Chemical Composition of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Production and Purification of PAs
3.2. GC-MS Analysis of PA
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zulu, L.C. The forbidden fuel: Charcoal, urban woodfuel demand and supply dynamics, community forest management and woodfuel policy in Malawi. Energy Policy 2010, 38, 3717–3730. [Google Scholar] [CrossRef]
- Arruda, T.P.M.D.; Pimenta, A.S.; Vital, B.R.; Lucia, R.M.D.; Acosta, F.C. Evalution of two carbonization routines in rectangular kilns. Rev. Árvore 2011, 35, 949–955. [Google Scholar] [CrossRef]
- Jesus, M.S. Mass and Energy Balance on Pyrolysis of Eucalyptus Wood in Industrial Scale. Master’s Thesis, Universidade Federal de Lavras, Lavras, Brazil, 2016; p. 89. [Google Scholar]
- Souza, J.B.G.; Ré-Poppi, N.; Raposo, J.L. Characterization of pyroligneous acid used in agriculture by gas chromatography-mass spectrometry. J. Braz. Chem. Soc. 2012, 23, 610–617. [Google Scholar] [CrossRef]
- Zhu, X.F.; Lu, Q. Production of Chemicals from Selective Fast Pyrolysis of Biomass. In Biomass; Momba, M.N.B., Ed.; InTech: London, UK, 2010; p. 19. [Google Scholar]
- Radlein, D.; Quignard, A. A Short Historical Review of Fast Pyrolysis of Biomass. Oil Gas Sci. Technol. 2013, 68, 765–783. [Google Scholar] [CrossRef]
- Alsbou, E.I. Pyrolysis Bio-Oil as a Renewable Fuel and Source of Chemicals: Its Production, Characterization and Stability. Ph.D. Thesis, Department of Chemistry, Memorial University of Newfoundland, St. John’s, NL, Canada, 2014; p. 174. [Google Scholar]
- Montazeri, N.; Oliveira, A.C.M.; Himelbloom, B.H.; Leigh, M.B.; Crapo, C.A. Chemical characterization of commercial liquid smoke products. Food Sci. Nutr. 2013, 1, 102–115. [Google Scholar] [CrossRef] [PubMed]
- Yoshimoto, T. Present status of wood vinegar studies in Japan for agricultural usage. In Proceedings of the 7th International Congress of the Society for the Advancement of Breeding Researches in Asia and Oceania (SABRAO), Taichung, Taiwan, 16–20 November 1994; pp. 811–820. [Google Scholar]
- Higashino, T.; Shibata, A.; Yatagai, M. Basic Study for Establishing Specifications for Wood Vinegar by distillation I. Mokuzai Gakkaishi 2005, 51, 180–188. [Google Scholar] [CrossRef]
- Campo, A.D. Técnicas para produção de extrato pirolenhoso para uso agrícola. Embrapa 2007, 65, 1–8. [Google Scholar]
- Tiilikkala, K.; Fagernäs, L.; Tiilikkala, J. History and Use of Wood Pyrolysis Liquids as Biocide and Plant Protection Product. Open Agric. J. 2010, 4, 111–118. [Google Scholar] [CrossRef]
- Zhai, M.; Shi, G.; Wang, Y.; Mao, G.; Wang, D.; Wang, Z. Chemical Compositions and Biological Activities of Pyroligneous Acids from Walnut Shell. Bioresource 2015, 10, 1715–1729. [Google Scholar] [CrossRef]
- Yoshimoto, T. Toward enhanced and sustainable agricultural productivity in the 2000’s: Breeding research and biotechnology. In Proceedings of the 7th lnternational Congress of the Society for the Advancement of Breeding Researches in Asia and Oceanla (SABRAO) and lnternatiollal Symposium of WVorld Sustainable Agriculture Association (H/SAA), Taipei, Taiwan, 16–20 November 1993; pp. 811–820. [Google Scholar]
- Steiner, C. Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthic Ferralsol. Pedobiologia 2008, 51, 359–366. [Google Scholar] [CrossRef]
- Togoro, A.; Silva, J.A.S.; Cazetta, J.O. Chemical changes in oxisol treated with pyroligneous acid. Ciênc. Agrotecnol. 2014, 38, 113–121. [Google Scholar] [CrossRef]
- Thuler, R.T.; Bortoli, S.A.; Barbosa, J.C. Effectiveness of chemical insecticides and plant products for the control of Plutella xylostella. Científica 2007, 35, 166–174. [Google Scholar]
- Kim, D.U.; Seo, H.E.; Lee, S.; Lee, K. Effects of wood vinegar mixed with inseticides on the mortalities of Nilaparvata lugens and Laodeophax striatellus (Homoptera: Delphacidae). Anim. Cells Syst. 2008, 12, 47–52. [Google Scholar] [CrossRef]
- Payamara, J. Usage of wood vinegar as new organic substance. Int. J. ChemTech Res. 2011, 3, 1658–1662. [Google Scholar]
- Zulkarami, B.; Ashrafuzzman, M.; Husni, M.; Mohamed, R.I. Effect of pyroligneous acid on growth, yield and quality improvement of rockmellon in soiless culture. Aust. J. Crop Sci. 2011, 5, 1508–1514. [Google Scholar]
- 14th Report on Carcinogens. Available online: https://ntp.niehs.nih.gov/pubhealth/roc/index-1.html (accessed on 16 October 2017).
