Peroxidative Oxidation of Alkanes and Alcohols under Mild Conditions by Di- and Tetranuclear Copper (II) Complexes of Bis (2-Hydroxybenzylidene) Isophthalohydrazide
Abstract
:1. Introduction
2. Results and Discussion
2.1. Syntheses and Characterizations
2.2. General Description of the Crystal Structures
2.3. Electrochemical Properties
2.4. Magnetic Properties
2.5. Catalytic Studies
2.5.1. Solvent-Free Microwave (MW) Assisted Oxidation of Secondary Alcohols
2.5.2. Peroxidative Oxidation of Cyclohexane
3. Experimental Section
3.1. General Materials and Equipment
3.2. X-Ray Measurements
3.3. Electrochemical Studies
3.4. Typical Procedures and Product Analysis for Catalysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kopylovich, M.N.; Ribeiro, A.P.C.; Alegria, E.C.B.A.; Martins, N.M.R.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Catalytic oxidation of alcohols: Recent advances. Adv. Organomet. Chem. 2015, 63, 91–174. [Google Scholar]
- Karabach, Y.Y.; Kopylovich, M.N.; Mahmudov, K.T.; Pombeiro, A.J.L. Microwave-assisted catalytic oxidation of alcohols to carbonyl compounds. In Advances in Organometallic Chemistry Catalysis; Pombeiro, A.J.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 18; pp. 233–245. [Google Scholar]
- Mallat, T.; Baiker, A. Oxidation of Alcohols with Molecular Oxygen on Solid Catalysts. Chem. Rev. 2004, 104, 3037–3058. [Google Scholar] [CrossRef] [PubMed]
- Allen, S.E.; Walvoord, R.R.; Padilla-Salinas, R.; Kozlowski, M.C. Aerobic copper-catalyzed organic reactions. Chem. Rev. 2013, 113, 6234–6458. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, R.A.; Arends, I.W.C.E.; Dijksman, A. New developments in catalytic alcohol oxidations for fine chemicals synthesis. Catal. Today 2000, 57, 157–166. [Google Scholar] [CrossRef]
- Ryland, B.L.; Stahl, S.S. Practical aerobic oxidations of alcohols and amines with homogeneous copper/TEMPO and related catalyst systems. Angew. Chem. Int. Ed. Engl. 2014, 53, 8824–8838. [Google Scholar] [CrossRef] [PubMed]
- Trincado, M.; Banerjee, D.; Grutzmacher, H. Molecular catalysts for hydrogen production from alcohols. Energy Environ. Sci. 2014, 7, 2464–2503. [Google Scholar] [CrossRef]
- Sheldon, R.A.; Arends, I.W.C.E.; Ten Brink, G.J.; Dijksman, A.G. Catalytic Oxidations of Alcohols. Acc. Chem. Res. 2002, 35, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Dobereiner, G.E.; Crabtree, R.H. Dehydrogenation as a Substrate-Activating Strategy in Homogeneous Transition-Metal Catalysis. Chem. Rev. 2010, 110, 681–703. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, N. Modern Heterogeneous Oxidation Catalysis; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2009. [Google Scholar]
- Sheldon, R.A.; Arends, I.W.C.E. Organocatalytic Oxidations Mediated by Nitroxyl Radicals. Adv. Synth. Catal. 2004, 346, 1051–1071. [Google Scholar] [CrossRef]
- Sutradhar, M.; Alegria, E.C.B.A.; Barman, T.R.; Scorcelletti, F.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Microwave-assisted peroxidative oxidation of toluene and 1-phenylethanol with monomeric keto and polymeric enol aroylhydrazone Cu(II) complexes. Mol. Cat. 2017, 439, 224–232. [Google Scholar] [CrossRef]
