | -- | -- | 1.04 a |
29 | Ethyl-3-acetoxy hexanoate | -- | -- | 0.17 a |
30 | Butanoic acid, ethyl ester | -- | -- | 2.06 a |
31 | Acetic acid, butyl ester | -- | -- | 1.31 a |
32 | (Z)-3-Hexen-1-ol, acetate | -- | -- | 1.05 a |
33 | Cyclohexanol, 2-methyl-, acetate, (1R-trans) | -- | -- | 1.04 a |
34 | Propyl butyrate | -- | -- | 0.03 a |
35 | Butanoic acid, 1-methyl hexyl ester | -- | -- | 0.83 a |
Total | 0.26 b | 72.32 a | 74.1 a | |
Alcohols | ||||
36 | 1-Hexanol | 21.47 a | -- | -- |
37 | 1-Butanol, 3-methyl | -- | 0.22 b | 0.35 a |
38 | 5-Octen-1-ol | -- | 0.05 a | -- |
39 | 2-Pentanol | -- | -- | 1.64 a |
40 | Ethanol | -- | -- | 0.92 a |
41 | 1-Pentanol, 2-methyl | -- | -- | 3.63 a |
42 | 2-Heptanol | -- | -- | 0.31 a |
Total | 21.47 a | 0.27 c | 6.85 b | |
Aldehydes | ||||
43 | (Z)-2-Heptenal | 0.38 a | -- | -- |
44 | Nonanal | 0.30 a | -- | -- |
45 | Hexanal | 35.92 a | 2.03 b | -- |
46 | 2-Hexenal | 0.76 a | -- | -- |
47 | Trans-2-hexenal | 31.17 a | 8.34 b | 1.52 c |
48 | Trans-2-cls-6-nonadienl | 0.15 a | -- | -- |
49 | (E)-2-Nonenal | 0.63 a | -- | -- |
Total | 69.31 a | 51.12 a | 4.44 b | |
Ketones | ||||
50 | 2-Pentanone | -- | 0.58 b | 1.07 a |
51 | 2-Undecanone | -- | 0.04 a | -- |
52 | Heptanone | -- | -- | 0.51 a |
53 | 2-Heptanone | -- | -- | 0.51 a |
54 | 5-Hepten-2-one | -- | -- | 0.08 a |
Total | -- | 0.62 b | 2.17 a | |
Acids | ||||
55 | (Z)-3-Octen-1-ol, acetate | -- | 0.23 a | -- |
56 | 4-Hexen-1-ol, acetate | -- | 0.24 a | -- |
57 | Trans-3-octen-1-ol, acetate | -- | -- | 0.11 a |
Total | -- | 0.47 a | 0.11 a | |
Hydrocarbons | ||||
58 | Limonene | 0.18 a | -- | -- |
59 | 2-octyne | -- | 0.25 a | -- |
60 | Cyclobutane | -- | 0.18 a | -- |
61 | (Z,Z)-1,4-Cyclooctadiene | -- | 0.04 a | -- |
62 | Bicyclo [10.1.0] tridecane | -- | 0.79 a | -- |
Total | 0.18 b | 1.26 a | -- | |
Phenols | ||||
63 | Eugenol | -- | -- | 0.17 a |
Total | -- | -- | 0.17 a | |
Others | 8.78 b | 14.69 a | 15.04 a |
Relative Content (%) 1 | ||||
---|---|---|---|---|
Categories | Compounds | Green | Turning | Full-Ripening |
Esters | ||||
1 | Ethyl acetate | -- | 0.29 b | 2.78 a |
2 | 1-Butanol, 3-methyl-, acetate | -- | -- | 21.29 a |
3 | Hexanoic acid, ethyl ester | -- | 0.18 b | 1.52 a |
4 | 4-Hexen-1-ol, acetate, (Z) | -- | -- | 0.84 a |
5 | 1-methyl hexyl acetate | -- | -- | 0.41 a |
6 | Butanoic acid, 3-methyl-, butyl ester | -- | -- | 0.30 a |
7 | Isoamyl-2-methyl butyrate | -- | -- | 1.88 a |
8 | Ethyl-3-hydroxy hexanoate | -- | -- | 0.40 a |
9 | 3-Methylbutyl decanoate | -- | -- | 0.77 a |
10 | Trans-2-nonenoate | 0.18 a | 0.04 a | -- |