- Oliveira, E.; Vital, B.R.; Pimenta, A.S.; Lucia, R.M.D.; Ladeira, A.M.M.; Carneiro, A.C.O. Anatomical structure and charcoal quality of Mimosa tenuiflora (Willd.) Poir. wood. Rev. Árvore 2006, 30, 311–318. [Google Scholar] [CrossRef]
- Pereira, B.L.C.; Carneiro, A.D.C.O.; Carvalho, A.M.M.L.; Colodette, J.L.; Oliveira, A.C.; Fontes, M.P.F. Influence of Chemical Composition of Eucalyptus Wood on Gravimetric Yield and Charcoal Properties. BioResources 2013, 8, 4574–4592. [Google Scholar] [CrossRef]
- Santos, R.C.; Carneiro, A.C.O.; Pimenta, A.P.; Castro, R.V.; Marinho, I.V.; Trugilho, P.F.; Alves, I.C.N.; Castro, A.F.N.M. Energy potential of species from forest management plan for the Rio Grande do Norte State. Ciênc. Florest. 2003, 23, 493–504. [Google Scholar] [CrossRef]
- Rungruang, P.; Suwannee, J. Antioxidative activity of phenolic compounds in pyroligneous acid produced from Eucalyptus wood. In Proceedings of the 8th International Symposium on Biocontrol and Biotechnology, Pattaya, Thailand, 4–6 October 2010; Institute of Technology Ladkrabang and Khon Kaen University: Khon Kaen, Thailand, 2010; pp. 102–106. [Google Scholar]
- Nollet, L.M.; Boylston, T.; Chen, F.; Coggins, P.C.; Gloria, M.B. Handbook of Meat, Poultry & Seafood Quality; Nollet, L.M.L., Ed.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007. [Google Scholar]
- Achmadi, S.S.; Mubarik, N.R.; Nursyamsi, R.; Septiaji, P. Characterization of redistilled liquid smoke of Oil-palm shells and its application as fish preservatives. J. Appl. Sci. 2013, 13, 401–408. [Google Scholar] [CrossRef]
- Budaraga, I.K.; Arnim, Y.M.; Bulanin, U. Analysis of liquid smoke chemical components with GC MS from different raw materials variation production and pyrolysis temperaturelevel. Int. J. ChemTech Res. 2016, 9, 694–708. [Google Scholar]
- Yang, J.-F.; Yang, C.-H.; Liang, M.-T.; Gao, Z.-J.; Wu, Y.-W.; Chuang, L.-Y. Chemical Composition, Antioxidant, and Antibacterial Activity of Wood Vinegar from Litchi chinensis. Molecules 2016, 21, 1150. [Google Scholar] [CrossRef] [PubMed]
- The Human Metabolome Database (HMDB). Available online: http://www.hmdb.ca/ (accessed on 16 October 2017).