- Ribeiro, A.P.C.; Fontolan, E.; Alegria, E.C.B.A.; Kopylovich, M.N.; Bertani, R.; Pombeiro, A.J.L. The influence of multiwalled carbon nanotubes and graphene oxide additives on the catalytic activity of 3d metal catalysts towards alcohol oxidation. J. Mol. Catal. Chem. 2017, 426, 557–563. [Google Scholar] [CrossRef]
- Frija, L.M.T.; Alegria, E.C.B.A.; Sutradhar, M.; Cristiano, M.L.S.; Ismael, A.; Kopylovich, M.N.; Pombeiro, A.J.L. Copper(II) and cobalt(II) tetrazole-saccharinate complexes as effective catalysts for oxidation of secondary alcohols. J. Mol. Cat. Chem. 2016, 425, 283–290. [Google Scholar] [CrossRef]
- Timokhin, I.; Pettinari, C.; Marchetti, F.; Pettinari, R.; Condello, F.; Galli, S.; Alegria, E.C.B.A.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Novel coordination polymers with (pyrazolato)-based tectons: Catalytic activity in the peroxidative oxidation of alcohols and cyclohexane. Cryst. Growth Des. 2015, 15, 2303–2317. [Google Scholar] [CrossRef]
- Sutradhar, M.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Oxido vanadium complexes with tridentate aroylhydrazone as catalyst precursors for solvent-free microwave-assisted oxidation of alcohol. Appl. Catal. Gen. 2015, 493, 50–57. [Google Scholar] [CrossRef]
- Zaltariov, M.F.; Alexandru, M.; Cazacu, M.; Shova, S.; Novitchi, G.; Train, C.; Dobrov, A.; Kirillova, M.V.; Alegria, E.C.B.A.; Pombeiro, A.J.L.; et al. Tetranuclear copper(II) complexes with macrocyclic and open-chain disiloxane ligands as catalyst precursors for hydrocarboxylation and oxidation of alkanes and 1-phenylethanol. Eur. J. Inorg. Chem. 2014, 29, 4946–4956. [Google Scholar] [CrossRef]
- Kopylovich, M.N.; Mizar, A.; Silva, M.F.C.G.; MacLeod, T.C.O.; Mahmudov, K.T.; Pombeiro, A.J.L. Template syntheses of copper(II) complexes from arylhydrazones of malononitrile and their catalytic activity towards alcohol oxidations and the nitroaldol reaction: Hydrogen bond-assisted ligand liberation and E/Z isomerisation. Chem. Eur. J. 2013, 19, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Hartwig, J.F. Evolution of C–H bond functionalization from methane to methodology. J. Am. Chem. Soc. 2016, 138, 2–24. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.P.C.; Martins, L.M.D.R.S.; Alegria, E.C.B.A.; Matias, I.A.S.; Duarte, T.A.G.; Pombeiro, A.J.L. Catalytic performance of Fe(II)-scorpionate complexes towards cyclohexane oxidation in organic, ionic liquid and/or supercritical CO2 media: A comparative study. Catalysts 2017, 7, 230. [Google Scholar] [CrossRef]
- Pombeiro, A.J.L. Toward functionalization of alkanes under environmentally benign conditions. In Advances. In Organometallic Chemistry and Catalysis; Pombeiro, A.J.L., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2014; Chapter 2; pp. 15–25. [Google Scholar]
- Shul’pin, G.B. New trends in oxidative functionalization of carbon–hydrogen bonds: A review. Catalysts 2016, 6, 50. [Google Scholar] [CrossRef]
- Shul’pin, G.B. Hydrocarbon oxygenations with peroxides catalyzed by metal compounds. Mini-Rev. Org. Chem. 2009, 6, 95–104. [Google Scholar] [CrossRef]
- Shul’pin, G.B. Selectivity enhancement in functionalization of C–H bonds: A review. Org. Biomol. Chem. 2010, 8, 4217–4228. [Google Scholar] [CrossRef] [PubMed]