11 | Hexyl hexanoate | 0.15 b | 1.52 a | -- |
12 | Hexanoic acid, 3-hexenyl ester, (Z) | 0.15 a | 0.09 a | -- |
13 | Pentanoic acid, pentyl ester | -- | -- | 1.04 a |
14 | Diisobutyl phthalate | -- | 0.08 a | -- |
15 | Butanoic acid, 3-methyl-, 2-methyl propyl ester | -- | -- | 0.38 a |
16 | Isobutyl acetate | -- | -- | 0.91 a |
17 | Butyl acetate | -- | -- | 1.66 a |
18 | Butanoic acid, 3-methyl-, 3-methylbutyl ester | -- | -- | 6.24 a |
19 | Butanoic acid, 4-hexen-1yl ester | -- | -- | 0.61 a |
20 | Butanoic acid, 2-methylpropyl ester | -- | -- | 3.43 a |
21 | Butanoic acid, 3-methylbutyl ester | -- | 0.87 a | -- |
22 | Butanoic acid, butyl ester | -- | -- | 2.87 a |
23 | Butanoic acid, ethyl ester | -- | -- | 1.46 a |
24 | Butanoic acid, amyl ester | -- | -- | 0.21 a |
25 | Hexanoic acid, 3-methylbutyl ester | -- | 1.01 a | -- |
26 | Propanoic acid, 2-methylbutyl ester | -- | -- | 0.82 a |
27 | Hexanoic acid, butyl ester | -- | -- | 0.54 a |
28 | Octanoic acid, 3-methyl butyl ester | -- | -- | 2.67 a |
29 | Propanoic acid, 3-methyl, 3-methyl butyl ester | -- | -- | 5.71 a |
30 | 2-(1-Pentyloxy)-ethyl acetate | -- | -- | 0.37 a |
31 | 1-Methyl butyl acetate | -- | -- | 3.00 a |
32 | Acetic acid, hexyl ester | 0.20 a | 1.30 a | 6.11 a |
33 | (Z)-3-Hexen-1-ol acetate | -- | 0.18 a | -- |
34 | Butanoic acid, 1-methyl, hexyl ester | -- | -- | 21.79 a |
Total | 0.68 c | 5.56 b | 90.01 a | |
Alcohols | ||||
35 | Menthol | -- | 0.02 a | -- |
36 | 1-Butanol, 3-methyl | -- | 0.60 b | 1.45 a |
37 | 1-Hexanol | 21.12 a | 12.33 b | -- |
38 | 1-Nonanol | -- | 14.65 a | -- |
39 | 3-Pentanol, 2,4-dimethyl | -- | -- | 1.00 a |
40 | 1-Hexanol, 5-methyl | -- | 12.35 a | -- |
Total | 21.12 b | 39.95 a | 2.45 c | |
Aldehydes | ||||
41 | Nonanal | -- | 0.15 a | -- |
42 | Dodecanal | 0.06 a | 0.02 a | -- |
43 | Hexanal | 22.5 a | 17.25 a | -- |
44 | 2-Hexenal | 11.16 a | 10.5 a | -- |
45 | Trans-2-hexenal | 25.08 a | 23.13 a | 4.44 b |
46 | Decanal | -- | 0.07 a | -- |
Total | 58.8 a | 51.12 a | 4.44 b | |
Ketones | ||||
47 | 2-Pentanone | -- | -- | 0.61 a |
Total | -- | -- | 0.61 a | |
Acids | ||||
48 | Hexadecenoic acid, Z-11- | -- | -- | 1.26 a |
49 | Tetradecanoic acid | -- | -- | 0.88 a |
Total | -- | -- | 2.04 a | |
Hydrocarbons | ||||
50 | Dipentene | 0.30 a | -- | -- |
51 | Nonadecane | 0.07 a | -- | -- |
52 | n-Pentadecane | 0.17 a | 0.1 a | -- |
53 | Hexadecane | 0.09 a | 0.8 a | -- |
54 | Dodecane | 0.24 a | 0.08 a | -- |
55 | Eicosane | 0.15 a | -- | -- |
56 | Tetradecane | 0.20 a | -- | -- |
57 | Docosane | -- | 0.07 a | -- |
58 | Tridecane | -- | 0.02 a | -- |
