Characteristics and Kinetics of Rosin Pentaerythritol Ester via Oxidation Process under Ultraviolet Irradiation
Abstract
:1. Introduction
2. Results and Discussions
2.1. UV Spectra Characteristics of RPE
2.2. RPE Oxidation Characteristics Under UV Irradiation
2.3. Peroxide of RPE by Iodimetry
2.4. Kinetics of RPE Oxidation Under UV Irradiation
2.5. The Initial Quantum Yield
2.6. Transition State Activation Energy
3. Materials and Methods
3.1. Chemicals
3.2. Design of Photo-Oxidation Equipment
3.3. Photo-Oxidation
3.4. Peroxide Analysis by Iodimetry
3.5. Calculation Method of Oxidation Kinetics
3.6. Calculation Method of Quantum Yield
3.7. Estimation Method of Transition State Thermodynamics
4. Conclusions
- (1)
- In air at room temperature, RPE could be oxidized under 254 nm UV irradiation, while no oxidation was observed under no or 365 nm UV irradiation.
- (2)
- RPE could form a high level of peroxides in its photo-oxidation process. Light intensity (I) and temperature (T) are associated with the peroxide concentration. The increasing T and I would destabilize the RPE by accelerating peroxide formation.
- (3)
- The photo-oxidation process of RPE followed pseudo first-order kinetics, Ea and the logarithm of light intensity have a linear relationship: Ea = −4.937ln I + 45.565. In the light intensity range of 200–800 μW cm−2, the average value of initial photo-oxidation quantum yield was calculated to be 7.19%.
- (4)
- The parameters of the transition state demonstrated that the photo-oxidation of RPE was an endothermic, non-spontaneous and ordered process.
Author Contributions
Funding
Conflicts of Interest
References
- An, S.; Hong, S.; Tang, C.; Oh, J. Rosin-based block copolymer intracellular delivery nanocarriers with reduction-responsive sheddable coronas for cancer therapy. Polym. Chem. 2016, 7, 4751–4760. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, D.; Wei, X.; Liang, J.; Chen, X.; Wang, L. Green catalytic conversion of hydrogenated rosin to glycerol esters using subcritical CO2, in water and the associated kinetics. J. Supercrit. Fluids 2017, 125, 12–21. [Google Scholar] [CrossRef]
- Wang, L.; Chen, X.; Liang, J.; Chen, Y.; Pu, X.; Tong, Z. Kinetics of the catalytic isomerization and disproportionation of rosin over carbon-supported palladium. Chem. Eng. J. 2009, 152, 242–250. [Google Scholar] [CrossRef]
- Lin, H.X.; Yang, M.S.; Tian, C.; Han, C.R.; Song, J.; Duan, J.F.; Jiang, J.X. Design of diversified self-assembly systems based on a natural rosin-based tertiary amine for doxorubicin delivery and excellent emulsification. Colloids Surf. B 2018, 8, 31. [Google Scholar] [CrossRef] [PubMed]
- El-Ghazawy, R.A.; El-Saeed, A.M.; Al-Shafey, H.I.; Abdul-Raheim, A.R.; El-Sockary, M.A. Rosin based epoxy coating: Synthesis, identification and characterization. Eur. Polym. J. 2015, 69, 403–415. [Google Scholar] [CrossRef]
- Rahmaninia, M.; Javid, E.; Varshoei, A. Process Variables and the Performance of Cationic Rosin as an Internal Sizing Agent in Recycled Corrugated Container Pulp. Bioresources 2016, 11, 5333–5342. [Google Scholar] [CrossRef]
- Wang, L.; Ding, S.; Gan, P.; Chen, X.; Zhang, D.; Wei, X.; Wang, X. A supported nano ZnO catalyst based on a spent fluid cracking catalyst (FC3R) for the heterogeneous esterification of rosin. React. Kinet. Mech. Catal. 2016, 119, 1–15. [Google Scholar] [CrossRef]
- Hubbe, M.A. Puzzling Aspects of the hydrophobic sizing of paper and its inter-fiber bonding ability. Bioresources 2014, 9, 5782–5783. [Google Scholar] [CrossRef]
- Kumar, A.; Prasad, B.; Mishra, I.M. Optimization of process parameters for acrylonitrile removal by a low-cost adsorbent using Box-Behnken design. J. Hazard. Mater. 2008, 150, 174–182. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Choi, I.; Kim, K.; Kim, H.S.; Choi, W.M.; Oh, E.S. Performance of various rosin-derivatives as binder additives for lithium titanium oxide anodes. J. Electroanal. Chem. 2016, 782, 241–244. [Google Scholar] [CrossRef]