- Martins, L.M.D.R.S.; Pombeiro, A.J.L. Tris(pyrazol-1yl)methane metal complexes for catalytic mild oxidative functionalizations of alkanes, alkenes and ketones. Coord. Chem. Rev. 2014, 265, 74–88. [Google Scholar] [CrossRef]
- Martins, L.M.D.R.S.; Pombeiro, A.J.L. Water-soluble C-scorpionate complexes: Catalytic and biological applications. Eur. J. Inorg. Chem. 2016, 2236–2252. [Google Scholar] [CrossRef]
- Kirillov, A.M.; Kirillova, M.V.; Pombeiro, A.J.L. Multicopper complexes and coordination polymers for mild oxidative functionalization of alkanes. Coord. Chem. Rev. 2012, 256, 2741–2759. [Google Scholar] [CrossRef]
- Buvaylo, E.A.; Kokozay, V.N.; Vassilyeva, O.Y.; Skelton, B.W.; Nesterova, O.V.; Pombeiro, A.J.L. Copper(II) complex of the 2-pyridinecarbaldehyde aminoguanidine Schiff base: Crystal structure and catalytic behaviour in mild oxidation of alkanes. Inorg. Chem. Commun. 2017, 78, 85–90. [Google Scholar] [CrossRef]
- Sutradhar, M.; Martins, L.M.D.R.S.; Guedes da Silv, M.F.C.; Pombeiro, A.J.L. Vanadium complexes: Recent progress in oxidation catalysis. Coord. Chem. Rev. 2015, 301-302, 200–239. [Google Scholar] [CrossRef]
- Sutradhar, M.; Kirillova, M.V.; Guedes da Silva, M.F.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. A hexanuclear oxovanadium(IV,V) complex bearing N,O-ligand as a highly efficient alkane oxidation catalyst. Inorg. Chem. 2012, 51, 11229–11231. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, M.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Alegria, E.C.B.A.; Liu, C.M.; Pombeiro, A.J.L. Mn(II,II) complexes: Magnetic properties and microwave assisted oxidation of alcohols. Dalton. Trans. 2014, 43, 3966–3977. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, M.; Martins, L.M.D.R.S.; Guedes da Silva, M.F.C.; Liu, C.M.; Pombeiro, A.J.L. Trinuclear Cu(II) structural isomers: Coordination, magnetism, electrochemistry and catalytic activity toward oxidation of alkanes. Eur. J. Inorg. Chem. 2015, 3959–3969. [Google Scholar] [CrossRef]
- Sutradhar, M.; Alegria, E.C.B.A.; Guedes da Silva, M.F.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Aroylhydrazone Cu(II) complexes in keto form: Structural characterization and catalytic activity towards cyclohexane oxidation. Molecules 2016, 21, 425. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, M.; Alegria, E.C.B.A.; Mahmudov, K.T.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Iron(III) and cobalt(III) complexes with both tautomeric (keto and enol) forms of aroylhydrazone ligands: Catalysts for the microwave assisted oxidation of alcohols. RSC Adv. 2016, 6, 8079–8088. [Google Scholar] [CrossRef]
- Chiari, B.; Piovesana, O.; Tarantelli, T.; Zanazzi, P.F. Further neighbor magnetic exchange interaction in a novel pseudolinear tetramer of copper (II). Inorg. Chem. 1993, 32, 4834–4838. [Google Scholar] [CrossRef]
- Karabach, Y.Y.; Kopylovich, M.N.; Mahmudov, K.T.; Pombeiro, A.J.L. Microwave-assisted Catalytic oxidation of Alcohols to carbonyl compounds. In Advances in Organometallic Chemistry and Catalysis; Pombeiro, A.J.L., Ed.; Wiley-VCH: Weinheim, Germany; Hoboken, NJ, USA, 2013; Chapter 22; pp. 285–294. [Google Scholar]
