Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO “Pomodorino Del Piennolo” Tomato and the Ciliegino Variety
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Chemical Parameters and Colour Measurement
2.2. Colour Measurement and Lycopene Content
2.3. Phenolic Composition
2.4. Organic Acids
2.5. Volatile Organic Compounds
3. Materials and Methods
3.1. Plant Material
3.2. Determination of pH, Dry Matter and Total Soluble Solids
3.3. Determination of the Reducing Sugars
3.4. Determination of the Titratable Acidity
3.5. Colour Measurement
3.6. Determination of Lycopene
3.7. Phenolic Analysis
3.7.1. Extraction for Assays
3.7.2. Total Phenolic (TP)
3.7.3. Individual Phenolic Compounds
3.8. Determination of the Organic Acids
3.9. Volatile Organic Compounds by HS-SPME and GC/MS
3.10. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Commission Regulation (Ec) No 1238/95 of 31 May 1995 Establishing Implementing Rules for the Application of Council Regulation (EC) No 2100/94 as Regards the Fees Payable to the Community Plant Variety Office. Available online: http://cpvo.europa.eu/sites/default/files/documents/lex/395R1238/EN395R1238.pdf (accessed on 20 September 2018).
- Iscrizione Della Denominazione. Pomodorino del Piennolo del Vesuvio. Nel Registro Delle Denominazioni di Origine Protette e Delle Indicazioni Geografiche Protette. 2010. Available online: http://www.gazzettaufficiale.it/atto/serie_generale/caricaDettaglioAtto/originario;jsessionid=dwuMgzBLCtYouNUT+Ftt6A__.ntc-as2-guri2a?atto.dataPubblicazioneGazzetta=2010-01-04&atto.codiceRedazionale=09A15576&elenco30giorni=false (accessed on 20 September 2018).
- Tieman, D.; Bliss, P.; McIntyre, L.; Blandon-Ubeda, A.; Bies, D.; Odabasi, A.; Rodríguez, G.R.; van der Knaap, E.; Taylor, M.G.; Goulet, C.; et al. The chemical interactions underlying tomato flavor preferences. Curr. Biol. 2012, 22, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Romano, R.; Masucci, F.; Giordano, A.; Musso, S.; Naviglio, D.; Santini, A. Effect of tomato by-products in the diet of Comisana sheep on composition and conjugated linoleic acid content of milk fat. Int. Dairy J. 2010, 20, 858–862. [Google Scholar] [CrossRef]
- Agarwal, S.; Rao, A. Tomato lycopene and its role in human health and chronic diseases. Can. Med. Assoc. J. 2000, 163, 739–744. [Google Scholar]
- Fiedor, J.; Burda, K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients 2014, 6, 466–488. [Google Scholar] [CrossRef] [PubMed]
- Tan, H.L.; Thomas-Ahner, J.M.; Grainger, E.M.; Wan, L.; Francis, D.M.; Schwartz, S.; Erdman, J.W.J.; Clinton, S.K. Tomato-based food products for prostate cancer prevention: What have we learned? Cancer Metast. Rev. 2010, 29, 553–568. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, M.; Schwartz, S. Lycopene: Chemical and biological properties. Food Technol. 1999, 53, 38–45. [Google Scholar]
- Sies, H. Oxidative stress: Oxidants and antioxidants. Exp. Physiol. 1997, 82, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Beecher, G. Nutrient content of tomatoes and tomato products. Proc. Soc. Exp. Biol. Med. 1998, 218, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Raffo, A.; Leonardi, C.; Fogliano, V.; Ambrosino, P.; Salucci, M.; Gennaro, L.; Bugianesi, R.; Giuffrida, F.; Quaglia, G. Nutritional value of cherry tomatoes (Lycopersicon esculentum cv. Naomi F1) harvested at different ripening stages. J. Agric. Food Chem. 2002, 50, 6550–6556. [Google Scholar] [CrossRef]
