Determination of Milk Products in Ceramic Vessels of Corded Ware Culture from a Late Eneolithic Burial
Abstract
:1. Introduction
2. Results
3. Materials and Methods
3.1. Archaeological Description of the Inspected Cremation Grave
3.2. Sample Preparation
3.3. Matrix-Assisted Laser Desorption/Ionization–Mass Spectrometry and Multivariate Data Analysis
3.4. Enzyme-Linked Immunosorbent Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgement
Conflicts of Interest
References
- Stloukal, M. Problematika antropologického rozboru žárových pohřbů. (Výzkum pohřebiště v Moravičanech). Archeol. Rozhledy 1968, 20, 330–347. [Google Scholar]
- Schmidt, C.W.; Symes, S.A. The Analysis of Burned Human Remains First; Academic Press: Cambridge, UK, 2008. [Google Scholar]
- Parker Pearson, M. The Archaeology of Death and Burial; The History Press: Stroud, UK, 2010. [Google Scholar]
- Gonçalves, D.; Cunha, E.; Thompson, T.J.U. Weight References for Burned Human Skeletal Remins from Portuguese Samples. J. For. Sci. 2013, 5, 1135–1140. [Google Scholar]
- Gregg, M.W.; Slater, G.F. A New Method for Extraction, Isolation and Transesterification of Free Fatty Acids from Archaeological Pottery. Archaeometry 2010, 52, 833–854. [Google Scholar] [CrossRef]
- Evershed, R.P.; Arnot, K.I.; Collister, J.; Eglinton, G.; Charters, S. Application of Isotope Ratio Monitoring Gas-Chromatography Mass-Spectrometry to the Analysis of Organic Residues of Archaeological Origin. Analyst 1994, 119, 909–914. [Google Scholar] [CrossRef]
- Buckley, M.; Melton, N.D.; Montgomery, J. Proteomics analysis of ancient food vessel stitching reveals>4000-year-old milk protein. Rapid Commun. Mass Spectrom. 2013, 27, 531–538. [Google Scholar] [CrossRef]
- Copley, M.S.; Berstan, R.; Dudd, S.N.; Docherty, G.; Mukherjee, A.J.; Straker, V.; Payne, S.; Evershed, R.P. Direct chemical evidence for widespread dairying in prehistoric Britain. Proc. Natl. Acad. Sci. USA 2003, 100, 1524–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Craig, O.E.; Mulville, J.; Pearson, M.P.; Sokol, R.; Gelsthorpe, K.; Stacey, R.; Collins, M. Archaeology: Detecting milk proteins in ancient pots. Nature 2000, 408, 312. [Google Scholar] [CrossRef]
- Craig, O.E.; Allen, R.B.; Thompson, A.; Stevens, R.E.; Steele, V.J.; Heron, C. Distinguishing wild ruminant lipids by gas chromatography/combustion/isotope ratio mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 2359–2364. [Google Scholar] [CrossRef] [Green Version]
- Evershed, R.P.; Payne, S.; Sherratt, A.G.; Copley, M.S.; Coolidge, J.; Urem-Kotsu, D.; Kotsakis, K.; Özdoğan, M.; Özdoğan, A.E.; Nieuwenhuyse, O.; Akkermans, P.M. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 2008, 455, 528–531. [Google Scholar] [CrossRef]
- Sauter, F.; Puchinger, L.; Schoop, U.D. Studies in organic archaeometry VI—Fat analysis sheds light on everyday life in prehistoric Anatolia: Traces of lipids identified in chalcolithic potsherds excavated near Bogazkale, Central Turkey. Arkivoc 2003, 15, 15–21. [Google Scholar]
- Oudemans, T.F.M.; Eijkel, G.B.; Boon, J.J. Identifying biomolecular origins of solid organic residues preserved in Iron Age Pottery using DTMS and MVA. J. Archaeol. Sci. 2007, 34, 173–193. [Google Scholar] [CrossRef]
- Isaksson, S.; Hallgren, F. Lipid residue analyses of Early Neolithic funnel-beaker pottery from Skogsmossen, eastern Central Sweden, and the earliest evidence of dairying in Sweden. J. Archaeol. Sci. 2012, 39, 3600–3609. [Google Scholar] [CrossRef]