- Figiel, P.J.; Kopylovich, M.N.; Lasri, J.; Guedes da Silva, M.F.C.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Solvent-free microwave-assisted peroxidative oxidation of secondary alcohols to the corresponding ketones catalyzed by copper (II) 2,4-alkoxy-1,3,5-triazapentadienato complexes. Chem. Commun. 2010, 46, 2766–2768. [Google Scholar] [CrossRef] [PubMed]
- Figiel, P.J.; Kirillov, A.M.; Guedes da Silva, M.F.C.; Lasri, J.; Pombeiro, A.J.L. Self-assembled dicopper(II) diethanolaminate cores for mild aerobic and peroxidative oxidation of alcohols. Dalton Trans. 2010, 39, 9879–9888. [Google Scholar] [CrossRef] [PubMed]
- Lasri, J.; Rodriguez, M.J.F.; Guedes da Silva, M.F.C.; Smolenski, P.; Kopylovich, M.N.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Microwave synthesis of bis(tetrazolato)-PdII complexes with PPh3 and water-soluble 1,3,5-triaza-7-phosphaadamantane (PTA). The first example of C–CN bond cleavage of propionitrile by a PdII centre. J. Organomet. Chem. 2011, 696, 3513–3520. [Google Scholar] [CrossRef]
- Alexandru, M.; Cazacu, M.; Arvinte, A.; Shova, S.; Turta, C.; Simionescu, B.C.; Dobrov, A.; Alegria, E.C.B.A.; Martins, L.M.D.R.S.; Pombeiro, A.J.L.; et al. μ-Chlorido-bridged dimanganese(II) complexes of the Schiff base derived from [2+2]condensation of 2,6-diformyl-4-methylphenol and 1,3-bis(3-aminopropyl)tetramethyldisiloxane: Structure, magnetism, electrochemical behaviour and catalytic oxidation of secondary alcohols. Eur. J. Inorg. Chem. 2014, 120–131. [Google Scholar] [CrossRef]
- Ahmad, J.U.; Figiel, P.J.; Räisänen, M.T.; Leskelä, M.; Repo, T. Aerobic oxidation of benzylic alcohols with bis(3,5-di-tert-butylsalicylaldimine) copper (II) complexes. Appl. Catal. A 2009, 371, 17–21. [Google Scholar] [CrossRef]
- Figiel, P.J.; Kirillov, A.M.; Karabach, Y.Y.; Kopylovich, M.N.; Pombeiro, A.J.L. Mild aerobic oxidation of benzyl alcohols to benzaldehydes in water catalyzed by aqua-soluble multicopper(II) triethanolaminate compounds. J. Mol. Catal. Chem. 2009, 305, 178–182. [Google Scholar] [CrossRef]
- Martins, N.M.R.; Mahmudov, K.T.; Guedes da Silva, M.F.C.; Martins, L.M.D.R.S.; Pombeiro, A.J.L. Copper(II) and iron(III) complexes with arylhydrazone of ethyl 2-cyanoacetate or formazan ligands as catalysts for oxidation of alcohols. New J. Chem. 2016, 40, 10071–10083. [Google Scholar] [CrossRef]
- Sheldon, R.A. E factors, green chemistry and catalysis: An odyssey. Chem. Commun. 2008, 29, 3352–3365. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.; Belanzon, P.; Gamez, P.; Reedijk, J.; Baerends, E.J. Activation of the C−H bond by electrophilic attack: Theoretical study of the reaction mechanism of the aerobic oxidation of alcohols to aldehydes by the Cu(bipy)2+/2,2,6,6-tetramethylpiperidinyl-1-oxy cocatalyst system. Inorg. Chem. 2009, 48, 11909–11920. [Google Scholar] [CrossRef] [PubMed]
- Gamez, P.; Arends, I.W.C.E.; Sheldon, R.A.; Reedijk, J. Room temperature aerobic copper–catalysed selective oxidation of primary alcohols to aldehydes. Adv. Synth. Catal. 2004, 346, 805–811. [Google Scholar] [CrossRef]
- Gamez, P.; Arends, I.W.C.E.; Reedijk, J.; Sheldon, R.A. Copper(II)-catalysed aerobic oxidation of primary alcohols to aldehydes. Chem. Commun. 2003, 19, 2414–2415. [Google Scholar] [CrossRef]