- Borguini, R.; Torres, E. Tomatoes and tomato products as dietary sources of antioxidants. Food Rev. Int. 2009, 25, 313–325. [Google Scholar] [CrossRef]
- Frusciante, L.; Carli, P.; Ercolano, M.; Pernice, R.; Di Matteo, A.; Fogliano, V.; Pellegrini, N. Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 2007, 51, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Vallverdu-Queralt, A.; Medina-Remon, A.; Martinez-Huelamo, M.; Jauregui, O.; Andres-Lacueva, C.; Lamuela-Raventos, R. Phenolic profile and hydrophilic antioxidant capacity as chemotaxonomic markers of tomato varieties. J. Agric. Food Chem. 2011, 59, 3994–4001. [Google Scholar] [CrossRef] [PubMed]
- Abushita, A.; Daood, H.; Biacs, P. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agric. Food Chem. 2000, 48, 2075–2081. [Google Scholar] [CrossRef] [PubMed]
- George, B.; Kaur, C.; Khurdiya, D.; Kapoor, H. Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem. 2004, 84, 45–51. [Google Scholar] [CrossRef]
- Leonardi, C.; Ambrosino, P.; Esposito, F.; Fogliano, V. Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J. Agric. Food Chem. 2000, 48, 4723–4727. [Google Scholar] [CrossRef] [PubMed]
- Strazzullo, G.; De Giulio, A.; Tommonaro, G.; La Pastina, C.; Poli, A.; Nicolaus, B.; Prisco, R.D.; Saturnino, C. Antioxidative activity and lycopene and beta-carotene contents in different cultivars of tomato (Lycopersicon esculentum). Int. J. Food Prop. 2007, 10, 321–329. [Google Scholar] [CrossRef]
- Delgadillo-Díaz Mariana, M.G.-K.; Sosa-Moguel, O.; Sauri-Duch, E.; Cuevas-Glory, L.F. Evaluation of physico-chemical characteristics, antioxidant compounds and antioxidant capacity in creole tomatoes (solanum lycopersicum l.; and, s. pimpinellifolium l.) in an aquaponic system or organic soil. Int. J. Veg. Sci. 2018. [Google Scholar] [CrossRef]
- Renna, M.; Durante, M.; Gonnella, M.; Buttaro, D.; D’Imperio, M.; Mita, G.; Serio, F. Quality and nutritional evaluation of regina tomato, a traditional long-storage landrace of puglia (southern italy). Agriculture 2018, 8, 83. [Google Scholar] [CrossRef]
- Fattore, M.; Montesano, D.; Pagano, E.; Teta, R.; Borrelli, F.; Mangoni, A.; Seccia, S.; Albrizio, S. Carotenoid and flavonoid profile and antioxidant activity in “Pomodorino Vesuviano” tomatoes. J. Food Compos. Anal. 2016, 53, 61–68. [Google Scholar] [CrossRef]
- Anthon, G.E.; Barrett, D.M. Pectin methylesterase activity and other factors affecting pH and titratable acidity in processing tomatoes. Food Chem. 2012, 132, 915–920. [Google Scholar] [CrossRef]
- López Camelo, A.F.; Gómez, P.A. Comparison of color indexes for tomato ripening. Hort. Bras. 2004, 22, 534–547. [Google Scholar]
- Perkins-Veazie, P.; Collins, J.; Pair, S.; Roberts, W. Lycopene content differs among red-fleshed watermelon cultivars. J. Sci. Food Agric. 2001, 81, 983–987. [Google Scholar] [CrossRef]
- Yahia, E.M.; Brecht, J.K. Tomatoes, Crop Post-Harvest: Science and Technology; Blackwell Publishing Ltd.: West Sussex, UK, 2012. [Google Scholar]
- Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martin-Belloso, O. Effect of minimal processing on bioactive compounds and color attributes of fresh-cut tomatoes. Lwt-Food Sci. Technol. 2008, 41, 217–226. [Google Scholar] [CrossRef]
