Complex Formation of Resorufin and Resazurin with Β-Cyclodextrins: Can Cyclodextrins Interfere with a Resazurin Cell Viability Assay?
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fluorescence Spectroscopic Investigation of Resorufin-CD Interactions
2.2. Molecular Modeling of Resorufin-CD Interactions
2.3. Investigation of Resazurin-CD and Resorufin-CD Interactions with UV-Vis Spectroscopy
2.4. Effects of CDs on Resazurin-Based Cell Viability Assay, and on ATP and Total Protein Levels of HepG2 Cells
3. Materials and Methods
3.1. Reagents
3.2. Fluorescence Spectroscopic Measurements
3.3. UV-Vis Spectroscopic Measurements
3.4. Modeling Studies
3.5. Cell Culture
3.6. Resazurin-Based Cell Viability Assay
3.7. Quantitation of Intracellular ATP and Total Protein Levels
3.8. Statistics
4. Conclusions
Supplementary Materials
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Coban, A.Y.; Deveci, A.; Sunter, A.T.; Palomino, J.C.; Martin, A. Resazurin microtiter assay for isoniazid, rifampicin, ethambutol and streptomycin resistance detection in Mycobacterium tuberculosis: Updated meta-analysis. Int. J. Mycobacteriol. 2014, 3, 230–241. [Google Scholar] [CrossRef] [PubMed]
- Präbst, K.; Engelhardt, H.; Ringgeler, S.; Hübner, H. Basic colorimetric proliferation assays: MTT, WST, and resazurin. Methods Mol. Biol. 2017, 1601, 1–17. [Google Scholar] [PubMed]
- Rodríguez-Corrales, J.Á.; Josan, J.S. Resazurin live cell assay: Setup and fine-tuning for reliable cytotoxicity results. Methods Mol. Biol. 2017, 1647, 207–219. [Google Scholar] [PubMed]
- Bueno, C.; Villegas, M.L.; Bertolotti, S.G.; Previtali, C.M.; Neumann, M.G.; Encinas, M.V. The excited-state interaction of resazurin and resorufin with amines in aqueous solutions. Photophysics and Photochemical Reaction. J. Photochem. Photobiol. 2002, 76, 385–390. [Google Scholar] [CrossRef]
- O'Brien, J.; Wilson, I.; Orton, T.; Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur. J. Biochem. 2000, 267, 5421–5426. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Palomino, J.C.; Portaels, F. Rapid detection of ofloxacin resistance in Mycobacterium tuberculosis by two low-cost colorimetric methods: Resazurin and nitrate reductase assays. J. Clin. Microbiol. 2005, 43, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
- Aguilar-Ayala, D.A.; Cnockaert, M.; André, E.; Andries, K.; Gonzalez-Y-Merchand, J.A.; Vandamme, P.; Palomino, J.C.; Martin, A. In vitro activity of bedaquiline against rapidly growing nontuberculous mycobacteria. J. Med. Microbiol. 2017, 66, 1140–1143. [Google Scholar] [CrossRef] [PubMed]
- Van den Driessche, F.; Rigole, P.; Brackman, G.; Coenye, T. Optimization of resazurin-based viability staining for quantification of microbial biofilms. J. Microbiol. Methods 2014, 98, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Putnam, K.P.; Bombick, D.W.; Doolittle, D.J. Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate. Toxicol. In Vitro 2002, 16, 599–607. [Google Scholar] [CrossRef]