- Kopylovich, M.N.; Karabach, Y.Y.; Guedes da Silva, M.F.C.; Figiel, P.J.; Lasri, J.; Pombeiro, A.J.L. Alkoxy-1,3,5-triazapentadien(e/ato) copper(II) complexes: Template formation and applications for the preparation of pyrimidines and as catalysts for oxidation of alcohols to carbonyl products. Chem. Eur. J. 2012, 18, 899–914. [Google Scholar] [CrossRef] [PubMed]
- Shul’pin, G.B. Metal-catalysed hydrocarbon oxygenations in solutions: The dramatic role of additives: A review. J. Mol. Catal. A Chem. 2002, 189, 39–66. [Google Scholar] [CrossRef]
- Shul’pin, G.B. Metal-catalysed hydrocarbon oxidations. C. R. Chim. 2003, 6, 163–178. [Google Scholar] [CrossRef]
- Shul’pin, G.B.; Kozlov, Y.N.; Shul’pina, L.S.; Kudinov, A.R.; Mandelli, D. Extremely efficient alkane oxidation by a new catalytic reagent H2O2/Os3(CO)12/Pyridine. Inorg. Chem. 2009, 48, 10480–10482. [Google Scholar] [CrossRef] [PubMed]
- Kopylovich, M.N.; Nunes, A.C.C.; Mahmudov, K.T.; Haukka, M.; Mac Leod, T.C.O.; Martins, L.M.D.R.S.; Kuznetsov, M.L.; Pombeiro, A.J.L. Complexes of copper(II) with 3-(ortho-substituted phenylhydrazo)pentane-2,4-diones: Syntheses, properties and catalytic activity for cyclohexane oxidation. Dalton Trans. 2011, 40, 2822–2836. [Google Scholar] [CrossRef] [PubMed]
- Kirillova, M.V.; Kozlov, Y.N.; Shul’pina, L.S.; Lyakin, Q.Y.; Kirillov, A.M.; Talsi, E.P.; Pombeiro, A.J.L.; Shul’pin, G.B. Remarkably fast oxidation of alkanes by hydrogen peroxide catalyzed by a tetracopper(II) triethanolaminate complex: Promoting effects of acid co-catalysts and water, kinetic and mechanistic features. J. Catal. 2009, 268, 26–38. [Google Scholar] [CrossRef]
- Gruenwald, K.R.; Kirillov, A.M.; Haukka, M.; Sanchiz, J.; Pombeiro, A.J.L. Mono-, di- and polynuclear copper(II) compounds derived from N-butyldiethanolamine: Structural features, magnetism and catalytic activity for the mild peroxidative oxidation of cyclohexane. Dalton Trans. 2009, 2109–2120. [Google Scholar] [CrossRef] [PubMed]
- Karabach, Y.Y.; Kirillov, A.M.; Haukka, M.; Kopylovich, M.N.; Pombeiro, A.J.L. Copper(II) coordination polymers derived from triethanolamine and pyromellitic acid for bioinspired mild peroxidative oxidation of cyclohexane. J. Inorg. Biochem. 2008, 102, 1190–1194. [Google Scholar] [CrossRef] [PubMed]
- Di Nicola, C.; Karabach, Y.Y.; Kirillov, A.M.; Monari, M.; Pandolfo, L.; Pettinari, C.; Pombeiro, A.J.L. Supramolecular assemblies of trinuclear triangular copper(II) secondary building units through hydrogen bonds. Generation of different metal−organic frameworks, valuable catalysts for peroxidative oxidation of alkanes. Inorg. Chem. 2007, 46, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, R.R.; Lasri, J.; Guedes da Silva, M.F.C.; da Silva, J.A.L.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. Mild alkane C–H and O–H oxidations catalysed by mixed-N,S copper, iron and vanadium systems. Appl. Catal. Gen. 2011, 402, 110–120. [Google Scholar] [CrossRef]
- Fernandes, R.R.; Lasri, J.; Kirillov, A.M.; Guedes da Silva, M.F.C.; da Silva, J.A.L.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L. New FeII and CuII complexes bearing azathia macrocycles—Catalyst precursors for mild peroxidative oxidation of cyclohexane and 1-phenylethanol. Eur. J. Inorg. Chem. 2011, 3781–3790. [Google Scholar] [CrossRef]