- Salque, M.; Bogucki, P.I.; Pyzel, J.; Sobkowiak-Tabaka, I.; Grygiel, R.; Szmyt, M.; Evershed, R.P. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 2013, 493, 522–525. [Google Scholar] [CrossRef]
- Soberl, L.; Gasparic, A.Z.; Budja, M.; Evershed, R.P. Early herding practices revealed through organic residue analysis of pottery from the early Neolithic rock shelter of Mala Triglavca, Slovenia. Doc. Praehist. 2008, 35, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Mirabaud, S.; Rolando, C.; Regert, M. Molecular criteria for discriminating adipose fat and milk from different species by NanoESl MS and MS/MS of their triacylglycerols: Application to archaeological remains. Anal. Chem. 2007, 79, 6182–6192. [Google Scholar] [CrossRef] [PubMed]
- Spangenberg, J.E.; Jacomet, S.; Schibler, J. Chemical analyses of organic residues in archaeological pottery from Arbon Bleiche 3, Switzerland—Evidence for dairying in the late Neolithic. J. Archaeol. Sci. 2006, 33, 1–13. [Google Scholar] [CrossRef]
- Copley, M.S.; Berstan, R.; Dudd, S.N.; Aillaud, S.; Mukherjee, A.J.; Straker, V.; Payne, S.; Evershed, R.P. Processing of milk products in pottery vessels through British prehistory. Antiquity 2005, 79, 895–908. [Google Scholar] [CrossRef]
- Copley, M.S.; Berstan, R.; Mukherjee, A.J.; Dudd, S.N.; Straker, V.; Payne, S.; Evershed, R.P. Dairying in antiquity. III. Evidence from absorbed lipid residues dating to the British Neolithic. J. Archaeol. Sci. 2005, 32, 523–546. [Google Scholar] [CrossRef]
- Agozzino, P.; Avellone, G.; Donato, I.D.; Filizzola, F. Mass spectrometry for cultural heritage knowledge: Gas chromatographic mass spectrometric analysis of organic remains in Neolithic potsherds. J. Mass Spectrom. 2001, 36, 443–444. [Google Scholar] [CrossRef]
- Salque, M.; Radi, G.; Tagliacozzo, A.; Uria, B.P.; Wolfram, S.; Hohle, I.; Stauble, H.; Whittle, A.; Hofmann, D.; Pechtl, J.; et al. New insights into the Early Neolithic economy and management of animals in Southern and Central Europe revealed using lipid residue analyses of pottery vessels. Anthropozoologica 2012, 47, 45–61. [Google Scholar] [CrossRef]
- Dallongeville, S.; Garnier, N.; Rolando, C.; Tokarski, C. Proteins in Art, Archaeology, and Paleontology: From Detection to Identification. Chem. Rev. 2016, 116, 2–79. [Google Scholar] [CrossRef]
- Calvano, CD; van der Werf, I.D.; Palmisano, F.; Sabbatini, L. Revealing the composition of organic materials in polychrome works of art: The role of mass spectrometry-based techniques. Anal. Bioanal. Chem. 2016, 408, 6957–6981. [Google Scholar] [CrossRef]
- Hong, C.; Jiang, H.; Lü, E.; Wu, Y.; Guo, L.; Xie, Y.; Wang, C.; Yang, Y. Identification of Milk Component in Ancient Food Residue by Proteomics. PLoS ONE 2012, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fremout, W.; Kuckova, S.; Crhova, M.; Sanyova, J.; Saverwyns, S.; Hynek, R.; Kodicek, M.; Vandenabeele, P.; Moens, L. Classification of protein binders in artist’s paints bymatrix-assisted laser desorption/ionisation time-of-flight mass spectrometry: An evaluation of principal component analysis (PCA) and soft independent modelling of class analogy (SIMCA). Rapid Commun. Mass Spectrom. 2011, 25, 1631–1640. [Google Scholar] [PubMed]
- Calvano, CD.; van der Werf, I.D.; Palmisano, F.; Sabbatini, L. Identification of lipid-and protein-based binders in paintings by direct on-plate wet chemistry and matrix-assisted laser desorption ionization mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 1015–1022. [Google Scholar] [CrossRef] [PubMed]