- Emter, R.; Natsch, A. A fast Resazurin-based live viability assay is equivalent to the MTT-test in the KeratinoSens assay. Toxicol. In Vitro 2015, 29, 688–693. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Pal, S.; Tak, Y.K.; Lee, K.H.; Yang, T.K.; Lee, S.J.; Song, J.M. Determination of the dose-depth distribution of proton beam using resazurin assay in vitro and diode laser-induced fluorescence detection. Anal. Chim. Acta 2007, 593, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Czekanska, E.M. Assessment of cell proliferation with resazurin-based fluorescent dye. Methods Mol. Biol. 2011, 740, 27–32. [Google Scholar] [PubMed]
- Szente, L.; Szemán, J. Cyclodextrins in analytical chemistry: Host-guest type molecular recognition. Anal. Chem. 2013, 85, 8024–8030. [Google Scholar] [CrossRef] [PubMed]
- Bochot, A.; Piel, G. Applications of cyclodextrins for skin formulation and delivery. In Cyclodextrins in Pharmaceutics, Cosmetics and Biomedicine, Current and Future Industrial Applications; Bilensoy, E., Ed.; John Willey & Sons: Hobboken, NJ, USA, 2011; pp. 159–176. [Google Scholar]
- Fenyvesi, É.; Vikmon, M.; Szente, L. Cyclodextrins in food technology and human nutrition: Benefits and limitations. Crit. Rev. Food Sci. Nutr. 2016, 56, 1981–2004. [Google Scholar] [CrossRef] [PubMed]
- Jambhekar, S.S.; Breen, P. Cyclodextrins in pharmaceutical formulations II: Solubilization, binding constant, and complexation efficiency. Drug Discov. Today 2016, 21, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Szejtli, J. Cyclodextrin Technology; Kluwer: Dordrecht, The Netherlands, 1988. [Google Scholar]
- Szente, L.; Szejtli, J. Highly soluble cyclodextrin derivatives: Chemistry, properties, and trends in development. Adv. Drug Del. Rev. 1999, 36, 17–28. [Google Scholar] [CrossRef]
- Dodziuk, H. Cyclodextrins and Their Complexes; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008. [Google Scholar]
- Pal, K.; Mallick, S.; Koner, A.L. Complexation induced fluorescence and acid–base properties of dapoxyl dye with γ-cyclodextrin: A drug-binding application using displacement assays. Phys. Chem. Chem. Phys. 2015, 17, 16015–16022. [Google Scholar] [CrossRef] [PubMed]
- Balabai, N.; Linton, B.; Napper, A.; Priyadarshy, S.; Sukharevsky, A.P.; Waldeck, D.H. Orientational dynamics of β-cyclodextrin inclusion complexes. J. Phys. Chem. B 1998, 102, 9617–9624. [Google Scholar] [CrossRef]
- Douhal, A. Ultrafast guest dynamics in cyclodextrin nanocavities. Chem. Rev. 2004, 104, 1955–1976. [Google Scholar] [CrossRef] [PubMed]
- Hamai, S. Ternary inclusion complexes of γ-cyclodextrin with resorufin and organic cations in aqueous solution. Bull. Chem. Soc. Jpn. 2007, 80, 1527–1533. [Google Scholar] [CrossRef]
- Duchêne, D.; Bochot, A. Thirty years with cyclodextrins. Int. J. Pharm. 2016, 514, 58–72. [Google Scholar] [CrossRef] [PubMed]
- Poór, M.; Kunsági-Máté, S.; Sali, N.; Kőszegi, T.; Szente, L.; Peles-Lemli, B. Interactions of zearalenone with native and chemically modified cyclodextrins and their potential utilization. J. Photochem. Photobiol. B 2015, 151, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Poór, M.; Matisz, G.; Kunsági-Máté, S.; Derdák, D.; Szente, L.; Lemli, B. Fluorescence spectroscopic investigation of the interaction of citrinin with native and chemically modified cyclodextrins. J. Lumin. 2016, 172, 23–28. [Google Scholar] [CrossRef]