- O’Neil, M.J.; Chemistry, R.S. The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Royal Society of Chemistry: Cambridge, UK, 2013. [Google Scholar]
- Samanta, S.K.; Singh, O.V.; Jain, R.K. Polycyclic aromatic hydrocarbons: Environmental pollution and bioremediation. Trends Biotechnol. 2002, 20, 243–248. [Google Scholar] [CrossRef]
- Pimenta, A.S.; Bayona, J.M.; García, M.T.; Solanas, A.M. Evaluation of acute toxicity and genotoxicity of liquid products from pyrolysis of Eucalyptus grandis wood. Arch. Environ. Contam. Toxicol. 2000, 38, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Pakdel, H.; Roy, C. Chemical characterization of wood pyrolysis oils obtained in a vacuum pyrolysis multiple-hearth reactor. In American Chemical Society Symposium Series; ACS eBooks: Washington, DC, USA, 1988; pp. 203–219. [Google Scholar]
- Substance Evaluation—CoRAP. Available online: https://echa.europa.eu/information-on-chemicals/evaluation/community-rolling-action-plan/corap-table/-/dislist/details/0b0236e1807e9220 (accessed on 29 November 2017).
- N-Nitrosodimethylamine (Code C44417). Available online: https://ncit.nci.nih.gov/ncitbrowser/ConceptReport.jsp?dictionary=NCI_Thesaurus&ns=NCI_Thesaurus&code=C44417 (accessed on 16 October 2017).
- Simko, P. Factors affecting elimination of polycyclic aromatic hydrocarbons from smoked meat foods and liquid smoke flavorings. Mol. Nutr. Food Res. 2005, 49, 637–647. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.C.; Tai, K.W.; Huang, F.M.; Huang, M.F. Cytotoxic and nongenotoxic effects of phenolic compounds in human pulp cell cultures. J. Endod. 2000, 26, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Xavier, L.; Freire, M.S.; Vidal-Tato, I.; González-Álvarez, J. Recovery of phenolic compounds from Eucalyptus wood wastes using ethanol-salt-based. Maderas Cienc. Tecnol. 2017. [Google Scholar] [CrossRef]
Sample Availability: Samples of the compounds are not available from the authors. |
Species | Gravimetric Yields (%) | ||
---|---|---|---|
Charcoal | Total Condensed Liquids | NCG | |
Eucalyptus urograndis GG100 clone | 35.3 | 42.4 | 22.3 |
Species | Gravimetric Yields (%) | |
---|---|---|
Based on TPL * Mass | Based on Initial Dry Wood Mass | |
Eucalyptus urograndis GG100 clone | 70.1 | 27.4 |
Property | |
---|---|
Color | Yellow |
pH | 2.85 |
Titratable acidity | 0.03342 g NaOH/g sample |
Density | 1.032 g cm−3 |
Extraction Solvent | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dichloromethane | Diethyl Ether | Ethyl Acetate | |||||||||||
Identified Peak # | Compound | Molecular Formula | Average Mass (Da) | Similarity (%) | OC | RT (min) | Area (%) | OC | RT (min) | Area (%) | OC | RT (min) | Area (%) |