- Kumooka, Y. Classification of OPP adhesive tapes according to MALDI mass spectra of adhesives. Forensic Sci. Int. 2010, 197, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, K.; Kim, Y.W.; Shin, J. Preparation and characterization of a renewable pressure-sensitive adhesive system derived from ε-decalactone, L-lactide, epoxidized soybean oil, and rosin ester. ACS Sustain. Chem. Eng. 2015, 3, 2309–2320. [Google Scholar] [CrossRef]
- Ploeger, R.; de la Rie, E.R.; McGlinchey, C.W.; Palmer, M.; Maines, C.A.; Chiantore, O. The long-term stability of a popular heat-seal adhesive for the conservation of painted cultural objects. Polym. Degrad. Stabil. 2014, 107, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Narayanan, M.; Loganathan, S.; Valapa, R.B.; Thomas, S.; Varghese, T.O. UV Protective poly(lactic acid)/rosin films for sustainable packaging. Int. J. Biol. Macromol. 2017, 99, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Pacholski, M.L.; Donkus, L.J.; White, J.A. Correlation of pressure sensitive adhesive performance to surface chemistry upon air exposure. J. Vac. Sci. Technol. B 2016, 34, 2166–2746. [Google Scholar] [CrossRef]
- Prinz, S.; Müllner, U.; Heilmann, J.; Winkelmann, K.; Sticher, O.; Haslinger, E.; Hüfner, A. Oxidation products of abietic acid and its methyl ester. J. Nat. Prod. 2002, 65, 1530. [Google Scholar] [CrossRef] [PubMed]
- Qin, R.X.; Huang, P.X.; Liu, X.M.; Ma, L.; Wu, Y.L. Studies on the kinetics of thermal oxidation of rosin and abietic acid on the polyethylene film. Chem. J. Chin. Univ. 2009, 30, 954–958. [Google Scholar]
- Liu, X.M.; Qin, R.X.; Huang, P.X.; Liu, J.L.; Ma, L.; Li, W.G. Oxidation reaction kinetics of abietic acid and rosin under ultraviolet light irradiation. Acta Phys. Chim. Sin. 2010, 26, 2115–2120. [Google Scholar]
- Ren, F.; Zheng, Y.F.; Liu, X.M.; Yang, Q.Q.; Zhang, Q.; Shen, F. Thermal oxidation reaction process and oxidation kinetics of abietic acid. RSC Adv. 2015, 5, 17123–17130. [Google Scholar] [CrossRef]
- Hull, N.M.; Linden, K.G. Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths. Water Res. 2018, 143, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Fourtanier, A.; Moyal, D.; Seite, S. UVA filters in sun-protection products: Regulatory and biological aspects. Photochem. Photobiol. Sci. 2012, 11, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.L.; Liu, X.M.; Li, W.G.; Ma, L.; Shen, F. Kinetics of gum rosin oxidation under 365 nm ultraviolet irradiation. Monatsh. Chem. 2014, 145, 209–212. [Google Scholar] [CrossRef]
- Park, Y.; Mackie, A.; MacIsaac, S.A.; Gagnon, G. Photo-oxidation of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol using medium-pressure UV and UV/H2O2—A kinetic study. Environ. Sci. Water Res. 2018, 4, 1262–1271. [Google Scholar] [CrossRef]
- Chelmeayala, P.; Eldin, M.G.; Smith, D.W. Degradation of bromoxynil and trifluralin in natural water by direct photolysis and UV plus H2O2 advanced oxidation process. Water Res. 2010, 44, 2221–2228. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A.; Murkovic, M. Characterization of the effects of β-carotene on the thermal oxidation of triacylglycerols using HPLC-ESI-MS. Eur. J. Lipid Sci. Technol. 2010, 112, 1218–1228. [Google Scholar] [CrossRef]
- Chen, X.; Shirai, Y.; Yanagida, M.; Miyano, K. Photocarrier dynamics in perovskite-based solar cells revealed by intensity-modulated photovoltage spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 17918–17926. [Google Scholar] [CrossRef] [PubMed]
- The National Standard of the People’s Republic of China. Regulation of Disinfection Technique in Healthcare Settings; GB 15982-2012; The National Standard of the People’s Republic of China: Beijing, China, 2012.