Total | 1.22 a | 1.07 a | -- | |
Phenols | ||||
59 | 2,6-Di-tert-butyl-4-methylphenol | 0.81 a | 0.12 b | -- |
Total | 0.81 a | 0.12 b | -- | |
Others | 17.37 a | 2.18 b | 0.45 b |
Relative Content (%) | Green | Turning | Full-Ripening 1 | ||||
---|---|---|---|---|---|---|---|
Compounds | Fenjiao | Brazilian | Fenjiao | Brazilian | Fenjiao | Brazilian | |
Total (Esters) | 0.68 c | 0.26 c | 5.56 b | 72.32 a | 90.01 a | 74.14 a | |
Acetate | 0.20 d | -- | 1.77 c | 18.17 b | 32.75 a | 18.69 b | |
Methyl-acetate | -- | -- | -- | 7.10 a | 3.41 b | 6.48 a | |
Propionate | -- | -- | -- | -- | -- | -- | |
Methylpropionate | -- | -- | -- | -- | 6.53 a | 0.05 b | |
Butyrate | -- | 0.26 d | 0.87 d | 20.95 c | 30.37 a | 23.46 b,c | |
Methylbutyrate | -- | -- | -- | 20.62 a | 8.8 b | 18.94 a | |
Pentanoate | -- | -- | -- | 1.13 a | 1.04 a | -- | |
Hexanoate | 0.30 c | -- | 2.80 a | -- | 2.46 a | 1.14 b | |
Octoate | -- | -- | -- | -- | 2.67 a | -- | |
Decanoate | -- | -- | -- | -- | 0.77 a | -- | |
Others | 0.18 c | -- | 0.12 c | 4.35 a | 1.21 b | 5.38 a | |
Total (Aldehydes) | 58.50 a,b | 69.31 a | 51.12 b | 10.37 c | 4.44 d | 1.52 e | |
Hexanal | 22.50 b | 35.92 a | 17.25 b | 2.03 c | -- | -- | |
2-Hexenal | 11.16 a | 0.76 c | 10.5 b | -- | -- | -- | |
(E)-2-Hexenal | 25.08 a,b | 31.17 a | 23.13 b | 8.34 c | 4.44 d | 1.52 e | |
Others | 0.06 b | 1.46 a | 0.22 b | -- | -- | -- | |
Total (Alcohols) | 21.12 b | 21.47 b | 39.95 a | 0.27 e | 2.45 d | 6.85 c | |
1-Hexanol | 21.12a | 21.47 a | 12.33 b | -- | -- | -- | |
Others | -- | -- | 27.62 a | 0.27 d | 2.45 c | 6.85 b |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Li, Q.; Li, J.; Luo, J.; Chen, W.; Li, X. Comparative Study of Volatile Compounds in the Fruit of Two Banana Cultivars at Different Ripening Stages. Molecules 2018, 23, 2456. https://doi.org/10.3390/molecules23102456
Zhu X, Li Q, Li J, Luo J, Chen W, Li X. Comparative Study of Volatile Compounds in the Fruit of Two Banana Cultivars at Different Ripening Stages. Molecules. 2018; 23(10):2456. https://doi.org/10.3390/molecules23102456
Chicago/Turabian StyleZhu, Xiaoyang, Qiumian Li, Jun Li, Jun Luo, Weixin Chen, and Xueping Li. 2018. "Comparative Study of Volatile Compounds in the Fruit of Two Banana Cultivars at Different Ripening Stages" Molecules 23, no. 10: 2456. https://doi.org/10.3390/molecules23102456
APA StyleZhu, X., Li, Q., Li, J., Luo, J., Chen, W., & Li, X. (2018). Comparative Study of Volatile Compounds in the Fruit of Two Banana Cultivars at Different Ripening Stages. Molecules, 23(10), 2456. https://doi.org/10.3390/molecules23102456