1 | 2-methyl-2-pentanol | C6H14O | 102.175 | 87 | 3.178 | 0.05 | * | * | * | * | * | * | |
2 | Cyclopentanone | C5H8O | 84.116 | 98 | 3.483 | 2.39 | 3.475 | 1.83 | 3.467 | 1.64 | |||
3 | 2-methyl-cyclopentanone | C6H10O | 98.143 | 90 | 3.671 | 0.33 | 3.616 | 0.32 | 3.654 | 0.25 | |||
4 | Tetrahydro-2,2-dimethoxy-furan | C6H12O3 | 132.158 | 93 | 3.838 | 0.60 | 3.782 | 0.36 | 3.820 | 0.39 | |||
5 | 3-methyl-cyclopentanone | C6H10O | 98.143 | 89 | 4.051 | 0.31 | 3.991 | 0.29 | 4.032 | 0.19 | |||
6 | 2-methyl-pyridine | C6H7N | 93.127 | 96 | 4.166 | 0.07 | * | * | * | * | * | * | |
7 | 2-(methoxymethyl)-furan | C6H8O2 | 112.127 | 97 | 4.863 | 0.58 | 4.794 | 0.50 | 4.843 | 0.48 | |||
8 | Tetrahydro-2,5-dimethoxy-furan | C6H12O3 | 132.158 | 96 | 4.968 | 0.50 | 4.900 | 0.43 | 4.947 | 0.39 | |||
9 | 2-methyl-propanoic anhydride | C8H14O3 | 158.195 | 95 | 5.660 | 0.13 | * | * | * | * | * | * | |
10 | 1,4-dioxen | C4H6O2 | 86.089 | 88 | 5.855 | 0.73 | * | * | * | * | * | * | |
11 | N-nitrosodimethylamine | C2H6N2O | 74.082 | 94 | 6.192 | 0.60 | 6.085 | 0.19 | 6.161 | 0.41 | |||
12 | 5-methylhexahydro-4H-1,3-benzodioxin-4-one | C9H16O | 140.223 | 85 | * | * | * | 7.032 | 0.23 | * | * | * | |
13 | 2,4-hexadienal | C6H8O | 96.127 | 87 | 7.120 | 0.32 | * | * | * | * | * | * | |
14 | 3-pentanol | C5H12O | 88.148 | 93 | * | * | * | 7.556 | 0.14 | * | * | * | |
15 | 1-methoxy-2-butanol | C5H12O2 | 104.148 | 91 | * | * | * | * | * | * | 7.618 | 0.28 | |
16 | 4-hydroxy-3-hexanone | C6H12O2 | 116.158 | 88 | 7.646 | 0.38 | * | * | * | * | * | * | |
17 | 2-cyclopenten-1-one | C5H6O | 82.101 | 97 | 7.821 | 4.59 | 7.713 | 2.33 | 7.778 | 2.70 | |||
18 | 3,5-dimethyl-cyclohexanol | C8H16O | 128.212 | 85 | 8.137 | 0.56 | 8.040 | 0.34 | 8.134 | 0.38 | |||
19 | 2-methyl-2-cyclopenten-1-one | C6H8O | 96.127 | 97 | 8.404 | 3.38 | 8.307 | 3.14 | 8.368 | 2.90 | |||
20 | 1-hydroxy-2-butanone | C4H8O2 | 88.105 | 98 | 8.766 | 2.62 | 8.650 | 1.10 | 8.725 | 1.85 | |||
21 | 2-hydroxy-methyl ester-butanoic acid | C5H10O3 | 118.131 | 92 | 9.431 | 0.17 | * | * | * | 9.399 | 0.16 | ||
22 | 2-cyclohexen-1-one | C6H8O | 96.127 | 97 | 10.654 | 0.31 | * | * | * | * | * | * | |
23 | 3-furaldehyde | C5H4O2 | 96.084 | 94 | 11.442 | 0.38 | 11.324 | 0.29 | 11.405 | 0.30 | |||
24 | Butanoic acid, 2-ethylcyclohexyl ester | C12H22O2 | 198.302 | 85 | * | * | * | * | * | * | 11.617 | 1.08 | |
25 | 3-methyl-butanoic acid | C5H10O2 | 102.132 | 90 | 12.247 | 0.25 | * | * | * | * | * | * | |
26 | Furfural | C5H4O2 | 96.084 | 99 | 12.764 | 11.24 | 12.655 | 13.92 | 12.747 | 15.67 | |||
27 | 3,4-dimethyl-2-cyclopenten-1-one | C7H10O | 110.154 | 96 | 13.006 | 0.48 | * | * | * | 12.953 | 0.14 | ||