- Lenucci, M.; Caccioppola, A.; Durante, M.; Serrone, L.; De Caroli, M.; Piro, G.; Dalessandro, G. Carotenoid content during tomato (solanum lycopersicum l.) fruit ripening in traditional and high-pigment cultivars. Ital. J. Food Sci. 2009, 21, 461–472. [Google Scholar]
- Hart, D.; Scott, K. Development and evaluation of an hplc method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chem. 1995, 54, 101–111. [Google Scholar] [CrossRef]
- Arias, R.; Lee, T.; Logendra, L.; Janes, H. Correlation of lycopene measured by HPLC with the L.*, a* b* color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem. 2000, 48, 1697–1702. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Verheul, M. Content of chalconaringenin and chlorogenic acid in cherry tomatoes is strongly reduced during postharvest ripening. J. Agric. Food Chem. 2005, 53, 7251–7256. [Google Scholar] [CrossRef] [PubMed]
- Slimestad, R.; Verheul, M. Review of flavonoids and other phenolics from fruits of different tomato (Lycopersicon esculentum Mill.) cultivars. J. Sci. Food Agric. 2009, 89, 1255–1270. [Google Scholar] [CrossRef]
- Carli, P.; Barone, A.; Fogliano, V.; Frusciante, L.; Ercolano, M.R. Dissection of genetic and environmental factors involved in tomato organoleptic quality. BMC Plant Biol. 2011, 11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pan, Z.; Venkitasamy, C.; Ma, H.; Li, Y. Umami taste amino acids produced by hydrolyzing extracted protein from tomato seed meal. Lwt-Food Sci. Technol. 2015, 62, 1154–1161. [Google Scholar] [CrossRef]
- Oms-Oliu, G.; Hertog, M.; Van de Poel, B.; Ampofo-Asiama, J.; Geeraerd, A.; Nicolai, B. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol. Technol. 2011, 62, 7–16. [Google Scholar] [CrossRef]
- Suarez, M.; Rodriguez, E.; Romero, C. Analysis of organic acid content in cultivars of tomato harvested in Tenerife. Eur. Food Res. Technol. 2008, 226, 423–435. [Google Scholar] [CrossRef]
- Sahlin, E.; Savage, G.; Lister, C. Investigation of the antioxidant properties of tomatoes after processing. J. Food Compos. Anal. 2004, 17, 635–647. [Google Scholar] [CrossRef]
- Tandon, K.; Baldwin, E.; Shewfelt, R. Aroma perception of individual volatile compounds in fresh tomatoes (Lycopersicon esculentum, Mill.) as affected by the medium of evaluation. Postharvest Biol. Technol. 2000, 20, 261–268. [Google Scholar] [CrossRef]
- Buttery, R.; Ling, L. Volatile components of tomato fruit and plant-parts–relationship and biogenesis. ACS Symp. Ser. 1993, 525, 23–34. [Google Scholar]
- Berna, A.; Lammertyn, J.; Buysens, S.; Di Natale, C.; Nicolai, B. Mapping consumer liking of tomatoes with fast aroma profiling techniques. Postharvest Biol. Technol. 2005, 38, 115–127. [Google Scholar] [CrossRef]
- Hongsoongnern, P.; Chambers, E. A lexicon for green odor or flavor and characteristics of chemicals associated with green. J. Sens. Stud. 2008, 23, 205–221. [Google Scholar] [CrossRef]
- Decreto Ministeriale 3 Febbraio 1989. Approvazione dei Metodi Ufficiali Di Analisi Per Le Conserve Vegetali—Parte Generale. (Gu Serie Generale n.168 del 20-07-1989—Suppl. Ordinario n. 51). Available online: http://www.gazzettaufficiale.it/eli/gu/1989/07/20/168/so/51/sg/pdf (accessed on 20 September 2018).