- Chambery, A.; Maro, A.D.; Sanges, C.; Severino, V.; Tarantino, M.; Lamberti, A.; Parente, A.; Arcari, P. Improved procedure for protein binder analysis in mural painting by LC-ESI/Q-q-TOF mass spectrometry: Detection of different milk species by casein proteotypic peptides. Anal. Bioanal. Chem. 2009, 395, 2281–2291. [Google Scholar] [CrossRef] [PubMed]
- Kuckova, S.; Crhova, M.; Vankova, L.; Hnizda, A.; Hynek, R.; Kodicek, M. Towards proteomic analysis of milk proteins in historical building materials. Int. J. Mass Spectrom. 2009, 284, 42–46. [Google Scholar] [CrossRef]
- Fremout, W.; Dhaenens, M.; Saverwyns, S.; Sanyova, J.; Vandenabeele, P.; Deforce, D.; Moens, L. Tryptic peptide analysis of protein binders in works of art by liquid chromatography–tandem mass spectrometry. Anal. Chim. Acta 2010, 658, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Child, A.M.; Pollard, A.M. A review of the applications of immunochemistry to archaeological bone. J. Archaeol. Sci. 1992, 19, 39–47. [Google Scholar] [CrossRef]
- Collins, M.J.; Nielson-Marsh, C.M.; Hiller, J.; Smith, C.I.; Roberts, J.P.; Prigodich, R.V.; Weiss, T.J.; Csapό, J.; Millard, A.R.; Turner-Walker, G. The survival of organic matter in bone. Archaeometry 2002, 44, 383–394. [Google Scholar] [CrossRef]
- Dongoske, E.K.; Martin, L.D.; Ferguson, J.T. Critique of the Claim of Cannibalism at Cowboy Wash. Am. Antiquity 2000, 65, 179–190. [Google Scholar] [CrossRef]
- Brandt, E.; Wiechmann, I.; Grupe, G. How reliable are immunological tools for the detection of ancient proteins in fossil bones? Int. J. Osteoarchaeol. 2002, 12, 307–316. [Google Scholar] [CrossRef]
- Pavelka, J.; Kovačiková, L.; Šmejda, L. The determination of domesticated animal species from a Neolithic sample using the ELISA test. C. R. Palevol. 2011, 10, 61–70. [Google Scholar] [CrossRef]
- Björklund, E.; Pallaroni, L.; Von Holst, C.; Unglaub, W. Method of determination of appropriate heat treatment of animal meal by immunoassay developed for detection of cooked beef: Interlaboratory study. J. AOAC Int. 2001, 84, 1835–1839. [Google Scholar]
- Pavelka, J.; Šmejda, L.; Hynek, R.; Kučková, Š.H. Immunological detection of denatured proteins as a method for rapid identification of food residues on archaeological pottery. J. Archaeol. Sci. 2016, 73, 25–35. [Google Scholar] [CrossRef]
- Burger, J.; Kirchner, M.; Bramanti, B.; Haak, W.; Thomas, M.G. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc. Natl. Acad. Sci. 2007, 104, 3736–3741. [Google Scholar] [CrossRef] [Green Version]
- Gamba, C.; Jones, E.R.; Teasdale, M.D.; McLaughlin, R.L.; Gonzalez-Fortes, G.; Mattiangeli, V.; Domboróczki, L.; Kővári, I.; Pap, I.; Anders, A.; et al. Genome flux and stasis in a five millennium transect of European prehistory. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Witas, H.W.; Płoszaj, T.; Jędrychowska-Dańska, K.; Witas, P.J.; Masłowska, A.; Jerszyńska, B.; Kozłowski, T.; Osipowicz, G. Hunting for the LCT-13910*T Allele between the Middle Neolithic and the Middle Ages Suggests Its Absence in Dairying LBK People Entering the Kuyavia Region in the 8th Millennium BP. PLoS ONE 2015, 10, e0122384. [Google Scholar] [CrossRef]
- Itan, Y.; Powell, A.; Beaumont, M.A.; Burger, J.; Thomas, M.G. The Origins of Lactase Persistence in Europe. PLoS Comput. Biol. 2009, 5, e1000491. [Google Scholar] [CrossRef] [Green Version]
- Malmström, H.; Linderholm, A.; Lidén, K.; Storå, J.; Molnar, P.; Holmlund, G.; Jakobsson, M.; Götherström, A. High frequency of lactose intolerance in a prehistoric hunter-gatherer population in northern Europe. BMC Evol. Biol. 2010, 10, 1–6. [Google Scholar] [CrossRef]