28 | 2,3,4-trimethyl-2-cyclopenten-1-one | C8H12O | 124.180 | 91 | 13.841 | 0.25 | 13.725 | 0.30 | 13.796 | 0.26 | |||
29 | 3-methyl-2-cyclopenten-1-one | C6H8O | 96.127 | 95 | 14.214 | 1.71 | 14.087 | 1.15 | 14.167 | 1.23 | |||
30 | 2-acetylfuran | C6H6O2 | 110.111 | 98 | 14.490 | 3.49 | 14.361 | 3.57 | 14.445 | 3.12 | |||
31 | Tetrahydro-2-furanmethanol | C5H10O2 | 102.132 | 93 | 14.759 | 1.59 | 14.637 | 1.40 | 14.714 | 1.36 | |||
32 | 1-isopropyl-1-cyclopentene | C8H14 | 110.197 | 90 | * | * | * | * | * | * | 15.232 | 0.08 | |
33 | 2,3-dimethyl-2-cyclopenten-1-one | C7H10O | 110.154 | 95 | 15.435 | 1.24 | 15.310 | 1.15 | 15.389 | 1.08 | |||
34 | 3,4,5-trimethyl-2-cyclopenten-1-one | C8H12O | 124.180 | 91 | 16.260 | 0.14 | * | * | * | 16.215 | 0.16 | ||
35 | 2-Butanone, 1-(acetyloxy)- | C6H10O3 | 130.142 | 93 | 16.741 | 0.33 | * | * | * | 16.693 | 0.27 | ||
36 | 1-acetylcyclohexene | C8H12O | 14.183 | 85 | * | * | * | * | * | * | 17.187 | 0.15 | |
37 | 3-methyl pyrrole | C5H7N | 81.116 | 89 | * | * | * | * | * | * | 17.320 | 0.18 | |
38 | 2,3-pentanedione | C5H8O2 | 110.116 | 88 | 16.570 | 0.42 | * | * | 16.528 | 0.30 | |||
39 | 3,4,4-trimethyl-2-cyclopenten-1-one | C8H12O | 124.180 | 85 | 17.236 | 0.18 | * | * | * | * | * | * | |
40 | 5-methyl-2-furancarboxaldehyde | C6H6O2 | 110.111 | 98 | 17.720 | 5.12 | 17.586 | 5.26 | 17.667 | 4.20 | |||
41 | Pentanoic acid, 4-oxo-, methyl ester | C6H10O3 | 130.142 | 88 | 17.937 | 1.01 | * | * | * | * | * | * | |
42 | Methyl-2-furoate | C6H6O3 | 126.110 | 98 | 18.362 | 1.65 | 18.223 | 1.91 | 18.316 | 1.59 | |||
43 | Butyrolactone | C4H6O2 | 86.089 | 95 | * | * | * | * | * | * | 19.218 | 0.39 | |
44 | 4-hydroxy-butanoic acid | C5H10O3 | 118.131 | 96 | 19.289 | 0.57 | * | * | * | * | * | * | |
45 | 3-ethyl-2-cyclopenten-1-one | C7H10O | 110.154 | 87 | 19.449 | 0.50 | * | * | * | * | * | * | |
46 | 2-acetyl-5-methylfuran | C7H8O2 | 124.137 | 92 | 19.665 | 0.24 | * | * | * | 19.617 | 0.30 | ||
47 | Methylbenzoate | C8H8O2 | 136.148 | 90 | 19.871 | 0.18 | * | * | * | 19.926 | 0.23 | ||
48 | 2,5-dihydro-3,5-dimethyl-2-furanone | C6H8O2 | 112.127 | 96 | 20.845 | 0.71 | 20.704 | 0.72 | 20.796 | 0.63 | |||
49 | Acetophenone | C8H8O | 120.148 | 88 | 21.018 | 0.15 | * | * | * | 20.972 | 0.17 | ||
50 | 5-methyl-2(5H)-Furanone | C5H6O2 | 98.100 | 90 | * | * | * | * | * | * | 22.043 | 0.09 | |
51 | 3-ethyl-2-hydroxy-2-ciclopenten-1-one | C7H10O2 | 126.153 | 92 | 22.757 | 0.38 | 22.615 | 0.46 | 22.707 | 0.39 | |||
52 | 2-furanmethanol (furfury alcohol) | C5H6O2 | 98.100 | 98 | 22.987 | 0.27 | 22.844 | 0.18 | 22.944 | 0.28 | |||
53 | 3-methyl-2(5H)-furanone | C5H6O2 | 98.100 | 92 | 23.984 | 0.24 | * | * | * | 23.839 | 0.28 | ||
54 | 4,5-dimethyl-4-hexen-3-one | C8H14O | 126.196 | 88 | * | * | * | 24.505 | 0.21 | 24.595 | 0.15 | ||