- Cucu, T.; Huvaere, K.; Van den Bergh, M.; Vinkx, C.; Van Loco, J. A simple and fast hplc method to determine lycopene in foods. Food Anal. Methods 2012, 5, 1221–1228. [Google Scholar] [CrossRef]
- Luterotti, S.; Bicanic, D.; Markovic, K.; Franko, M. Carotenes in processed tomato after thermal treatment. Food Control 2015, 48, 67–74. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Vallverdu-Queralt, A.; Medina-Remon, A.; Andres-Lacueva, C.; Lamuela-Raventos, R. Changes in phenolic profile and antioxidant activity during production of diced tomatoes. Food Chem. 2011, 126, 1700–1707. [Google Scholar] [CrossRef] [PubMed]
- Flores, P.; Hellin, P.; Fenoll, J. Determination of organic acids in fruits and vegetables by liquid chromatography with tandem-mass spectrometry. Food Chem. 2012, 132, 1049–1054. [Google Scholar] [CrossRef]
- Huang, B.; Lei, Y.; Tang, Y.; Zhang, J.; Qin, L.; Liu, J. Comparison of HS-SPME with hydrodistillation and SFE for the analysis of the volatile compounds of Zisu and Baisu, two varietal species of Perilla frutescens of Chinese origin. Food Chem. 2011, 125, 268–275. [Google Scholar] [CrossRef]
- Romano, R.; Giordano, A.; Le Grottaglie, L.; Manzo, N.; Paduano, A.; Sacchi, R.; Santini, A. Volatile compounds in intermittent frying by gas chromatography and nuclear magnetic resonance. Eur. J. Lipid Sci. Technol. 2013, 115, 764–773. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds analyzed in the study are available from the authors. |
Sample | pH | TSS (°Brix) | DM (%) | Reducing Sugars (%) | Sodium Chloride (%) | Titratable Acidity (%Citric Acid) |
---|---|---|---|---|---|---|
PdP 0 | 4.36 a, b ± 0.04 | 6.9 c ± 0.1 | 7.20 c ± 0.19 | 2.89 c ± 0.07 | 0.18 b ± 0.01 | 0.53 a, b ± 0.01 |
PdP 6 | 4.45 a ± 0.01 | 7.9 b ± 0.1 | 8.40 b ± 0.34 | 2.00 d ± 0.11 | 0.20 b ± 0.02 | 0.50 a, b ± 0.04 |
CIL 0 | 4.29 b ± 0.01 | 6.3 d ± 0.1 | 7.71 b, c ± 0.38 | 3.77 b ± 0.10 | 0.16 b ± 0.04 | 0.43 b ± 0.05 |
CIL 1 | 4.13 c ± 0.06 | 8.5 a ± 0.1 | 9.55 a ± 0.12 | 4.12 a ± 0.05 | 0.41 a ± 0.04 | 0.57 a ± 0.03 |
Sample | L | a | B | a/b | Hue | Lycopene (mg/kg Fresh Weight) |
---|---|---|---|---|---|---|
PdP 0 | 42.66 a ± 0.51 | 23.08 a ± 0.86 | 19.88 a ± 0.95 | 1.17 a ± 0.04 | 0.64 b ± 0.03 | 73.52 a ± 7.40 |
PdP 6 | 42.02 a ± 1.35 | 23.07 a ± 0.21 | 20.49 a ± 1.60 | 1.13 a ± 0.04 | 0.67 b ± 0.04 | 43.32 b ± 3.10 |
CIL 0 | 38.33 b ± 0.60 | 14.95 b ± 0.91 | 18.62 a ± 0.63 | 0.80 b ± 0.01 | 1.00 a ± 0.00 | 27.14 b ± 0.69 |
CIL 1 | 37.64 b ± 0.69 | 12.68 b ± 0.88 | 11.11 b ± 0,88 | 1.14 a ± 0.14 | 0.67 b ± 0.09 | 32.39 b ± 0.93 |
Sample | TP (mg GAE/100 g Fresh Weight) | Rutin (mg/100 g Fresh Weight) | Quercitin (mg/100 g Fresh Weight) | Chlorogenic Acid (mg/100 g Fresh Weight) |
---|---|---|---|---|
PdP 0 | 38.544 a ± 0.07 | 7.37 b ± 0.01 | 0.95 b ± 0.01 | 10.39 a ± 0.66 |
PdP 6 | 34.27 b ± 0.11 | 8.98 a ± 0.15 | 0.34 b ± 0.01 | 7.34 b ± 0.83 |
CIL 0 | 29.631 c ± 0.97 | 4.41 d ± 0.01 | 2.18 a ± 0.03 | 7.94 b ± 1.66 |
CIL 1 | 37.483 a, b ± 0.19 | 5.63 c ± 0.01 | 1.87 a ± 0.03 | 7.16 b ± 0.10 |
Sample | Malic Acid | Citric Acid | Succinic Acid | Oxalic Acid | Glutamic Acid | Ascorbic Acid |
---|---|---|---|---|---|---|
PdP 0 | 580.48 a ± 6.88 | 441.66 c ± 0.03 | 54.38 a ± 3.70 | 8.95 c ± 0.56 | 826.45 a ± 11.52 | 11.28 b ± 0.76 |