- Shul’pin, G.B.; Kozlov, Y.N.; Nizova, G.V.; Suss-Frank, G.; Stanislas, S.; Kitaygorodskiy, A.; Kulikova, V.S. Oxidations by the reagent “O2–H2O2–vanadium derivative–pyrazine-2-carboxylic acid”. Part 12.1 Main features, kinetics and mechanism of alkane hydroperoxidation. J. Chem. Soc. Perkin Trans. 2001, 2, 1351–1371. [Google Scholar] [CrossRef]
- Kuznetsov, M.L.; Pombeiro, A.J.L. Radical formation in the [MeReO3]-catalyzed aqueous peroxidative oxidation of alkanes: A theoretical mechanistic study. Inorg. Chem. 2009, 48, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Kirilova, M.V.; Kuznetsov, M.L.; Kozlov, Y.N.; Shul’pina, L.S.; Kitaygorodskiy, A.; Pombeiro, A.J.L.; Shul’pin, G.B. Participation of oligovanadates in alkane oxidation with H2O2 catalyzed by vanadate anion in acidified acetonitrile: Kinetic and DFT studies. ACS Catal. 2011, 1, 1511–1520. [Google Scholar] [CrossRef]
- Kirilova, M.V.; Kuznetsov, M.L.; Romakh, V.B.; Shul’pina, L.S.; Fraústo da Silva, J.J.R.; Pombeiro, A.J.L.; Shul’pin, G.B. Mechanism of oxidations with H2O2 catalyzed by vanadate anion or oxovanadium(V) triethanolaminate (vanadatrane) in combination with pyrazine-2-carboxylic acid (PCA): Kinetic and DFT studies. J. Catal. 2009, 267, 140–157. [Google Scholar] [CrossRef]
- Kahn, O. Molecular Magnetism; VCH: New York, NY, USA, 1993. [Google Scholar]
- Sutradhar, M.; Mukherjee, G.; Drew, M.G.B.; Ghosh, S. Simple general method of generating non-oxo, non-amavadine model octacoordinated vanadium(IV) complexes of some tetradentate ONNO chelating ligands from various oxovanadium(IV/V) compounds and structural characterization of one of them. Inorg. Chem. 2007, 46, 5069–5075. [Google Scholar] [CrossRef] [PubMed]
- Sutradhar, M.; Roy Barman, T.; Mukherjee, G.; Drew, M.G.B.; Ghosh, S. Oxidoalkoxidovanadium(V) complexes: Synthesis, characterization and comparison of X-ray crystal structures. Polyhedron 2012, 34, 92–101. [Google Scholar] [CrossRef]
- Bruker. APEX2 & SAINT; AXS Inc.: Madison, WI, USA, 2004. [Google Scholar]
- Altomare, A.; Burla, M.C.; Camalli, M.; Cascarano, G.L.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A.G.G.; Polidori, G.; Spagna, R. SIR97: A new tool for crystal structure determination and refinement. J. Appl. Cryst. 1999, 32, 115–119. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Cryst. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Crystall. Sect. C 2015, 71, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Redox potential parameterization in coordination compounds with polydentate scorpionate and benzene ligands. Electrochim. Acta 2012, 82, 478–483. [Google Scholar] [CrossRef]
- Pombeiro, A.J.L.; Guedes da Silva, M.F.C.; Lemos, M.A.N.D.A. Electron-transfer induced isomerizations of coordination compounds. Coord. Chem. Rev. 2001, 219, 53–80. [Google Scholar] [CrossRef]
- Silva, M.E.N.P.R.A.; Pombeiro, A.J.L.; Fraústo da Silva, J.J.R.; Herrmann, R.; Deus, N.; Castilho, T.J.; Guedes da Silva, M.F.C. Redox potential and substituent effects at ferrocene derivatives. Estimates of Hammett σp and Taft polar σ substituent constants. J. Organomet. Chem. 1991, 421, 75–90. [Google Scholar]