- Wang, X.; Wang, L.; Chen, X.; Zhou, D.; Xiao, H.; Wei, X.; Liang, J. Catalytic methyl esterification of colophony over ZnO/SFCCR with subcritical CO2: Catalytic performance, reaction pathway and kinetics. R. Soc. Open Sci. 2018, 5, 172124. [Google Scholar] [CrossRef] [PubMed]
- Russo, D.; Spasiano, D.; Vaccaro, M.; Andreozzi, R.; Puma, G.L.; Reis, N.M.; Marotta, R. Direct photolysis of benzoylecgonine under UV irradiation at 254 nm in a continuous flow microcapillary array photoreactor. Chem. Eng. J. 2016, 283, 243–250. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Wang, L.; Chen, X.; Xie, Q.; Gan, P.; Wei, X.; Liang, J. LDH-derived Ni catalyst as an effective catalyst in colophony hydrogenation and process optimization using response surface methodology. J. Taiwan Inst. Chem. Eng. 2016, 60, 229–235. [Google Scholar] [CrossRef]
- Zhou, D.; Wang, L.; Chen, X.; Wei, X.; Liang, J.; Zhang, D.; Ding, G. A novel acid catalyst based on super/subcritical CO2-enriched water for the efficient esterification of rosin. R. Soc. Open Sci. 2018, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Ibarz, R.; Garvín, A.; Ibarz, A. Kinetic and thermodynamic study of the photochemical degradation of patulin. Food Res. Int. 2017, 99, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Vikram, V.B.; Ramesh, M.N.; Prapulla, S.G. Thermal degradation kinetics of nutrients in orange juice heated by electromagnetic and conventional methods. J. Food Eng. 2005, 69, 31–40. [Google Scholar] [CrossRef]
- Al-Zubaidy, M.M.I.; Khalil, R.A. Kinetic and prediction studies of ascorbic acid degradation in normal and concentrate local lemon juice during storage. Food Chem. 2007, 101, 254–259. [Google Scholar] [CrossRef]
- Gurgel, L.V.A.; Marabezi, K.; Zanbom, M.D. Dilute acid hydrolysis of sugar cane bagasse at high temperatures: A kinetic study of cellulose saccharification and glucose decomposition. Part I: Sulfuric acid as the catalyst. Ind. Eng. Chem. Res. 2011, 51, 1173–1185. [Google Scholar] [CrossRef]
- Petrou, A.L.; Terzidaki, A. Calcium carbonate and calcium sulfate precipitation, crystallization and dissolution: Evidence for the activated steps and the mechanisms from the enthalpy and entropy of activation values. Chem. Geol. 2014, 381, 144–153. [Google Scholar] [CrossRef]
- Encinar, J.M.; Pardal, A.; Sánchez, N. An improvement to the transesterification process by the use of co-solvents to produce biodiesel. Fuel 2016, 166, 51–58. [Google Scholar] [CrossRef]
- Tonucci, M.C.; Gurgel, L.V.A.; Aquino, S.F.D. Activated carbons from agricultural byproducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: Kinetic and thermodynamic studies. Ind. Crop. Prod. 2015, 74, 111–121. [Google Scholar] [CrossRef]
- The National Standard of the People’s Republic of China. Determination of Peroxide Value; GB 5009.227; The National Standard of the People’s Republic of China: Beijing, China, 2016.
- Nic, M.; Hovorka, L.; Jirat, J.; Kosata, B.; Znamenacek, J. IUPAC Compendium of Chemical Terminology—The Gold Book; International Union of Pure and Applied Chemistry: Zürich, Switzerland, 2005. [Google Scholar]
- Bezarescruz, J.; Jafvert, C.T.; Hua, I. Solar photodecomposition of decabromodiphenyl ether: Products and quantum yield. Environ. Sci. Technol. 2004, 38, 4149–4156. [Google Scholar] [CrossRef]
- Nong, W.; Chen, X.; Wang, L.; Liang, J.; Zhong, L.; Tong, Z. Nonisothermal decomposition kinetics of abietic acid in argon atmosphere. Ind. Eng. Chem. Res. 2011, 50, 13727–13731. [Google Scholar] [CrossRef]
Sample Availability: Not available. |
I (μW cm−2) | k (min−1) | Ea (kJ mol−1) | R2 | |||