- Kumar, J.S.; Miller Jenkins, L.M.; Gottesman, M.M.; Hall, M.D. The drug excipient cyclodextrin interacts with D-luciferin and interferes with bioluminescence imaging. Mol. Imaging 2016, 15, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.S.; Boddapati, S.; Sierks, M.R. Cyclodextrins promote protein aggregation posing risks for therapeutic applications. Biochem. Biophys. Res. Commun. 2009, 386, 526–531. [Google Scholar] [CrossRef] [PubMed]
- Petrov, A.M.; Naumenko, N.V.; Uzinskaya, K.V.; Giniatullin, A.R.; Urazaev, A.K.; Zefirov, A.L. Increased non-quantal release of acetylcholine after inhibition of endocytosis by methyl-β-cyclodextrin: The role of vesicular acetylcholine transporter. Neuroscience 2011, 186, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, M.; Matuszczak, B.; Rahmat, D.; Mahmood, A.; Bonengel, S.; Hussain, S.; Huck, C.W.; Bernkop-Schnürch, A. Synthesis and characterization of thiolated γ-cyclodextrin as a novel mucoadhesive excipient for intra-oral drug delivery. Carbohydr. Polym. 2015, 132, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Fenyvesi, F.; Réti-Nagy, K.; Bacsó, Z.; Gutay-Tóth, Z.; Malanga, M.; Fenyvesi, É.; Szente, L.; Váradi, J.; Ujhelyi, Z.; Fehér, P.; Szabó, G.; Vecsernyés, M.; Bácskay, I. Fluorescently labeled methyl-β-cyclodextrin enters intestinal epithelial Caco-2 cells by fluid-phase endocytosis. PLoS ONE 2014, 9, e84856. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.M.; Cho, E.; Lee, B.; Jeong, D.; Choi, Y.; Yu, J.H.; Jung, S. Enhancing bio-availability of ß-naphthoflavone by supramolecular complexation with 6,6'-thiobis(methylene)-β-cyclodextrin dimer. Carbohydr. Polym. 2016, 151, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Mohtar, N.; Taylor, K.M.; Sheikh, K.; Somavarapu, S. Design and development of dry powder sulfobutylether-ß-cyclodextrin complex for pulmonary delivery of fisetin. Eur. J. Pharm. Biopharm. 2017, 113, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sali, N.; Csepregi, R.; Kőszegi, T.; Kunsági-Máté, S.; Szente, L.; Poór, M. Complex formation of flavonoids fisetin and geraldol with β-cyclodextrins. J. Lumin. 2018, 194, 82–90. [Google Scholar] [CrossRef]
- Christian, A.E.; Haynes, M.P.; Phillips, M.C.; Rothblat, G.H. Use of cyclodextrins for manipulating cellular cholesterol content. J. Lipid Res. 1997, 38, 2264–2272. [Google Scholar] [PubMed]
- Zidovetzki, R.; Levitan, I. Use of cyclodextrins to manipulate plasma membrane cholesterol content: Evidence, misconceptions and control strategies. Biochim. Biophys. Acta 2007, 1768, 1311–1324. [Google Scholar] [CrossRef] [PubMed]
- Milles, S.; Meyer, T.; Scheidt, H.A.; Schwarzer, R.; Thomas, L.; Marek, M.; Szente, L.; Bittman, R.; Herrmann, A.; Günther Pomorski, T.; Huster, D.; Müller, P. Organization of fluorescent cholesterol analogs in lipid bilayers-lessons from cyclodextrin extraction. Biochim. Biophys. Acta 2013, 1828, 1822–1828. [Google Scholar] [CrossRef] [PubMed]
- Brehm, G.; Reiher, M.; Schneider, S. Estimation of the vibrational contribution to the entropy change associated with the low- to high-spin transition in Fe(phen)2(NCS)2 complexes: Results obtained by IR and Raman Spectroscopy and DFT calculations. J. Phys. Chem. A 2002, 106, 12024–12034. [Google Scholar] [CrossRef]