- Haug, A.; Høstmark, A.T.; Harstad, O.M. Bovine milk in human nutrition—A review. Lipids Health Dis. 2007, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Rozenberg, S.; Body, J.J.; Bruyere, O.; Bergmann, P.; Brandi, M.L.; Cooper, C.; Devogelaer, J.P.; Gielen, E.; Goemaere, S.; Kaufman, J.M.; et al. Effects of Dairy Products Consumption on Health: Benefits and Beliefs—A Commentary from the Belgian Bone Club and the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Calcif. Tissue Int. 2016, 98, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Holden, C.; Mace, R. Phylogenetic Analysis of the Evolution of Lactose Digestion in Adults. Hum. Biol. 1997, 81, 597–619. [Google Scholar] [CrossRef] [PubMed]
- Mielke, J.H.; Konigsberg, L.W.; Relethford, J.H. Human Biological Variation, 2nd ed.; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Selhub, E.M.; Logan, A.C.; Bested, A.C. Fermented foods, microbiota, and mental health: Ancient practice meets nutritional psychiatry. J. Physiol. Anthropol. 2014, 33, 2. [Google Scholar] [CrossRef]
- Kučera, L.; Kurka, O.; Barták, P.; Bednář, P. Liquid chromatography/high resolution tandem mass spectrometry—Tool for the study of polyphenol profile changes during micro-scale biogas digestion of grape marcs. Chemosphere 2017, 166, 463–472. [Google Scholar] [CrossRef]
- Picariello, G.; Sacchi, R.; Addeo, F. One-step characterization of triacylglycerols from animal fat by MALDI-TOF MS. Eur. J. Lipid Sci. Technol. 2007, 109, 511–524. [Google Scholar] [CrossRef]
- Chochorowski, J. Ekspansja Kimmeryjska na Tereny Europy Środkowej; Rozprawy Habilitacyjne Nr 260; Uniwersitet Jagielloński: Kraków, Poland, 1993. [Google Scholar]
- Archeologický Ústav Akademie Věd České Republiky V Brně, Přehled Výzkumů. Available online: https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=2ahUKEwiTgfv3tI3fAhVKE7wKHSTVCm0QFjAAegQIABAC&url=http%3A%2F%2Farub.avcr.cz%2Fmiranda2%2Fexport%2Fsitesavcr%2Farub%2Fprehled-vyzkumu%2Fprehled-vydanych-cisel%2Ffiles%2FPV-57-1_eneolit.pdf&usg=AOvVaw3s5mcRvYzCL62g0TySTvqf (accessed on 7 December 2018).
- Chochol, J. Dosavadní výsledky anthropologického rozboru lužických žárových pohřbů z českých zemí. Památky Archeol. 1955, 49, 559–582. [Google Scholar]
- Dokládal, M. Morfologie spálených kostí: Význam pro identifikaci osob; Masaryk University: Brno, Czech Republic, 1999. [Google Scholar]
- Symes, S.A.; Rainwater, C.W.; Chapman, E.N.; Gipson, D.R.; Piper, A.L. Patterned thermal destruction of human remains in a forensic setting. In The Analysis of Burned Human Remains; Academic Press: San Diego, CA, USA, 2008; pp. 15–54. [Google Scholar]
- Walker, P.L.; Miller, K.W.P.; Richman, R. Time, Temperature, and oxygen availability: An experimental study of the effects of environmental conditions on the color and organic content of cremated bone. In The Analysis of Burned Human Remains; Academic Press: San Diego, CA, USA, 2008; pp. 129–135. [Google Scholar]
- Adams, B.J.; Byrd, J.E. Recovery, Analysis, and Identification of Commingled Human Remains; Humana Press: New York, NY, USA, 2008. [Google Scholar]
- Lewis, M.J.; Senn, D.R. Dental age estimation. In Manual of Forensic Odontology, 5th ed.; CRC Press: Boca Raton, FL, USA, 2013; pp. 211–255. [Google Scholar]
- Pars petrosa kosti spánkové v žárových hrobech. Available online: https://is.muni.cz/th/mp8x9/?so=nx (accessed on 7 December 2018).