---|---|---|---|---|---|---|
25 °C | 30 °C | 35 °C | 40 °C | |||
200 | 0.00815 ± 0.0005 | 0.00910 ± 0.0002 | 0.01042 ± 0.0003 | 0.01076 ± 0.0001 | 19.17 | 0.998 |
300 | 0.01317 ± 0.0001 | 0.01462 ± 0.0011 | 0.01674 ± 0.0007 | 0.01858 ± 0.0003 | 18.12 | 0.997 |
400 | 0.01714 ± 0.0003 | 0.01965 ± 0.0003 | 0.02123 ± 0.0006 | 0.02336 ± 0.0012 | 15.63 | 0.988 |
500 | 0.02005 ± 0.0016 | 0.02248 ± 0.0010 | 0.02403 ± 0.0003 | 0.02675 ± 0.0006 | 14.47 | 0.991 |
600 | 0.02440 ± 0.0002 | 0.02730 ± 0.0007 | 0.02906 ± 0.0004 | 0.03237 ± 0.0002 | 14.13 | 0.987 |
700 | 0.03002 ± 0.0011 | 0.03287 ± 0.0004 | 0.03582 ± 0.0015 | 0.03861 ± 0.0005 | 13.30 | 0.999 |
800 | 0.03386 ± 0.0002 | 0.03586 ± 0.0002 | 0.03962 ± 0.0007 | 0.04301 ± 0.0010 | 12.60 | 0.992 |
Temperature (°C) | R2 | Q | F |
---|---|---|---|
25 | 0.992 | 6.26 × 10−3 | 494.76 |
30 | 0.997 | 4.43 × 10−3 | 1239.60 |
35 | 0.999 | 1.26 × 10−4 | 252.40 |
40 | 0.999 | 1.67 × 10−4 | 243.70 |
I (μW cm−2) | k (min−1) | I0 (μW cm−2) | I1 (μW cm−2) | (I0-I1) (μW cm−2) | Φ |
---|---|---|---|---|---|
200 | 0.00815 | 190 | 3 | 187 | 6.20% |
300 | 0.01317 | 270 | 11 | 259 | 6.51% |
400 | 0.01714 | 300 | 14 | 286 | 6.69% |
500 | 0.02005 | 380 | 17 | 363 | 6.86% |
600 | 0.02440 | 440 | 20 | 420 | 7.56% |
700 | 0.03002 | 550 | 25 | 525 | 8.36% |
800 | 0.03386 | 600 | 26 | 574 | 8.18% |
I (μW cm−2) | Temperature (°C) | ∆H≠ (kJ mol−1) | ∆G≠ (kJ mol−1) | ∆S≠ (J/(K−1 mol−1)) |
---|---|---|---|---|
200 | 25 | 16.695 | 84.911 | −228.915 |
30 | 16.653 | 86.084 | −229.147 | |
35 | 16.611 | 87.200 | −229.184 | |
40 | 16.570 | 88.574 | −230.045 | |
300 | 25 | 15.647 | 83.707 | −228.389 |
30 | 15.605 | 84.890 | −228.662 | |
35 | 15.564 | 85.986 | −228.644 | |
40 | 15.522 | 87.152 | −228.851 | |
400 | 25 | 13.153 | 83.054 | −234.568 |
30 | 13.111 | 84.145 | −234.436 | |
35 | 13.070 | 85.378 | −234.766 | |
40 | 13.028 | 86.557 | −234.916 | |
500 | 25 | 11.989 | 82.666 | −237.170 |
30 | 11.947 | 83.806 | −237.159 | |
35 | 11.906 | 85.060 | −237.515 | |
40 | 11.864 | 86.204 | −237.508 | |
600 | 25 | 11.656 | 82.179 | −236.654 |
30 | 11.615 | 83.317 | −236.641 | |
35 | 11.573 | 84.574 | −237.015 | |
40 | 11.532 | 85.708 | −236.985 | |
700 | 25 | 10.825 | 81.665 | −237.720 |
30 | 10.783 | 82.849 | −237.841 | |
35 | 10.742 | 84.038 | −237.975 | |
40 | 10.700 | 85.249 | −238.176 | |
800 | 25 | 10.126 | 81.367 | −239.063 |
30 | 10.085 | 82.630 | −239.422 | |
35 | 10.043 | 83.780 | −239.405 | |
40 | 10.002 | 84.968 | −239.510 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Liu, X.; Zhang, Q.; Wang, B.; Yu, C.; Rashid, H.U.; Xu, Y.; Ma, L.; Lai, F. Characteristics and Kinetics of Rosin Pentaerythritol Ester via Oxidation Process under Ultraviolet Irradiation. Molecules 2018, 23, 2816. https://doi.org/10.3390/molecules23112816
Li Y, Liu X, Zhang Q, Wang B, Yu C, Rashid HU, Xu Y, Ma L, Lai F. Characteristics and Kinetics of Rosin Pentaerythritol Ester via Oxidation Process under Ultraviolet Irradiation. Molecules. 2018; 23(11):2816. https://doi.org/10.3390/molecules23112816
Chicago/Turabian StyleLi, Yuanlin, Xiongmin Liu, Qiang Zhang, Bo Wang, Chang Yu, Haroon Ur Rashid, Yiming Xu, Li Ma, and Fang Lai. 2018. "Characteristics and Kinetics of Rosin Pentaerythritol Ester via Oxidation Process under Ultraviolet Irradiation" Molecules 23, no. 11: 2816. https://doi.org/10.3390/molecules23112816
APA StyleLi, Y., Liu, X., Zhang, Q., Wang, B., Yu, C., Rashid, H. U., Xu, Y., Ma, L., & Lai, F. (2018). Characteristics and Kinetics of Rosin Pentaerythritol Ester via Oxidation Process under Ultraviolet Irradiation. Molecules, 23(11), 2816. https://doi.org/10.3390/molecules23112816