- Li, Y.; Huszthy, P.; Kunsági-Máté, S. Effect of molecular vibrations on the selectivity character of pyridino-18-crown-6 derivatives towards potassium ion. Chem. Phys. Lett. 2012, 533, 45–49. [Google Scholar] [CrossRef]
- Cornish-Bowden, A. Enthalpy-entropy compensation: A phantom phenomenon. J. Biosci. 2002, 27, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Sali, N.; Nagy, S.; Poór, M.; Kőszegi, T. Multiparametric luminescent cell viability assay in toxicology models: A critical evaluation. J. Pharmacol. Toxicol. Methods 2016, 79, 45–54. [Google Scholar] [CrossRef] [PubMed]
Sample Availability: Samples of the compounds BCD, HPBCD, and DIMEB are available from CycloLab Ltd. (L.S.). |
I/I0 (580 nm) | I/I0 (585 nm) | I/I0 (590 nm) | logK (25 °C) | logK (37 °C) | |
---|---|---|---|---|---|
BCD | 1.22 (±0.02) | 1.30 (±0.02) | 1.38 (±0.02) | 3.31 (±0.08) | 3.09 (±0.03) |
HPBCD | 1.01 (±0.01) | 1.20 (±0.01) | 1.39 (±0.02) | 3.37 (±0.05) | 3.26 (±0.05) |
DIMEB | 1.37 (± 0.04) | 1.52 (±0.04) | 1.53 (±0.03) | 3.59 (±0.04) | 3.52 (±0.05) |
Without dehydration prior to the interaction | |||
ΔH (kJ/mol) | ΔS (J/K·mol) | ΔG298 K (kJ/mol) | |
resorufin-BCD | −39.3 | 3.0 | −40.2 |
resorufin-DIMEB | −50.5 | 1.9 | −51.1 |
With dehydration of the guest prior to the interaction | |||
ΔH (kJ/mol) | ΔS (J/K·mol) | ΔG298 K (kJ/mol) | |
resorufin-BCD | −28.4 | 34.6 | −38.8 |
resorufin-DIMEB | −39.6 | 33.5 | −49.6 |
With dehydration of the guest and the host’s cavity prior to the interaction | |||
ΔH (kJ/mol) | ΔS (J/K·mol) | ΔG298 K (kJ/mol) | |
resorufin-BCD 1 | −9.6 | 35.2 | −20.9 |
resorufin-DIMEB 2 | −13.2 | 34.1 | −23.4 |
Resazurin-CD | Resorufin-CD | |||
---|---|---|---|---|
logK | λmax (nm) | logK | λmax (nm) | |
BCD | 3.13 (± 0.02) | 605 | 3.33 (± 0.02) | 575 |
HPBCD | 3.15 (± 0.04) | 607 | 3.36 (± 0.03) | 577 |
DIMEB | 3.25 (± 0.03) | 611 | 3.55 (± 0.05) | 579 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Csepregi, R.; Lemli, B.; Kunsági-Máté, S.; Szente, L.; Kőszegi, T.; Németi, B.; Poór, M. Complex Formation of Resorufin and Resazurin with Β-Cyclodextrins: Can Cyclodextrins Interfere with a Resazurin Cell Viability Assay? Molecules 2018, 23, 382. https://doi.org/10.3390/molecules23020382
Csepregi R, Lemli B, Kunsági-Máté S, Szente L, Kőszegi T, Németi B, Poór M. Complex Formation of Resorufin and Resazurin with Β-Cyclodextrins: Can Cyclodextrins Interfere with a Resazurin Cell Viability Assay? Molecules. 2018; 23(2):382. https://doi.org/10.3390/molecules23020382
Chicago/Turabian StyleCsepregi, Rita, Beáta Lemli, Sándor Kunsági-Máté, Lajos Szente, Tamás Kőszegi, Balázs Németi, and Miklós Poór. 2018. "Complex Formation of Resorufin and Resazurin with Β-Cyclodextrins: Can Cyclodextrins Interfere with a Resazurin Cell Viability Assay?" Molecules 23, no. 2: 382. https://doi.org/10.3390/molecules23020382
APA StyleCsepregi, R., Lemli, B., Kunsági-Máté, S., Szente, L., Kőszegi, T., Németi, B., & Poór, M. (2018). Complex Formation of Resorufin and Resazurin with Β-Cyclodextrins: Can Cyclodextrins Interfere with a Resazurin Cell Viability Assay? Molecules, 23(2), 382. https://doi.org/10.3390/molecules23020382