- Polcerová, L.; Králík, M.; Stabrava, P. Semi-Automatic Measurement of Cremated Human Remains Found on Archaeological Site of the Lusatian Culture near Town Příbor. Pravěk NŘ 2016, 24, 151–174. [Google Scholar]
- Norén, A.; Lynnerup, N.; Czarnetzki, A.; Graw, M. Lateral Angle: A Method for Sexing Using the Petrous Bone. Am. J. Phys. Anthropol. 2005, 128, 318–323. [Google Scholar] [CrossRef]
- Stubiger, G.; Belgacem, O. Analysis of lipids using 2,4,6-trihydroxyacetophenone as a matrix for MALDI mass spectrometry. Anal. Chem. 2007, 79, 3206–3213. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Gaude, E.; Chignola, F.; Spiliotopoulos, D.; Mari, S.; Spitaleri, A.; Ghitti, M. muma: Metabolomics Univariate and Multivariate Analysis. Available online: https://CRAN.R-project.org/package=muma (accessed on 5 December 2018).
- RIDASCREEN Fast Casein. Enzyme Immunoassay for the Quantitative Determination of Casein; R Biopharm AG: Darmstadt, Germany, 2016. [Google Scholar]
Sample Availability: Samples are not available from the authors. |
m/z | CN/DB | Theoretical Formula | dtm (mDa) | |
---|---|---|---|---|
Ceramic vessel no. 4 | 673.4879 | 36:2 | C39H70O6K | −7.0 |
687.5005 | 37:2 | C40H72O6K | −3.9 | |
701.5178 | 38:2 | C41H74O6K | −5.6 | |
715.5337 | 39:2 | C42H76O6K | −5.8 | |
731.5103 | 39:2 | C42H76O7K | 12.5 | |
Ceramic vessel no. 5 | 673.4808 | 36:2 | C39H70O6K | 0.1 |
687.4951 | 37:2 | C40H72O6K | 1.5 | |
701.5114 | 38:2 | C41H74O6K | 0.8 | |
715.5286 | 39:2 | C42H76O6K | −0.7 | |
731.5007 | 39:2 | C42H76O7K | 22.1 |
Casein (ppm) | Evaluation | Cattle βLG (ppm) | Evaluation | |
---|---|---|---|---|
Negative control | 0.02 | 0 | 1.32 | 0 |
Positive control | 0.2 * | + | 0.021 ** | + |
Ceramic vessel no.4 | 0.36 | + | 1.81 | 0 |
Ceramic vessel no.5 | 0.52 | + | 0.044 | + |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kučera, L.; Peška, J.; Fojtík, P.; Barták, P.; Sokolovská, D.; Pavelka, J.; Komárková, V.; Beneš, J.; Polcerová, L.; Králík, M.; et al. Determination of Milk Products in Ceramic Vessels of Corded Ware Culture from a Late Eneolithic Burial. Molecules 2018, 23, 3247. https://doi.org/10.3390/molecules23123247
Kučera L, Peška J, Fojtík P, Barták P, Sokolovská D, Pavelka J, Komárková V, Beneš J, Polcerová L, Králík M, et al. Determination of Milk Products in Ceramic Vessels of Corded Ware Culture from a Late Eneolithic Burial. Molecules. 2018; 23(12):3247. https://doi.org/10.3390/molecules23123247
Chicago/Turabian StyleKučera, Lukáš, Jaroslav Peška, Pavel Fojtík, Petr Barták, Diana Sokolovská, Jaroslav Pavelka, Veronika Komárková, Jaromír Beneš, Lenka Polcerová, Miroslav Králík, and et al. 2018. "Determination of Milk Products in Ceramic Vessels of Corded Ware Culture from a Late Eneolithic Burial" Molecules 23, no. 12: 3247. https://doi.org/10.3390/molecules23123247
APA StyleKučera, L., Peška, J., Fojtík, P., Barták, P., Sokolovská, D., Pavelka, J., Komárková, V., Beneš, J., Polcerová, L., Králík, M., & Bednář, P. (2018). Determination of Milk Products in Ceramic Vessels of Corded Ware Culture from a Late Eneolithic Burial. Molecules, 23(12), 3247. https://doi.org/10.3390/molecules23123247