- Silva, M.E.N.P.R.A.; Pombeiro, A.J.L.; Fraústo da Silva, J.J.R.; Herrmann, R.; Deus, N.; Bozak, R.E. Redox potential and substituent effects in ferrocene derivatives: II. J. Organomet. Chem. 1994, 480, 81–90. [Google Scholar] [CrossRef]
- Pombeiro, A.J.L. Characterization of coordination compounds by electrochemical parameters. Eur. J. Inorg. Chem. 2007, 1473–1482. [Google Scholar] [CrossRef]
- Pombeiro, A.J.L. Electron-donor/acceptor properties of carbynes, carbenes, vinylidenes, allenylidenes and alkynyls as measured by electrochemical ligand parameters. J. Organomet. Chem. 2005, 690, 6021–6040. [Google Scholar] [CrossRef]
1 | 2·2EtOH | |
---|---|---|
Empirical formula | C22H20Cu2N6O15 | C48H50Cu4N10O20 |
Formula Weight | 735.52 | 1341.14 |
Crystal system | Triclinic | Triclinic |
Space group | P−1 | P−1 |
Temperature/K | 296 (2) | 296 (2) |
a/Å | 7.8618 (4) | 9.5722 (5) |
b/Å | 10.1197 (6) | 10.0444 (5) |
c/Å | 18.1173 (10) | 14.9699 (8) |
α/° | 102.605 (3) | 71.735 (2) |
β/° | 98.203 (2) | 76.323 (3) |
γ/° | 90.384 (3) | 80.058 (3) |
V (Å3) | 1391.19 (13) | 1320.44 (12) |
Z | 2 | 1 |
Dcalc (g cm–3) | 1.756 | 1.687 |
μ (Mo Kα) (mm–1) | 1.615 | 1.677 |
Rfls. collected/unique/observed | 15,443/4623/2087 | 17,480/4694/2675 |
Rint | 0.1339 | 0.0913 |
Final R1 a, wR2 b (I ≥ 2σ) | 0.0718, 0.1441 | 0.0607, 0.1326 |
Goodness-of-fit on F2 | 0.996 | 1.039 |
Parameter | 1 | 2 |
---|---|---|
Cu(water)-Ophenolate | 1.881(6) | 1.903(4) |
Cu(nitrate)-Ophenolate | 1.891(5) | 1.925(4) |
Cu(water)-Oketone | 1.964(6) | 2.017(4) |
Cu(nitrate)-Oketone | 1.984(5) | 1.919(4) |
Cu-Onitrate | 1.961(7) 2.427(7) 2.69(1) | 2.680(7) 2.709(5) |
Cu-Owater | 2.019(8) 2.131(8) | 1.970(4) 2.251(5) |
Cu-N | 1.935(7) 1.938(6) | 1.905(5) 1.933(5) |
N-N | 1.379(8) 1.399(9) | 1.373(7) 1.405(6) |
Shortest | 8.457 [Cu(water)···Cu(nitrate)] | |
intramolecular Cu···Cu | 9.471 [Cu(water)···Cu(nitrate)] | 2.928 [Cu(nitrate)···Cu(nitrate)] |
intermolecular Cu···Cu | 5.471 [Cu(water)···Cu(nitrate)] | 6.120 [Cu(water)···Cu(nitrate)] |
Largest | ||
O-Cu(water)-O | 172.3(3) | 170.53(18) |
O-Cu(water)-N | 149.8(5) | 167.0(2) |
O-Cu(nitrate)-O | 171.6(2) | 174.01(18) |
O-Cu(nitrate)-N | 176.5(3) | 170.71(19) |
Entry | Catalyst Precursor | Reaction Time (h) | Temperature (°C) | Additive (μmol) | Yield b (%) | TOF c (h−1) |
---|---|---|---|---|---|---|
1 | 1 | 0.5 | 80 | - | 11 | 108 |
2 | 3 | 80 | - | 27 | 74 | |
3 | 0.5 | 120 | - | 37 | 264 | |
4 | 1 | 120 | - | 75 | 494 | |
5 | 3 | 120 | - | 95 | 222 | |
6 | 0.5 | 80 | Hpca (50) | 14 | 118 | |
7 | 0.5 | 120 | Hpca (50) | 70 | 538 | |
8 | 0.5 | 80 | Hpca (100) | 5 | 64 | |
9 | 0.5 | 80 | TFA (50) | 18 | 182 | |
10 | 0.5 | 120 | TFA (50) | 79 | 501 | |
11 | 0.5 | 80 | TFA (100) | 6 | 89 | |
12 | 0.5 | 80 | TEMPO (30) | 22 | 168 | |
13 | 0.5 | 120 | TEMPO (30) | 88 | 1112 | |
14 | 1 | 120 | TEMPO (30) | 99 | 755 | |
15 d | 1 | 120 | - | 17 | 111 | |
16 | 3 | 120 | - | 42 | 98 | |
17 | 2 | 0.5 | 80 | - | 5 | 56 |
18 | 0.5 | 120 | - | 28 | 182 | |
19 | 1 | 120 | - | 42 | 212 | |
20 | 3 | 120 | - | 71 | 137 | |
21 | 0.5 | 80 | TFA (50) | 8 | 82 | |
22 | 0.5 | 80 | Hpca (50) | 6 | 67 | |
23 | 0.5 | 80 | TEMPO (30) | 10 | 78 | |
24 | 0.5 | 120 | TEMPO (30) | 46 | 237 | |
25 | None | 1 | 120 | - | 1 | 6 |