55 | 2(5H)-furanone | C4H4O2 | 84.073 | 92 | 25.561 | 0.25 | * | * | * | 25.502 | 0.22 | ||
56 | 2-propylcyclohexanone | C9H16O | 140.223 | 87 | * | * | * | * | * | * | 25.603 | 0.17 | |
57 | 3-methyl-4-hexen-2-one | C7H12O | 112.170 | 85 | * | * | * | * | * | * | 26.692 | 0.10 | |
58 | 1,2-dimethoxy-benzene (veratrol) | C8H10O2 | 138.164 | 92 | 26.231 | 0.14 | 26.089 | 0.28 | 26.184 | 0.20 | |||
59 | Methyl 4-hydroxybutanoate | C5H10O3 | 118.131 | 91 | 28.308 | 0.32 | * | * | * | 28.262 | 0.36 | ||
60 | 2,4-Dimethyl-1,3-cyclopentanedione | C7H10O2 | 126.153 | 89 | 29.232 | 0.44 | 29.089 | 0.51 | 29.180 | 0.51 | |||
61 | 3-methyl-1,2-cyclopentanedione | C6H8O2 | 112.127 | 97 | 30.487 | 2.37 | 30.331 | 2.42 | 30.430 | 2.25 | |||
62 | 2-methoxy-phenol (guaiacol) | C7H8O2 | 124.137 | 98 | 32.214 | 16.49 | 32.016 | 19.64 | 32.161 | 16.31 | |||
63 | 3-methyl-2-methoxy-phenol | C8H10O2 | 138.164 | 96 | 32.950 | 0.82 | 32.795 | 1.15 | 32.898 | 0.92 | |||
64 | Furan-2-carbaldehyde, (N’-nitroamidino)hydrazone | C6H7N5O3 | 197.054 | 85 | * | * | * | * | * | * | 34.748 | 2.29 | |
65 | 2,6-dimethyl-phenol | C8H10O | 122.164 | 97 | * | * | * | 34.921 | 0.21 | 35.027 | 0.19 | ||
66 | 2-methoxy-5-methyl-phenol | C8H10O2 | 138.164 | 97 | 36.158 | 0.63 | 35.998 | 0.80 | 36.107 | 0,63 | |||
67 | Maltol | C6H6O3 | 126.110 | 98 | 36.528 | 0.33 | 36.367 | 0.39 | 36.477 | 0.23 | |||
68 | 4-methyl-2-methoxy-phenol (creosol) | C8H10O2 | 138.164 | 97 | 36.880 | 4.73 | 36.722 | 5.91 | 36.830 | 4.87 | |||
69 | Phenol | C6H6O | 94.111 | 98 | 39.350 | 1.41 | 39.185 | 1.72 | 39.301 | 1.43 | |||
70 | 2-methyl-phenol (o-cresol) | C7H8O | 108.138 | 97 | 39.700 | 1.16 | 39.541 | 1.49 | 39.651 | 1.21 | |||
71 | 4-ethyl-2-methoxy-phenol | C9H12O2 | 152.190 | 98 | 40.487 | 2.38 | 40.327 | 3.11 | 40.434 | 2.61 | |||
72 | 4-methyl-phenol (p-cresol) | C7H8O | 108.138 | 97 | 42.984 | 0.54 | 42.818 | 0.77 | 42.931 | 0.67 | |||
73 | 2,6-dimethyl-phenol (2,6-xylenol) | C8H10O | 122.164 | 95 | 43.120 | 0.34 | 42.959 | 0.32 | 43.072 | 0.31 | |||
74 | 3-methyl-phenol (m-cresol) | C7H8O | 108.138 | 96 | 43.302 | 1.23 | 43.135 | 0.88 | 43.250 | 0.49 | |||
75 | 2,5-dimethy-phenol (2,5-xylenol) | C8H10O | 122.164 | 87 | * | * | * | * | * | * | 43.267 | 0.58 | |
76 | 3,4-dimethoxy-phenol | C8H10O3 | 154.163 | 91 | 43.531 | 0.21 | 43.369 | 0.21 | 43.480 | 0.17 | |||
77 | 4-propyl-2-methoxy-phenol | C10H14O2 | 166.217 | 92 | 44.172 | 0.24 | 44.013 | 0.45 | 44.121 | 0.37 | |||
78 | 2,4-dimethyl-phenol (2,4-xylenol) | C8H10O | 122.164 | 85 | * | * | * | 45.982 | 0.16 | 46.098 | 0.14 | ||
79 | 3-allyl-6-methoxy-phenol | C10H12O2 | 164.201 | 97 | * | * | * | 46.458 | 0.20 | 46.574 | 0.15 | ||