PdP 6 | 492.62 b ± 3.89 | 404.14 c ± 2.02 | 25.65 b ± 1.12 | 3.00 d ± 0.69 | 830.47 a ± 9.39 | 9.78 c ± 0.96 |
CIL 0 | 65.58 d ± 1.11 | 557.60 b ± 1.26 | 16.21 b ± 7.30 | 25.05 b ± 0.33 | 349.60 c ± 2.78 | 15.50 a ±0 .33 |
CIL 1 | 108.91 c ± 1.43 | 811.51 a ± 9.17 | 48.54 a ± 3.34 | 49.90 a ± 0.04 | 629.60 b ± 11.62 | 9.2 c ± 0.48 |
Compounds | Samples | |||
---|---|---|---|---|
PdP 0 | PdP 6 | CIL 0 | CIL 1 | |
Σ Aldheydes | 67.77 b ± 3.30 | 120.52 a ± 2.70 | 83.12 b ± 3.90 | 39.97 c ± 2.90 |
Pentanal | 1.25 a ± 0.12 | 1.99 a ± 0.83 | 1.38 a ± 0.11 | 1.46 a ± 0.02 |
Hexanal | 55.79 b ± 2.13 | 100.22 a ± 2.70 | 57.22 b ± 1.60 | 25.90 c ± 0.70 |
Heptanal | 4.27 a ± 0.11 | 0.49 c ± 0.06 | 3.19 a, b ± 0.50 | 2.35 b ± 0.55 |
Octanal | 0.74 c ± 0.15 | 0.66 c ± 0.70 | 3.56 a ± 0.70 | 1.74 b ± 0.50 |
Decanal | 0.25 a ± 0.11 | 0.32 a ± 0.09 | 1.19 a ± 0.56 | 0.47 a ± 0.04 |
2-Hexenal (E) | 4.83 b ± 0.03 | 14.64 a ± 0.03 | 13.94 a ± 3.70 | 5.39 b ± 0.70 |
2-Heptenal (Z) | 0.50 a ± 0.26 | 0.94 a ± 0.05 | 1.31 a ± 0.55 | 1.18 a ± 0.67 |
Σ Alcohols | 59.32 a ± 0.90 | 17.48 b ± 1.90 | 23.22 b ± 2.70 | 25.39 b ± 2.70 |
2,4-Hexandien-1-ol | 0.01 c ± 0.09 | 0.64 b ± 0.07 | 1.11 b ± 0.07 | 4.02 a ± 0.03 |
3-Hexen-1 ol (Z) | 13.52 a ± 0.70 | 7.72 b ± 0.66 | 14.30 a ± 0.13 | 13.78 a ± 0.16 |
1-Hexanol | 44.80 a ± 0.19 | 9.13 b ± 0.02 | 7.27 b ± 0.08 | 6.43 b ± 0.18 |
Σ Ketones | 1.25 b ± 0.14 | 1.40 b ± 0.70 | 2.75 b ± 0.22 | 3.65 a ± 0.11 |
6-Methyl-5-hepten-2-one | 1.25 b ± 0.22 | 1.40 b ± 0.24 | 2.75 a, b ± 0.44 | 3.38 a ± 0.02 |
Σ Acids | 0.58 b ± 0.27 | 3.77 a ± 0.04 | 1.88 b ± 0.09 | 0.35 b ± 0.23 |
Acetic acid | 0.15 b ± 0.09 | 2.79 a ± 0.27 | 0.01 b ± 0.08 | 0.02 b ± 0.02 |
Butanoic acid | 0.13 a ± 0.01 | 0.58 a ± 0.01 | 1.29 a ± 0.01 | 0.02 a ± 0.01 |
Σ Others | 34.66 a ± 0.10 | 7.86 c ± 0.02 | 1.76 c ± 0.01 | 15.49 b ± 0.08 |
Propane | 4.70 b ± 0.04 | 2.08 b, c ± 0.04 | 0.02 c ± 0.04 | 13.19 a ± 0.01 |
3-Methyl-2,4-hexadiene | 0.02 b ± 0.01 | 1.02 a ± 0.01 | 0.02 b ± 0.01 | 0.02 b ± 0.01 |
2-Isobutylthiazole | 29.44 a ± 0.01 | 3.34 b ± 0.01 | 0.02 b ± 0.01 | 0.02 b ± 0.01 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzo, N.; Pizzolongo, F.; Meca, G.; Aiello, A.; Marchetti, N.; Romano, R. Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO “Pomodorino Del Piennolo” Tomato and the Ciliegino Variety. Molecules 2018, 23, 2871. https://doi.org/10.3390/molecules23112871
Manzo N, Pizzolongo F, Meca G, Aiello A, Marchetti N, Romano R. Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO “Pomodorino Del Piennolo” Tomato and the Ciliegino Variety. Molecules. 2018; 23(11):2871. https://doi.org/10.3390/molecules23112871
Chicago/Turabian StyleManzo, Nadia, Fabiana Pizzolongo, Giuseppe Meca, Alessandra Aiello, Nicola Marchetti, and Raffaele Romano. 2018. "Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO “Pomodorino Del Piennolo” Tomato and the Ciliegino Variety" Molecules 23, no. 11: 2871. https://doi.org/10.3390/molecules23112871
APA StyleManzo, N., Pizzolongo, F., Meca, G., Aiello, A., Marchetti, N., & Romano, R. (2018). Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO “Pomodorino Del Piennolo” Tomato and the Ciliegino Variety. Molecules, 23(11), 2871. https://doi.org/10.3390/molecules23112871