26 | None | 1 | 120 | TEMPO | 4 | 21 |
Entry | Catalyst Precursor | Substrate | Reaction Time (h) | Additive (μmol) | Yield b (%) | TOF c (h−1) |
---|---|---|---|---|---|---|
1 | 1 | cyclohexanol | 0.5 | - | 31 | 380 |
2 | 0.5 | TEMPO (30) | 58 | 568 | ||
3 | 1 | TEMPO (30) | 87 | 471 | ||
4 | 2-hexanol | 0.5 | - | 21 | 204 | |
5 | 0.5 | TEMPO (30) | 45 | 426 | ||
6 | 1 | TEMPO (30) | 71 | 726 | ||
7 | 3-hexanol | 0.5 | - | 20 | 194 | |
8 | 0.5 | TEMPO (30) | 43 | 398 | ||
9 | 1 | TEMPO (30) | 69 | 321 | ||
10 | 2 | cyclohexanol | 0.5 | - | 22 | 222 |
11 | 0.5 | TEMPO (30) | 34 | 382 | ||
12 | 1 | TEMPO (30) | 59 | 285 | ||
13 | 2-hexanol | 0.5 | - | 17 | 176 | |
14 | 0.5 | TEMPO (30) | 31 | 368 | ||
15 | 1 | TEMPO (30) | 49 | 225 | ||
16 | 3-hexanol | 0.5 | - | 15 | 168 | |
17 | 0.5 | TEMPO (30) | 29 | 358 | ||
18 | 1 | TEMPO (30) | 51 | 255 |
Entry | Precatalyst | Acid Co-Catalyst | Reaction Time (min) | Yield (%) | ||
---|---|---|---|---|---|---|
OL | ONE | Total b | ||||
1 | 1 | - | 5 | 3.7 | 3.2 | 6.9 |
2 | - | 15 | 4.1 | 3.6 | 7.7 | |
3 | - | 30 | 4.2 | 3.7 | 7.9 | |
4 | - | 45 | 4.3 | 3.8 | 8.1 | |
5 | - | 60 | 4.5 | 3.8 | 8.3 | |
6 | - | 120 | 4.8 | 3.9 | 8.7 | |
7 | TFA | 5 | 3.8 | 2.3 | 6.1 | |
8 | TFA | 15 | 5.3 | 3.5 | 8.8 | |
9 | TFA | 30 | 5.9 | 4.5 | 10.4 | |
10 | TFA | 45 | 6.6 | 5.2 | 11.8 | |
11 | TFA | 60 | 7.2 | 5.3 | 12.5 | |
12 | TFA | 120 | 7.8 | 5.3 | 13.1 | |
13 | 2 | - | 5 | 3.3 | 1.6 | 4.9 |
14 | - | 15 | 3.5 | 1.7 | 5.2 | |
15 | - | 30 | 3.5 | 1.9 | 5.4 | |
16 | - | 45 | 3.6 | 1.8 | 5.4 | |
17 | - | 60 | 3.7 | 1.8 | 5.5 | |
18 | - | 120 | 3.9 | 1.6 | 5.5 | |
18 | TFA | 5 | 2.9 | 2.2 | 5.1 | |
20 | TFA | 15 | 3.6 | 1.9 | 5.5 | |
21 | TFA | 30 | 4.1 | 2.0 | 6.1 | |
22 | TFA | 45 | 4.4 | 1.9 | 6.3 | |
23 | TFA | 60 | 4.8 | 2.0 | 6.8 | |
24 | TFA | 120 | 5.1 | 2.5 | 7.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutradhar, M.; Alegria, E.C.B.A.; Guedes da Silva, M.F.C.; Liu, C.-M.; Pombeiro, A.J.L. Peroxidative Oxidation of Alkanes and Alcohols under Mild Conditions by Di- and Tetranuclear Copper (II) Complexes of Bis (2-Hydroxybenzylidene) Isophthalohydrazide. Molecules 2018, 23, 2699. https://doi.org/10.3390/molecules23102699
Sutradhar M, Alegria ECBA, Guedes da Silva MFC, Liu C-M, Pombeiro AJL. Peroxidative Oxidation of Alkanes and Alcohols under Mild Conditions by Di- and Tetranuclear Copper (II) Complexes of Bis (2-Hydroxybenzylidene) Isophthalohydrazide. Molecules. 2018; 23(10):2699. https://doi.org/10.3390/molecules23102699
Chicago/Turabian StyleSutradhar, Manas, Elisabete C.B.A. Alegria, M. Fátima C. Guedes da Silva, Cai-Ming Liu, and Armando J. L. Pombeiro. 2018. "Peroxidative Oxidation of Alkanes and Alcohols under Mild Conditions by Di- and Tetranuclear Copper (II) Complexes of Bis (2-Hydroxybenzylidene) Isophthalohydrazide" Molecules 23, no. 10: 2699. https://doi.org/10.3390/molecules23102699
APA StyleSutradhar, M., Alegria, E. C. B. A., Guedes da Silva, M. F. C., Liu, C. -M., & Pombeiro, A. J. L. (2018). Peroxidative Oxidation of Alkanes and Alcohols under Mild Conditions by Di- and Tetranuclear Copper (II) Complexes of Bis (2-Hydroxybenzylidene) Isophthalohydrazide. Molecules, 23(10), 2699. https://doi.org/10.3390/molecules23102699