80 | 3,4-dimethyl-phenol (3,4-xylenol) | C8H10O | 122.164 | 93 | * | * | * | 47.043 | 0.34 | * | * | * | |
81 | 3-ethyl-phenol | C8H10O | 122.164 | 94 | * | * | * | 47.350 | 0.09 | * | * | * | |
82 | 3,5-dimethyl-phenol (3,5-xylenol) | C8H10O | 122.164 | 87 | * | * | * | 48.834 | 0.19 | * | * | * | |
83 | 4,5-dimethyl-imidazol | C5H8N2 | 96.130 | 98 | * | * | * | * | * | * | 49.749 | 0.21 | |
84 | 2,6-dimethoxy-phenol (syringol) | C8H10O3 | 154.163 | 97 | 50.829 | 8.78 | 50.665 | 9.90 | 50.770 | 8.48 | |||
85 | 4-methyl-2,6-dimethoxy-phenol | C9H12O3 | 168.190 | 80 | * | * | * | * | * | * | 54.427 | 2.52 | |
86 | 1,2,3-trimethoxy-benzene | C9H12O3 | 168.190 | 85 | 54.484 | 2.42 | 54.320 | 2.83 | * | * | * | ||
87 | 1,2,3-trimethoxy-5-methyl-benzene | C10H13O3 | 182.216 | 85 | 57.006 | 1.57 | 56.847 | 1.86 | 56.953 | 1.64 | |||
88 | 2,6-dimethoxy-4-allyl-phenol | C11H14O3 | 194.227 | 88 | * | * | * | 62.035 | 0.13 | 62.141 | 0.11 | ||
89 | Guaiacyl acetone | C10H12O3 | 180.201 | 90 | * | * | * | 65.253 | 0.11 | 65.365 | 0.10 | ||
90 | 2-methyl-5-amino-benzoxazole | C14H11NO | 209.243 | 88 | * | * | * | 68.719 | 0.13 | 68.834 | 0.12 | ||
91 | 2-acetyl-7-hydroxybenzofuran | C10H8O3 | 176.168 | 85 | * | * | * | * | * | * | 71.252 | 0.16 | |
92 | 2-amino-1-naphthol | C10H9NO | 159.185 | 89 | * | * | * | * | * | * | 74.131 | 0.17 | |
93 | Hydroquinone | C6H6O2 | 110.112 | 87 | * | * | * | 79.224 | 0.09 | 79.353 | 0.10 |
Parameters | Extraction Solvent | ||
---|---|---|---|
Dichloromethane | Diethyl Ether | Ethyl Acetate | |
Total number of compounds extracted by the solvent | 65 | 56 | 75 |
% of the total extracted compounds | 69.9 | 60.2 | 80.6 |
Number of compounds exclusively extracted by the solvent | 10 | 4 | 12 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pimenta, A.S.; Fasciotti, M.; Monteiro, T.V.C.; Lima, K.M.G. Chemical Composition of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone. Molecules 2018, 23, 426. https://doi.org/10.3390/molecules23020426
Pimenta AS, Fasciotti M, Monteiro TVC, Lima KMG. Chemical Composition of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone. Molecules. 2018; 23(2):426. https://doi.org/10.3390/molecules23020426
Chicago/Turabian StylePimenta, Alexandre S., Maíra Fasciotti, Thays V. C. Monteiro, and Kássio M. G. Lima. 2018. "Chemical Composition of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone" Molecules 23, no. 2: 426. https://doi.org/10.3390/molecules23020426
APA StylePimenta, A. S., Fasciotti, M., Monteiro, T. V. C., & Lima, K. M. G. (2018). Chemical Composition of Pyroligneous Acid Obtained from Eucalyptus GG100 Clone. Molecules, 23(2), 426. https://doi.org/10.3390/molecules23020426